Theoretical Studies on the Gas-Phase Wolff Rearrangement of Ketocarbenes

Chan Kyung Kim and Ikchoon Lee*
Department of Chemistry, Inha linversity, Inchon $102-751$, Korea Recened Jomury 21, 1997

Abstract

The substituent effects in the gas-phase rearrangement of carbenes to ketenes involved in the Wolff reaction have been imvestigated theoretically using the AMI methed. In the imitial state, cartenc, there is a relatively strong vicinal $n-\sigma^{*}$ interaction between the lone pair (n) and carbonyl group ($\sigma *$). In the bridged transition state (TS), electronic charge is transiemed from the migrating ring (7.-ring) toward the nonmigrating ring (Yring). The carbenes are stabilized by an electron doner $Y(\delta \sigma,<0)$ whereas the $T S$ is stabilized by an clectron acceptor $\mathrm{Y}\left(\delta \sigma_{\mathrm{v}}>0\right)$. Multiple regression analysis of $\log \left(k_{\mathrm{zz}} / k_{\mathrm{HH}}\right)\left(=-\delta \Delta \mathrm{G}{ }^{*} / 2.3 \mathrm{RI}\right)$ leads to a relatively large tensive structural change in the transition state due to the stabilization of the initial state by the vicinal n - σ^{*} overlap. When the solvent (water) effeets are aceounted for by the SM2. I model of the Cramer and Truhlar mbthed, the magnitude of all the selectivity parameters, ρ_{v}, ρ_{z} and $\rho_{v z}(=-0.66)$ are increased.

Introduction

L. Wolff isolated products formed by rearrangement of the carbon skituton in decomposing dicarbonyl dia\%o compounds in aqueous solution, (1). The products were rationalized by assuming a ketene inkenediate,-TII.

Azibenzil ($\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{l}^{\prime} \mathrm{h}$ in I) in MeOll at $50^{\circ} \mathrm{C}$ afforded 70% of the Wolff rearrangement product, methyl diphenylacetate. Flevated temperatures favor the Wolli rearangement, and photolysis leads often successful "nommal" rearangement when other methods failed. Nlthough the Wolff reaction may give a varicty of linal products, all of them can be derived from the intermediate ketene, lll.' Thus, mechanistically the rearrangement process from singlet carbene, 11 , to ketene, IJt, is the most important step. In this work, effects of substituents in the two phenyl groups of azibenzil on the mechanism of the Wollf rearrangement in the gas phase, eq. 2 , are examined.

For a disubstituted reaction system, we have been advocating nonadditivity of the substituent effects on the rate due to a eross-interaction term, p, in eq. 3." This simple second-order expression is obtained by a Taylor series expansion of $\log k_{3 z}$ around $\sigma_{y}=\sigma_{z}=0$ with neglect of pure sceond-order (ρ_{w} and $\rho_{z z}$) and higher-order ($\rho_{\text {in }}$ ete) terms. The cross-interaction constant, $\rho_{\text {wz }}$ can be alter-

[^0]

IIa

TSa

1IIa
$\mathrm{y}=\mathrm{Z}=\mathrm{CH}$. H. f. CL. ©N. ar NO

$$
\log \left(k_{n}\right)=\beta_{-} \sigma_{0}+\rho_{-} \sigma_{-}-\rho_{n} \sigma_{n}
$$

natively given by eq. 4. and is considered to represent a

$$
\begin{equation*}
\rho_{\mathrm{XY}}=\frac{\partial \rho_{\mathrm{Z}}}{\partial \sigma_{\mathrm{Y}}}=\frac{\partial \rho_{\mathrm{Y}}}{\partial \sigma_{\mathrm{Z}}} \tag{4}
\end{equation*}
$$

change in the intensity of interaction, ΔI_{Yz}, between the two substituents on gring from the initial, $l_{v z} z^{\prime \prime}$ to the transition state, $I_{\mathrm{sz}}=$. eq. $\overline{5}$.b ${ }^{\text {s }}$ The magnitude of ρ_{vz} can therefore be

