A New Method to Control the Coverage of Irreversibly Adsorbing $\mathbf{S b}$ on Au Electrode

Ho Ryul Ryu and Choong Kyun Rhee
Departhent of (hemistry: Chmgnan National limersity, Taejon 305-764, Korea Recemed December 16. 1996

Abstract

We report on the development of a new method to control the coverage of a metal tilm prepared with immersion method. An sb species in solution adsorbed irreversibly at an open circuit potential (-0.2 V) as an oxygenous Sb (III) on a clean Au electrode, and the adsorbates showed voltammetric features in the potential range from 0.1 V to -0.4 V . The full coverage of the Sb adsorbates was -0.45 . On the contrary, the sb species in solution did not adsorb at all on iodine-covered Au electrode surfaces, when the iodine coverages were more than 0.25. As the iodine coverage deereased below 0.25 , however, the ireversible adsorption of st took place and the coverage of Sb increased accordingly. This electrochemical belhavior has been interpreted as the penetration of the adsorbing Sh species in solution through open spaces among the iodine adlatices of coverages less than 0.25 . With the manipulation of the iodine coverage, the controllable range of Sb coverage was from 0 to 0.45 , i.e. the full coverage of Sb . In addition, the reversible deposition of Sb on an iodine-saturated Au electrode "ith voltamentric scan has heen observed, which is contrasted with the adsorptive behavior of Sb on the clean Au electrode.

Introduction

One of the key issues in the current electrochemistry is the deposition of ultrathin metal films on electrodes to modify the electronic and/or steric properties of the electrode surfaces. Such a modification is very important in various technical aspects, particularly in fuel cell technology. For example, the deposition of numerous metal atoms onto I't electrode surfaces enhances the catalytic activity in the oxidation of small organic molecules.
Thete are two electrochemical methods to deposit metal ultrathin films on electrode surfaces: underpotential deposition (UPD) method and immersion method ${ }^{1.6}$ In the UPD method. metal ions in solution are reversibly reduced to a metallic atomic layer on a metal electrode of different element. In the immersion method, atier contacting a metal electrode with a solution of a metal species to be deposited, an atomic laver of the metal ionic species is formed via irreversible adsorption. Since the irreversibly adsorbed species generally retains its oxidation states as in solution, an electrochemical reduction of the adsorbates is needed to oblain metallic libuss.
In a practical point of view, the immersion method has received more attention than the UPI) method.' The reason is that the metallic layers deposited with the former method are much more stable, due to their irreversible nature, than those with the latter method. such an attention resulted in many reeent studies on the metallic layers prepared with the immersion method, regarding clectrocatalytic modifier. ${ }^{\text {T- }}$
In the modification of electrocatalyst surfaces, the manipulation of metal adsorbate coverages is instrumental, because the cataly tic activities of modified electrodes show de-
 mersion methed, two techniques have heen conventionally utilized to control metal adatom coverage: one is to control the contacting time and solution concentration for irreversible adsorption, and the other is to control the ox-
idative stripping time and potential of irreversibly adsorbed layers.
In this paper, demonstrated is a new method to control the coverages of a metal film prepared with the immersion method. The model system is irreversibly adsorbing Sb on a polycrystalline Au electrode. The basic idea of our method is the steric hindrance of preadsorbed iodine on Au surfaces to the ireversible adsorption of Sb. In conjunction with the new method, the adsorptive behavior of Sb on clean and iodine-covered Λu electrodes is compared.

Experimental

A thin layer electrochemical eell (TI.F), "as shown in Figure 1, was exclusively used in this work. The purpose of

Figure 1. A sehematic of the thin laver electrochemical (TT.I.) cell.
the TIIE Was fast change of the electrolytic solution confined in the casity between the working electrode and the glass wall of the cell. by purging the cell with N_{z} gas, the solution in the cavit! was expelled out, while the electrode was kept in the inert atmosphere. When purging was stopped, the cavity became filled with the solution around the eell by capillary action. A series of operations to change the solution in the casity is called "rinse", therealter. The volume of the cavity was measured to be $6.92 \mu \mathrm{~L}$ using the coulometry of $\mathrm{Fe} / \mathrm{Fe}$ redox couple. ${ }^{3}$