$$
\begin{equation*}
\rho_{y z} \propto \Delta I_{y z}=I_{y z}^{z}{ }^{z}-I_{y z}^{v} \tag{5}
\end{equation*}
$$

small when the two substituents interact strongly in the initial state as well as in the transition state (TS). The Wolfi rearrangement is just such an example in which the migrating phenyl ring is initially (in cartene) bound by covalent bonds (strong interaction) but is partially cleaved in the IS with the two rings approaching nearer and interacting through dual routes (also strong interaction).

Calculations

The RIIF/AMI method was used throughout in this

Work since the reactant, single carbenes. IS's and products have closed stell electron conligurations. Geometries of all ppecies were fully optimifed and all stationary points were characterized by calculating the force-constant matrix and confinming all positive and only one negative cigenvalue for carbene and l 'S. ${ }^{\text {" }}$ respectively. Jintropies (S) were calculated to arrive at (Gibbs free energies (C) , at $\mathrm{I}=298 \mathrm{~K}$, $(\mathrm{i}=1 \mathrm{I}-\mathrm{T} \mathrm{S}$. The solvent (water) effects were acoounted for by use of SM2.1 model of the Cramer and Truhlar method. "The free energy of solvation, ΔG, calculated by this method is the difference between the gas-phase and the aqueous-phase Pree encrgies. Since in this model the SCF tesults are parametrifed using experimental data, they implicitly include electron comelation and configuration mixing effeets ${ }^{10}$ just as AMI does for the gas-phase solute energies.

Results and Discussion

Structures

Carbenes (IIa). The structure of the singlet carbene. Ita, is shown in Irigure I. The lone pair orbital on C:overlaps with the σ antibonding orbital of the vicinal carbonyl

group, $\sigma^{*}, \ldots\left(\mathrm{n}-\sigma^{*}\right.$ interaction). "This elongates the $\mathrm{C}=(\mathrm{O})$ bond ($1.25 \AA$ ws $1.22 \AA$ tor the average of ketones ${ }^{\prime 2}$) but shortens the $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond ($1.42 \AA$ vs $1.51 \AA$ for the average value ${ }^{23}$). In addition, an electron donor para- substituent in the Y -ring, $\delta \sigma,<0$ (e.g. $\mathrm{Y}=\left(\mathrm{CH}_{\mathrm{i}}\right)$, intensitites this n- σ^{*} interaction, and the distance between C_{2} and $C_{10}, R_{2,0}$, becomes contracted as a result of conjugative electron donation from Y toward C ($1.388 \AA$ with $\mathrm{Y}=\mathrm{CH}$, and $1.406 \AA$ with $\mathrm{Y}=\mathrm{NO}$, for $\%=\mathrm{H}$). As a result, the carbene, Ita, is stabilized fide infral. In lact the carbene is considered to form a resonanee hebrid of Ita and IFa'. The bond distance

Z-ring

Figure 1. Structure of reactant (R). Y II. $\%$ II. Bond lengeths in \AA.
data in '] able I reveal that the two extremes of these structural effects are found with substitutent combinations of $\mathrm{Y}=\mathrm{CH}_{\mathrm{j}}: \quad \%=\mathrm{NO}_{2}$ (strongest elfect) and $\mathrm{Y}=\mathrm{NO}_{2}: \%=\mathrm{C}_{3} \mathrm{II}_{3}$ (weakest effect): thus $\mathrm{R}_{1,}$ and $\mathrm{R}_{2,30}$ are the shorest and the carbene is the more stable for the fommer, $\mathrm{Y}=\mathrm{C}^{\prime} \mathrm{H}_{3}: /=\mathrm{NO} \mathrm{N}_{2}$ ($\Delta H_{=}=97.00$ and $102.23 \mathrm{keal}_{\mathrm{kol}}{ }^{-1}$, rexpectively). In agreement with the resonance hybrid sittucture between lla and Ifa' due to the strongest $n-\sigma^{*}$ interaction between the lone pair and σ_{*}^{*}, tor the electron donor $Y, \delta \sigma_{4}<0$, the formal negative charge on 0 is larger (Table 2): $\mathrm{q}_{1}=-0.345$ and -0.326 , respectively. with $\mathrm{Y}=\mathrm{CH}_{3}$ and $\mathrm{Y}=\mathrm{NO}_{2}$ for $Z=\mathrm{H}$. Charge distribution of the two rings in Table 2 reveals that in general the $\%$-ring is negative whereas the Y-ring is positive: the stronger the $n-\sigma^{*}$ interaction, the more negative is the $/$-ring, the more positive is the Y -ring and the greater is the stability of the carbene pide infraf due to the reso-

nance, IIa \hookleftarrow Ilá.
Transition states. The structure of the TS, TSa. is gisen in ligure 2. In the bridged IS structure, T Sa , a partial double bond is formed between C_{1}, and $C_{\text {: }}$ with conratetion of bond length of the bond $\mathrm{C}_{3} \mathrm{C}_{2}$ and also $\mathrm{C}_{1}=\mathrm{O}_{3}$ (Table 1). These lwo bond eontractions attending desruction of $n-\sigma^{*}$ interaction in the IS cause electronic charge flow from the \%-ring toward the Y-ring (lable 2). Thus the TSa becomes more stabilized by a stronger electron donor $\%(\delta \sigma<0)$ and be a sitrong electron aceepter Y $\left(\delta \sigma_{i}>0\right)$. In faet the relative order of stability becomes inverted on going from the carbene (IJa) to the TS: now bond length of the wo bonds, $C_{1}-C_{2}$ and $C_{2}-C_{10}$, are the shortest and the TSa is the most stable for $\mathrm{Y}=\mathrm{NO}_{2}: \%=$ C H_{3}.

Ketenes. The structure of the ketene is presented in Figure ?

Energetics

Ileass of formation ($\Delta / / /$, entropies ($(\mathbb{)}$), activation and reaction parameters, ΔG and ΔG, are summarized in Table 3. [n general, a stronger donor \% $(\delta \sigma<0)$ and a stronger acceptor $\mathrm{Y}(\delta \sigma,>0)$ destabilize the reactant, carbene (lla), more ($\delta \Delta / /$: 0), hut stabilize the JS (ISa) more $(\delta \Delta H,<0)$ leading to a lower activation hatrier, $\delta \Delta\left(\xi^{\prime}<0\right)$. This means that there is a relatively large structural change on going from the reactant, carbene fla to the TS.

In contrast, honsever, both stronger acceptors $Z\left(\delta \sigma_{>}>0\right)$ and $\mathrm{Y}\left(\delta \sigma_{>}>0\right)$ stabilize the product. ketene, more leading to a greater exothemicity of the reaction, $\delta \Delta(i<0)$. Thus for a lised $\%$, a stronger acceptor $Y(\delta \sigma,>0)$ leads to a greater exothermicity $(\delta \Delta(;))$ as well as a lower activation barrier

Table 1. AM 1 optimized bond lengths of reactant. TS. and product in \AA

$\left(\delta \Delta G^{*}<0\right)$, but for a fived Y a stronger acceptor $Z(\delta \sigma>0)$ leads to a greater exothemicity ($\delta \Delta(;<0)$ but to a higher activation batrier ($\delta \Delta\left(j^{\prime}>0\right)$.

These energetic are in agreement with the results of substituent effeets on the stabilities of the carthene, TS and ketene: the reactant is stabilized by the vicinal $n_{c:}-\sigma^{*}$ c-n overlap whereas the l S is stabilized by the efficient electronic charge flow from the Z -ring toward the Y-ring. The ketene is obviously stabilized by lowering tectronic charge from the ketene moiety, $-C^{\prime}=(\cdot=0$.