The working electrode used in this work was a polyertstalline $A u$ celinder (99.99%). A clean surface of the $\dot{A} u$ electrode was routinely prepared with hydrogen Ilame annealing, $\left[\mathrm{INO}_{3}\right.$ treatment and oxdation/reduction cycles. The surface area of the working electrode was measured to be $1.14 \pm 0.01 \mathrm{~cm}^{2}$ with the iodine adsorption method. ${ }^{\text {a }}$

Electrochemical measurements were earied out using a home-built potentiostat. The relerence electrode used in this work was $\Lambda \mathrm{g} / \Lambda \mathrm{g}\left(\mathrm{l}\left(\left|\mathrm{Cl}^{-}\right|=10^{-3} \mathrm{M}\right)\right.$, but the potential seale reported in this paper is against $\Delta \mathrm{g} / \Delta \mathrm{gCl}([\mathrm{Cl} \mid=1 \mathrm{M})$. All eyelic voltammograms were taken at a scan rate of $5 \mathrm{mV} /$ sec. All the solutions were made with ultrapure water (>18 $\mathrm{M}(/ \mathrm{cm}, \mathrm{Bamsted}) . \mathrm{Sh}_{\mathrm{z}} \mathrm{O}_{,}(\mathrm{Aldrich}), \mathrm{NaClO}$ (Aldrich), HClO_{3} (Merck) and $\mathrm{CIH}_{3} \mathrm{COONa}^{(M e r e k)}$)

Results and Discussion

Electrochemical Behavior of Sb on Clean Au

Electrode. Figure 2(a) shows a tupical eyclic roltammogram of a clean $A u$ clectrode in $1 \mathrm{M} \mathrm{NaClO} / 200 \mathrm{mM}$ acetate bulfer $(\mathrm{pH}=4)$ solution(herealter, clean solution). A contact between the clean Λu electrode and $0.25 \mathrm{mM} \mathrm{Sb} \mathrm{O}_{2} \mathrm{O}_{3} / \mathrm{I}$ $\mathrm{M} \mathrm{NaClO} / 2001 \mathrm{mM}$ acetate bufler ($\mathrm{p} \mathrm{II}=4$) solution(hereafter, Sb solution) was made, for immersion, by filling up the casits with the Sb solution at an open circuit potential ($\sim(0.20$ V) For 2 minutes and the tinsing procedure with the Sb solution was repeated several times. Then, the carity was rinsed

Figure 2. Cyclic voltammograms of (a) a clean Au clectrode in the clean solution and (b) the Au clectrode after contacting with the Sb solution (-): the Al electrode in the Sb solution(---).
several times with the elean solution, and the exclic voltammogram as presented with the solid line in figure 2(b) was obtained. Although there was no Sb species in the cavity, the voltammetric features in the potential range from $0.10 \mathrm{~V} \mathrm{to} \mathrm{-} 0.40 \mathrm{~V}$ were discernible. When a clean Au electrode was rinsed with the clean solution, no peak was observed in the particular potential range. These observations indicate that an amount of an Sb species remains on the electrode surface even alter the final rinse with the clean solution.

This electrochemical beharior of Sb on the Au electrode can be intepreted in terms of a strong interaction between an Sh species in solution and the Au clectrode surface. When a clean Au electrode contacts with the Sb solution, the Sb species in solution adsorbs strongly and the adsorbates remain, even after rinsing, on the electrode surface In the tirst eathodic sean from the open eireuit potential, the adsorbed Sb species is reduced, and in the following anodic suan, the reduced sb species is oxidized to the onginally adsorbed state. In fact, the voltammetric leatures in the potential range from $0.110-0.4 \mathrm{~V}$ were persistent with eyclic voltammetric seans when the anodie end of the seam was less than +0.2 V .

The unique way to remove the strongly adsorbed sh is an oxidative resopption. When the anodic sean was expanded to a potential more than +0.2 V , obsersed was an oxidation curtent concomitant with the $A u$ surlace oxidation eurrent (not shown here). In the following cathodic sean, only reduction peaks related to the $A u$ surface oxide and the strongly adsorbed Sb appeared. Furthermore, the reduction charge of the sb adspecies diminished and its deereased amount depended on the oxidation time and potential. These observations reveal that the adsorbed Sb oxidatively desorbs into solution and that the soluble sb species of higher oxidation state is not subjeet to any electrochemical reduction.