Cross-Interaction Constant $\rho_{\text {- }}$

The ΔG values in lable 3 are used to calculate the Hammett's ρ values by eq. 6. Since in the Y-ring relatively

$$
\begin{equation*}
\delta \log k_{\mathrm{a}}=-\frac{1}{2.3 \mathrm{RT}} \cdot \delta \Delta G^{\mathrm{t}}=\rho \sigma \tag{6}
\end{equation*}
$$

strong negative charge develops, the use ${ }^{13}$ of σ^{-}rather than
the nomal σ improsed the linear correlation substantially. We therefore used the σ^{-}constant for the substituent in the Y-ring. ($\sigma_{\gamma}{ }^{-}$). The results are collected in Table 4. $\Lambda \mathrm{s}$ predieted from the formal charges in Table 2, ρ_{7} is neqative and ρ_{s} is positive indicating that electronic charge is lost from the \angle-ring (positive chatge develops) whereas it is gained in the Y-ring (negative charge develops) on going from the carbene to the TSa. Again the positive charge developed in the 'IS at C_{1}, is stabilized or partially neutralized by an electron donor \angle (a less negative ρ_{z}), while the negative charge developed in the IS on C, is stabilized by an electron aceeplor Y (aless positive ρ_{r}).

Multiple regression or ΔG^{\prime} (eq. 6) using eq. 3 gave the cross-interaction constant, ${ }^{\prime} p_{s i}=-0.53$, as expressed by eq. 7. It is instructive to compare this expression, eq. 7, with

$$
\begin{equation*}
\log \left(k, k_{z H}\right)=2.96 \sigma_{i}-1.40 \sigma_{2}-0.53 \sigma_{i} \sigma_{z} \tag{7}
\end{equation*}
$$

the corresponding one for the base-catalyad rearrangement

Table 2. lormal charges $\left(q_{i}\right)$ of reactant (R) and chatges in tormal charges. $\Delta q^{\prime}\left(q^{\circ}-q_{i}\right)$ and $\Delta q^{\prime}\left(q_{i}-q_{q}\right)$ in electronic charge unit