Based on the observations so far, the adsorptive behavior of the sb species under study can the elassitied as an irreversible adsorption. The reason for the classilication is that the most distinguishing characteristic of the irreversible adsorption is the uniqueness of oxidative resorption in removing the adspecies, asexemplitied with S and I on l^{3}. ${ }^{23}$. ${ }^{*}$ To our knowledge. the irteversible adsorption of metal species on Au clectrode surfaces are rarely studied. while the phenomena of various metal seecies are very wellknown for P'r electrodes. ${ }^{-21}$

The chemical nature of the irreversibly adsorbed sb species is hest estimated to be an oxygenous Sb(IJI). In this work, the voltammetric features of the adsorthed Sb species on the Au electrode showed the pII dependence of $\sim(60 \mathrm{mV} /$ pH . Identical ph dependence of the irreversibly adsorbed Sb on $\mathrm{Pt}(111)$ and $\mathrm{P} 1(100)$ were observed. This observation was interpreted to indicate that the adspecies contains oxsgen atom(s) and that an equal number of hydrogen ions and electrons are invelved in the rate-determining step. Considering the oxidation and reduction of the adsorbed Sb , it is concluded that the oxidation state of the Sb adsorbate is 111 because the possible oxidation states of sb are 0 . 111 and V. Aecordingly, the following reaction scheme is proposed for the irreversible adsorption of sb on clean Au electrode.

$$
\begin{aligned}
& \mathrm{Sb}(\text { III, aq }) \rightarrow \text { oxygenous } \quad \mathrm{Sb}(\mathrm{III}, \mathrm{ad})+3 \mathrm{c} \rightleftarrows \mathrm{Sb}(0, \mathrm{ad}) \\
& \qquad \quad \mathrm{Sbl}(\mathrm{~V}, \mathrm{aq})+2 \mathrm{e} \quad \begin{array}{l}
\text { bew }+0.2 \mathrm{~V} \\
\text { above }+0.2 \mathrm{~V}
\end{array}
\end{aligned}
$$

The reduction charge of the irreversibly adsorbed Sb layer was $272 \mu \mathrm{C} / \mathrm{cm}^{2}$, which corresponds to the coverage of ~ 0.45 (defined as ratio of the number of Sb atoms to that of Au atoms on the electrode surface).

The dashed line shown in Figure 2(b) is a typical eyclic voltannogram of the Au electrode in the cavity filled with the Sb solution. Clearly, two reduction peaks at -0.27 V and -0.48 V were observed. When the cavity was rinsed with the clean solution at 0.2 V , only the redox process related to the irreversibly adsorhed Sb layer was obsened. The disappearance of the peak at -0.48 V indicates that the bulk metallie sb layer deposits from the solution on the tirst metallic Sb layer which is formed via the reduction of the irceversibly adsorbed laver. Under such conditions, the reduction peak of the ineversible Sb adsorbates shitted from -0.20 V to -0.27 V .
Electrochemical Behavior of Sb on iodine-Covered Au Electrode. Figure 3(a) is the cyclic voltammogram of an iodine-saturated Au electrode in 1 M Na $\mathrm{ClO}_{3} / 200 \mathrm{mM}$ acetate butfer $(\mathrm{pH}=4$) solution, i.e. the clean solution. The adsorption of iodine was carried out by contacting a clean Λu electrode with 1 mM NaI solution at an open cireuit potential (~ 0.1 V) for 2 minules. A briel deseription of the electrochemical behavior of iodine on Au is as follows:' The oxidative stripping of the adsorbed iodine to iodate $\left(\mathrm{IO}_{3}\right)$ started at 1.0 V with the surface oxidation of the Au electrode. The cathodic peak at 0.65 V corresponds to the reduction of the surface oxide and the two

Figure 3. Cyelie woltammograms of an iodine-saturated $A u$ electrode (a) in the elean solution, (b) in the clean solution, alter contacting at open cireuit potential with the Sb solution. with the potential range between -0.5 V and $-0.4 \mathrm{~V}(--)$: with the potential range between -0.5 V and $-1.3 \mathrm{~V}(-)$, and (c) in the Sb solution (-) in the clean solution after rinsing at $+0.2 \mathrm{~V}(---)$.
peaks at 0.0 V and -0.3 V do to the reductive adsorption of iodate to iodine. The full coverage ot iodine was measured to be ~ 0.45.