$\%$		C	4.			$\text { Y } \mathrm{Y} \text { - ring }$	\underline{C}	$\Delta g^{\text { }}$			Y-ring		$\Delta \theta^{\prime}$			Y-ring
			C	0%	\% - ring			C	O. $/ 2$	-ring		g	C	0		
$\overline{\mathrm{ClI}}$	Cl	268	,	. 350	-0.01.3	0.209	()	-0.	0.056	0.045	-0.090	10.011	-0.094	0.215	5	77
	H	0.265	-0.105	-0.346	$6-0.010$	0.196	0.074	-0.089	0.054	0.046	-0.085	4	-0.104	. 213	3	66
	1 F	0.267	-0.109	-0,.345	5-0.008	0.195	0.075	-0.092	0.055	0.049	-0.087	0.014	-0.100	0.215	0.045	-0.173
	Cl	0.265	-0.102	-0.343	$3-0.007$	0.187	0.082	-0.698	0.055	0.056	-0.094	0.018	-0.110	0.214	0.044	-0.167
	CN	(1.259	-0.084	-0.3.36	-0.0)1	0.162	0.118	-0. 128	0.056	0.087	-0.134	0.031	-0.134	0.212	0.1045	55
	N	0.255	-0.061	-0.327	0.00	0.124	0.1	-0)	0.060	0.695	-0.128	46	-0.165	0.212	6	
II	C	0.267	-0.114	-0.349	-1.015	0.2	0.068	0.07	0.058	0.036	-0.087	2	-0.095	0.215	0.046	-0.179
	II	0.265	-0.106	-0.345	$5-0.013$	0.199	0.072	-0.084	0.056	0.0137	-0.0.082	0.016	-0.105	0.213	0.044	-0.168
	F	0.266	-0.110	-0.344	$4-0.010$	0.198	0.073	-0.087	0.057	0.040	-0.0.84	0.015	-0.100)	0.215	0.045	-0.175
	Cl	19.264	-0.103	-0.342	$2-0.0099$	0.190	0.078	-0.091	0.057	0.045	-0.089	10.020	-0.110	0.214	0.045	-0.168
	CN	N 0.259	-0.085	-0.334	-0.003	0.164	0.117	-11.123	0.059	0.078	-0.131	0.032	-0.134	0.212	0.046	-0.156
	No	O. 0.254	-0.064	-0.326	0.00	0.130	0.129	-0.149	0.062	0.086	-0.127	0.047	-0.164	0.212	0.047	-0.143
F	CII	II. 0.270	-0.118	-0.348	-0.024	0.220	0.065	-0.069	0.060	0.0 .35	-0.090	0.010	-0.091	0.218	1.046	-0.184
	11	0.267	-0.109	-(0.345	5-0.021	0.207	0.069	-0.079	0.057	0.0 .37	-0.084	0.014	-0.102	0.216	1.044	-0.172
	J:	0.269	-0.114	-0.343	$3-0.019$. 2	0.070	-0.081	0.059	0.039	-0.087	0.013	-0.097	0.218	0.045	-0.179
	Cl	0.270	-0.106	-0.341	$1-0.017$	0.198	0.074	-0.086	0.058	0.044	-0.090	0.018	-0.107	0.217	0.046	-0.173
	CN	N 0.261	-0.088	-01.3.34	-0.012	0.172	0.112	-0.116	0.059	0.078	-0.1.32	0.030	-0.131	0.215	0.047	-0.160
	No	. 0.257	-0.0688	-0.325	-0.0603	0.1.39	0.127	0.14	0.062	0.08	-0.133	0.045	-0.160	21	. 048	49
Cl		268	-0.118	-0.347	-0.025	0.222	0.06	-0.00	0.061	0.029	-0.090	0.014	-0.093	0.218	0.045	184
	11	10.260	-0.109	-0.344	$4-0.022$	0.208	10.069	-0.075	0.059	0.031	-0.084	0.018	-0.104	0.215	0.043	-0.172
	I	0.268	-0.114	-0. 342	$2-0.020$	0.208	0.069	-0.077	0.060	0.033	-0.086	0.017	-0.099	0.218	0.044	-0.179
	Cl	0.260	-0.106	-0.340	(0) -0,019	0.200	0.073	-0.081	0.059	0.038	-0.089	0.021	-0.109	0.216	0.045	-0.173
	CN	N 0.260	-0.088	-0.332	-0.013	0.173	0.113	-0.115	0.059	0.07 .3	-0.130	0.033	-0.133	0.214	0.045	-0.160
	NO	O 0.255	-0.069	-0.323	-0.004	0.140	0.128	-0.142	0.062	0.084	-0.132	0.047	-0.160	0.214	0.047	-0.148
CX		0.267	-0.123	-0..345	-0.0.34	0.234	0.061	-().049	0.067	0.012	-0.091	0.022	-0.095	0.221	0.041	-0.189
	H	0.265	-0.113	-0,341	$1-0,031$	0.219	0.065	-0.061	0.064	0.015	-0,0083	0.026	-0.107	0.218	0.039	-0.177
	1 :	0.267	-0.119	-0.339	9-0.029	0.220	0.066	-0.061	0.066	0.017	-0.0988	0.024	-0.101	(1220	0.041	-0.185
	Cl	0.265	-0.11]	-0.3.37	7-0.028	0.211	0.069	-0.067	0.064	0.020	-0.086	0.028	-0.111	0.219	0.041	-0.178
	CN	N 0.259	-0.092	-0.329	-1.0122	0.184	0.691	-0.091	0.062	0.040	-0.102	0.039	-0.1.35	0.216	0.043	-0.163
	NO	O 0.254	-0.073	-0.320	-0.013	0.151	0.128	-0.1.32	0.065	0.069	-0.1.30	0.052	-0.160	0.215	0.044	-0.151
No.		0.268	-(1.130)	-0.342	- 11.049	0.253	0.055	-0.024	0.076	-0.010	-0.097	0.083	-0.097	0.227	0.0 .34	-0.197
	11	0.265	-0.119	-0.3.37	-0.046	0.237	0.059	-10.036	0.072	-0.009	-0.087	0.036	-0.109	0.224	0.033	-0.184
	1 F	0.268	-0.126	-0.336	$6-0.044$	0.238	0.059	-0.0.35	0.074	-0.006	-0.092	0.0 .35	-0.104	0.226	0.033	-0.191
	Cl	0.265	-0.117	-0.334	$4-0.043$	0.229	0.062	-0.0.042	0.072	-0.0003	-0.089	0.038	-0.112	0.225	0.034	-0.184
	CN	N 11.259	-0.098	-0.325	-0.0.37	0.201	0.075	-0.065	0.068	0.008	-0.085	0.047	-0.136	0.221	0.037	-0.169
	N0	0.0 .254	-0.078	-0.315	- 0.028	0.167	0.125	-0.114	0.069	0.048	-0.128	0.058	-0.161	0.219	0.039	-0. 154