The adsorptive ability of the Sb species in solution on the iodine-saturated Λu electrode surface was examined. A contaed between the Au electrode fully covered with iodine and the irreversibly adsorbing Sb speeies was made by filling up the cavity with the Sb solution without potential control. Then, the cavity was rinsed with the clean solution so that there was no Sb species in the cavity. The dashed line in Figure 3 (b) was obtained in the potential range between -0.5 V and +0.4 V . Clearly, there is no redon process in the studied potential range, which indicates that any Sh species does not exist on the iodine-saturated Au surface. When the voltammetric polential range was expanded only the electrochemical processes related with the preadsorbed iodine were observed (the solid line in Figure 3(b)). These ohservations reveal that the Sib species in solution does not adsorb on the iodine-saturated Au electrode, but does on the clean one. The reason for this behavior is that the preadsorbed iodine laver keeps the Sb species in solution from contacting with the electrode surface.

In spite of the inability for the sb species to adsorb on the iodine-covered Λu electrode, a metallic layer of sh can be deposited electrochemically on the surtace. The dashed line in Figure $3(\mathrm{c})$ is the cyclic voltammogram of the iodinecovered Au clectrode in the Sb solution, which is nearly identical with that of the irreversibly adsorbed Sb layer. A plausible pieture of the situation is that the metallie Sb layer is deposited on the $A u$ electrode surface but under the adsorbed iodine layer, or $\mathrm{I} / \mathrm{sb} / \mathrm{Nu}$. Such a sandwiched structure of a metal monolayer was experimentally verified for the underpotential deposition of Δg and Pb on iodine-saturated I't electrode surfaces. ${ }^{33 / 35}$ It is noteworthy, also, that the peak at -0.47 V became small although there was enough Sb species in the eavity for the bulk deposition. Actually, the reduction charge from 0.0 V to -0.5 V was 275 $\mu \mathrm{C} / \mathrm{em}^{2}$, which is close to the full coverage of the irreversibly adsorbed Sb on the chan Au electrode surface This phenomenon implies that the iodine adatoms prevent the bulk deposition of 'Sb and that they alter the deposition petentials of Sb species

More interesting is that the deposition behavior of Sb becomes chemically reversible in the presence of iodine. Alter rinsing the cavity with the clean solution at 0.2 V , only the cument peaks related to the adsorbed iodine were observed as shomn with the solid line in Figure 3(c). This observation indicates that the oxidation product of the metallic Sb on the Au surface and under the adsorbed iodine is soluble, which is contrasted with the irreversibly adsorbed, thus insoluble one on the clean Au surface. On the iodine-saturated Au electrode, the electrochemical behavior of the Sb species in solution can be presented as Follows

$$
\mathrm{Sb}(\mathrm{III} \cdot \mathrm{ac})+3 \mathrm{c} \because \mathrm{Sb}(0, \mathrm{ad})
$$

Controlling the Coverage of the Irreversibly Ad-

 sorbing Sb. A new idea to control the eoverage of the irreversibly adsorbing St is illustrated in Figure 4 . When an amount of the iodine on the iodine-saturated cu electrode is desorbed to a submonolayer coverage, the distances between the adsorbed iodine atoms will be increased unless

Figure 4. A sehematic presentation of a new method control the coverage of irreversibly adsorbing Sb on Au electrode.
the islands of iodine are fomed. Then, open spaces will be formed among the ad-structure of iodine so that only the Au atoms not covered with iodine are exposed to the surrounding solution through the opern spaces. It the open site is spacious enough for the Sb species to contact the Nu electrode, then the imtwersible adsorption of Sb will take place. By controlling the distribution and/or size of the open sites with the coverage of iodine, the surface amount of the irreversibly adsorbed Sb can be manipulated.