Figure 2: Structure of transition state (TS). Y H. \% II. Bond Iengthe in A.

Figure 3. Structure of product (P^{\prime}) Y II. $\%$. HI. Bond lengths in \AA.

Z	Y		Δ / I.			S		\triangle	$\triangle 0^{\circ}$
		reactant	TS	product	reactant	TS	product		
CH_{5}	CH	85.49	107.30	30.88	133.39	132.18	131.89	-54.61	22.17
	H	93.89	115.15	38.56	124.54	123.07	121.69	-55.3.3	21.70
	$1 \cdot$	48.48	69.86	-6.62	127.48	126.62	125.94	-55.11	21.64
	Cl	87.43	108.09	31.40	130.12	131.08	127.48	-56.03	20.37
	CN	127.96	146.15	69.86	132.37	131.93	129.15	-58.11	18.31
	NO .	102.23	117.10	41.54	139.45	135.91	135.53	-60.70	15.92
H	CII	93.21	115.40	38.55	123.51	123.52	120.97	-54.66	22.19
	11	101.62	123.25	46.23	113.18	111.89	110.02	-55.39	22.01
	$1^{\text {i }}$	56.23	78.00	1.07	117.29	116.09	114.38	-55.16	22.12
	Cl	95.18	116.25	39.10	120.07	119.04	117.56	-56.08	21.38
	CN	135.74	154.51	77.58	122.12	122.11	119.34	-58.16	18.78
	NO ,	110.06	125.58	49.30	129.19	126.12	125.53	-6,0.76	16.44
F	CH	47.78	70.12	-6.62	127.57	127.89	124.88	-54.40	22.25
	H	56.24	78.01	1.07	117.25	115.99	114.80	-55.16	22.14
	F	10.91	32.83	-43.98	121.40	120.12	118.52	-54.88	22.31
	Cl	49.86	71.12	-5.96	124.25	123.03	121.84	-55.82	21.62
	CN	90.53	109.68	32.63	126.17	126.27	123.79	-57.89	19.12
	NO.	64.99	80.87	4.51	133.03	1.30 .41	129.80	-60.48	16.66
Cl	CH_{5}	86.06	108.72	31.40	1.30 .11	128.91	127.79	-54.66	23.02
	H	94.52	116.62	39.10	120.02	118.64	117.01	-55.42	22.52
	$\mathrm{I}^{\text {I }}$	49.18	71.45	-5.96	124.07	122.81	121.12	-55.14	22.64
	Cl	88.14	109.75	. 32.07	126.94	125.64	123.75	-56.07	21.99
	CN	128.81	148.37	70.68	128.93	129.10	126.20	-58.13	19.51
	NO.	103.28	119.57	42.58	135.73	133.27	132.23	-60.70	17.02
CN	CII.	124.89	148.42	69.86	131.90	1.30 .51	128.47	-55.0.3	23.95
	H	133.40	1.56 .39	77.58	121.76	120.47	118.92	-55.82	23.37
	$1^{\text {i }}$	88.13	111.31	32.63	125.89	124.57	122.94	-55.49	23.58
	Cl	127.09	149.66	70.67	128.68	127.37	125.71	-56.41	22.96
	CN	167.88	188.83	109.44	130.66	129.82	127.77	-58.44	21.19
	NO)	142.52	160.33	81.56	137.24	1.35 .42	133.36	-60.96	18.36
NO.	CH	97.00	121.55	41.54	137.73	136.48	136.13	-55.46	24.93
	H	105.60	129.60	49.30	127.63	126.40	125.60	-56.30	24.37
	F	60.41	84.68	4.51	131.79	130.63	130.10	-55.90	24.62
	Cl	99.39	123.08	42.57	1.34 .60	133.26	132.21	-56.81	24.09
	CN	140.36	162.69	81.56	136.56	135.26	133.40	-58.79	22.72
	NO)	115.25	135.08	54.01	143.14	1+2.39	1.38 .90	-61.24	20.06

Table 4. The Hammett's p and ρ.. values and cross-interac-
tion constant. p

\% Y	p.	p.
Cll:	-2.127 (0.968)	2.931 (0.974)
H	-1.883 (0.974)	3.045 (0.980)
F	-2.060)(0.978)	2.838 (0.966)
Cl	-2.442 (0.974)	2.930 (0.974)
CN	-.3.165 (0.977)	2.574 (0.951)
NO ,	-2.845 (0.962)	2.184 (0.937)
multiple regression		p - - 1.399
		p - -2.955
		$p_{\text {Fix }}--0.525(0.941)$

"comelation cocfficient values are shown in parentheses.
of 4,4 -disubstituted benzils (IIb) in the gas phase eq. 8 . ${ }^{14}$ For the benzilic rearrangement siep, k, the multiple regression of the $\delta \Delta G$ 'data using eq. 3 gave the cross-in-

IIb
TSb
(8)

teraction constant $r, r=-0.48$ as expressed in eq. 9." In this

$$
\begin{equation*}
\log \left(k_{z} k_{y}\right)=-1.76 \sigma_{+}+3.83 \sigma_{z}-0.48 \sigma_{\sigma} \sigma_{z} \tag{9}
\end{equation*}
$$

reanangement, large electronic charge is canied by the 7.ring in the TS. The electronic charge in the TS partally comes from the C_{2} moiety, and as a result the 7 -ring is negatively charged and the C_{2}-moiety becomes positively charged in the IS. This is in quite contrast to those found in this work. For the benzilic reamangement, eq. 8 , the interaction between the two rings increases in the IS (relatively large magnitude of $\rho_{1}:(=-0.48)$), but in the rearrangement of the azibenzil (the magnitude of $\rho_{\mathrm{x} z}(=-0.53)$) is slightly larger. Since the magnitude of $\rho_{3 z}$ represents the change in the intensity of interaction between the two substituents on going from the initial (IIa or IIb) to the TS (ISa or ISb), ${ }^{\circ 6} \mathrm{eq} .5$, the slightly greater magnitude ol ρ_{vz} in the change from Ifa to TSa as compared to that in the change from llb to ISb may be ascribed to slightly greater inctase of interation: the relatively stable initial state in Ha due to the ricinal $\mathrm{n}-\sigma^{*}$ overlap could increase $\Delta I_{2 z}$ and hence the magnitude of $\rho \rho_{3 z}$ in eq. 5 for the azibenzil rearrangement. In both cases. i.e., in TSa and ISb, the bridged TS structure causes considerable increase in the interaction between Y and 7.