The irreversible adsorption of Sh among the preadsorbed iodine of 0.15 corerage is demonstrated in Figure 5 . To control the coverage of iodine there are two possible methods to desorb the iodine from the iodine-saturated Nu surface ${ }^{s \prime}$: one is the oxidative resorption of the adsorbed iodine to iodate and the other is the reductive resorption of the adsorbed iodine to iodide. In this work, the coverage of iodine was manipulated with the oxidative resorption. Specifically, an iodine-saturated nu electrode was held at +1.0 V for 15 seconds for the oxidation of the adsorbed iodine and the cavity was flushed to halt the oxidation. Then, the coverage of the remaining iodine was confinmed with the dashed line in Figure 5. The cavily, in which there was the Au clectrode with the adsorbed iodine of the pre-determined amount, was filled with the sb solution for 2 minutes without potential control to allow the adsorption of Sh . AILer rinsing the cavily with the clean solution, the solid line in Figure 5 was obtained, which clearly shows the presence of the imeversibly adsorbed Sb . The coverage of the Sb adsorbed in this way was 0.16 , which is below the full coverage of 0.45 .

The eoverage of the irreversibly adsorhed sb depends on that of the preadsorbed iodine as shown in Figure 6 . While the adsorption of Sb is negligible above 0.25 coverage of jedinc, the amount of Sb is inereasing below the particular eoverage. This observation elearly demonstrates that the covcrage of Sh is possible to manipulate from 0 to the full monolayer coverage with the adsorbed iodine. In addition, such a coverage dependence implies that there is a critical size of the space formed among the iodine surface structure

Figure 5. Cyelic voltammograms of the Au electrode with adsorbed iodine of 0.15 coverage before (--) and atter contanting with the Sb solution (-).

Figure 6. Plot of Sb coverage vs. the preadsorbed iodite coverage on Au electrode.
for the solution Sb species to penetrate through.
Cumenty a molecular level investigation using in-situ seamning probe microseope technique is in progress to serutinize 2-dimensional structures of irreversibly adsorbing Sb on clean and iodine-cowered Au single erystal electrodes.

Conclusion

1. An Sb species in solution adsorbs irreversibly as an osYgenous Sb(III) on a clean Λu electrode and the adsorbates show voltammetric Features in the potential range from 0.10 V to -0.40 V . The tull coverage of the Sh adsorbates is -0.45 and the only way to desorb the Sb adatoms is oxidation to an $\mathrm{Sb}(\mathrm{V})$ solution species.
2. The Sb species in solution does not adsorb on an iodi-ne-saturated Au electrode surface, while one monolayer of Sb reversibly deposits on the particular surface during voltammetric scans
3. Demonstrated was a new method to manipulate the coverage of the irreversibly adsorbing Sh via submonolayers of iodine. The controllable range of the Sb coverage
is from 0 to the full coverage of 0.45 .
Acknowledgment. This work was supported by the Korean Science and Engineering Foundation (951-0302-(1512).

References

1. Kokkinidis, G. J. Electroanal. (hem. 1986,201, 217.
2. P’arsons, R.: VanderNoot, I. J. Electrozhal. Chem. 1988, 257, 9.
3. Kolb, D. M. In Achances in elechochemishy and Elecrochemical Engineering; Gerischer. I., Ed.: Wiely: New York, U.S.A., 1984: Vol. 13. p 159.
4. Janssen, M. M. 1': Moolhuysen. Electrochim. Acta 1976, 21.861
5. Janssen, M. M. P': Moolhursen, Elecrrochim. Acra 1976, 21,869.
6. Janssen, M. M. P : : Moolhuysen, J. Caral. 1977.16, 289.
7. Feliu, I. M. Fermandez-Vega. A.: Aldaz, $\Lambda:$: Clavilier, I. J. Flectroanal. (Whem. 1988, 256. 149.
8. Clavilier. J.: Femandez-Vega, A.: Feliu, I. M.: Aldaz, Λ. J. Electroxhal. Chem. 1989, 258. 89.
9. Femande\%-Vega, A. Feliu, J. M.: Alday, A.: Clavilier, T. J. Electroanal. Chem. 1989, 258. 101.
10. Clavilier, J.: Femandez-Vega. A.: Feliu, J. M.: Nldaz, A. J. Electroanal. ('hem. 1989, 261, 113.
11. Femander-Vega, A.: Feliu, J. M: Aldaz, A.: Clavilier, I. J. Electrocnal. Chem. 1991, 305, 229.
12. Hetrero, A.: Fernander-Vega, A: Feliu, J. M.: Aldar, A. J. Electroanal. Chem. 1993, 350, 73.
13. Ierrero, A.: Feliu, I. M.: Nldaz. A. J. Electroanal. (hcm. 1994, 368 . 101.
14. Llorca, M. J.: Ilertero. A: Feliu, J. M.: Nldaz, A. J. Elechoonal. Chem. 1994, 373, 217.
15. IJorca, M. T.: Feliu, T. M.: Aldar, A.: Clavilier, J. J. Elechoonal. (hem. 1994, 376, 151.
16. llerrero, A.: Llorca. M. J.: Feliu, J. M.: Aldaz, A. J. Electroanal. (Them. 1995, $383,145$.
17. Herrero, A.: Rodes, A: Perc\%, T. M.: Feliu, T. M:Aldaz. A. J. Electroonal. (hem. 1995, 393, 87.
18. Herrero, A.: I.lorca, M. J.: Fcliu, J. M.: Aldaz, A. J. Electroanal. (Them. 1995, 394, 161.
19. Chang, S.-C.: Weaver, M. J. Shof. Sci. 1991, 241, 11.
20. Chang, S.-C.: Ho, Y.: Weaver, M. J. Suff Sci. 1992,

265, 81.
21. Kizhakevariam, N.: Weaver, M. J. Suff Sci. 1994, 310, 183.
22. Hubbard, Λ. I'. CRC Crit. Rev of And. Chem. 1973, 3 , 201.
23. Gregory, B. W.: Stickiney, J. L. I, Electroanal. Chem. 1990, 300, 543.
24. Rodriguc\%, T. F : Mchrahtu, T.: Soriaga, M. P. J. Elecmotmall. Chem. 1987, 233, 283.
25. Marcus, P: Protopopoti, E. Sum. Sci. 1985, 161, 533.
26. Protopopoti, Г.. Marcus, P. Surf. Sci. 1985, 169, I.237.
27. Batina, N.: McCargar, J, W.: Salaita, G. N.: Lu, F.: Laguren-Davidson. T.: Iin C.-H.: Hubbard, A. T. Langmuir 1989, 5, 123.
28. Felter, 'I. E.: I Iubbard, A. T. J. Electroand. Chem. 1979, 100, 473.
29. I Lubbard, A. I.: Stickney, J. L.: Soriaga, M. P.: Chia, V. K. F.: Rosasco, S. D.: Schardt, B. C.: Solomun, T.: White, T. H.: Wieckowski, A. W. J. Electroanal. (hem. 1984, 168, 43.
30. Hourani, M.: Wicekowski, A. W. J. Flectroanal. Chem. 1988, 227, 259.
31. Wasberg, M.: Palaikis, IL: Wallen, S.: Kamrath, M.: Wieckowski, A. W. J. Electrormal. Chem. 1988, 256. 51.
32. Schardt, B. C.: Yau, S.-L.: Rinaldi, F. Science 1989, 2t, 1050.
33. Tao, N. T.: Lindsay, S. M. J. Phes. (hem. 1992, 96. 5213.
34. Yau, S.-T.: Vilus, C. M.: Schardt. B. C. . Am. (hem. Soc. 1990, 112, 3677.
35. Hourani, M.: Wasberg M.: Rhee, C.: Wieckowski. A. W. Croat. (hem Acta 1990, 63, 373.
36. I Lubbard, A. T.: Stickney, J. L.: Rosasco, S. D.: Soriaga. M. P. Song. D. J. Electroanal. (hem. 1983, /50, 165.
37. Stickncy, J. I.: Rosasco. S. D.: Song, D: Soriaga, M. I': I Lubbard, A. I. Suf. Sci. 1983, 130, 326.
38. Stiekney, T. I.: Stem. D. A.: Schardt, B. C.: 7apien, D. C: Wieckowski, A: Hubbard, A. T. J. Electroanal. C/hom. 1986, 213, 293.
39. Brawo. B. G.: Michelhaugh. S. I..: Soriaga, M. P. Villegas, I.: Suggs, D. W.: Stickney. I. L. J. Phys. Chem. 1991, 95, 5245.