Solvent Effects

Since the SM2.I model of the Cramer and Trulalar method is a quantum statistical continuum-dielectric model, there is very little changes in the reactants, TSs and products structurally: In fact, we have shown that single point calculations on the energies and the Hammetl coclicients pi and ρ, using the gas-phase geometries (SM2.1/AM1//AM1) for the identity $S, 2$ reactions of (Y)-benzyl chlorides with Cl anion differ ($<5 \%$) very litle from the corresponding valuts calculated by lull optimization (SM2.1/AM1//SM2.1/ AM1). ${ }^{13}$ Thus, in this work, we carried out single point calculations

The solvation energies, $\Delta G_{, 0,}$, and the activation energies in water. $\Delta G^{*}+\Delta G_{\text {, w }}$ are summatized in lable 5 . The activation energies in water obtained in this way are used to derive various selectivity parameters, $\rho_{8} ; \rho_{7}$ and ρ_{178} by eqs. 6 and 3. The results are collected in Table 6. By comparison. all the $\rho_{;}$and ρ_{z} values have greater magnitude in aqueous solution. This is reasonable, since in this reaction charges are dispersed in the TS from the charge separated reactant, Ita^{\prime}, so that the solvent water stabilizes the reactant more than the transition state. In addition, there is a reversal of chatge on going from the reactant (negative charge on the 7 -ring and positive charge on the Y -ring) to the IS (positive charge on the \angle-ring and negative charge on the Y-ring , Table 2 , leading to a relatively large change in the solvation energy and henee to the greater magnitude of the p values. In accordance with this reversal of charge acempanied by a large structural change in water, the cross interaction between the substituents Y and $Z, \rho_{\text {sz }}$ also increases with a larger magnitude of $\rho_{\mathrm{yz}}(=-0.66)$ in water. This is, however, in contrast with the solvent eflects found for the benzilic rearrangement, in which negative charge (-1) is dispersed but without a reversal of charge in the ISS. In the benzilie rearrangement, we lound that the cross interaction between Y and Z decreased in water, to approximately by half.

We conelude that the Wolff rearrangements of α-kelocarbenes involve a charge-transterred bridged TS (TSa)

Table 5. The solvation free energies (in heal mol) and sum of the activation and solvation tice energies (in kealmol) in aqueous solution

\ldots	Y	$\Delta G_{\text {., }}$	$\Delta G^{2}+\Delta G^{\prime} \ldots$
CH_{3}	CH_{5}	2.39	24.56
	H	2.27	23.98
	F	1.78	23.41
	Cl	1.96	22.33
	CN	1.14	19.45
	NO,	0.77	16.69
H	Cl	2.44	24.63
	H	2.34	24.35
	F	1.85	23.97
	Cl	2.02	23.40
	CN	1.18	19.96
	NO):	0.83	17.27
F	CII:	2.53	24.77
	H	2.44	24.58
	F	1.96	24.27
	Cl	2.12	23.74
	CN	1.38	20.50
	N().	1.06	17.72
Cl	CH	2.57	25.59
	II	2.46	24.98
	F	2.01	24.64
	Cl	2.16	24.16
	CN	1.45	20.96
	NO .	1.15	18.17
CN	Cli_{5}	2.75	26.96
	H	2.66	26.03
	F	2.23	25.81
	Cl	2.35	25.32
	CN	1.88	23.07
	N().	1.55	19.90
NO:	CH	2.72	27.65
	H	2.60	26.97
	F	2.17	26.79
	Cl	2.26	26.35
	CN	1.70	24.42
	NO	1.41	21.47

Table 6. The Hammett's p and ρ, values and cross-interaction constant. ρ. 'in aqueous solution

ZY	ρ.	$\rho_{\text {\% }}$
CII	-2.398 (0.979)	3.727 (1.984)
H	-2.162 (0.985)	3.840 (0.987)
F	-2.503 (0.983)	3.557 (0.979)
Cl	$-2.704(0.982)$	3.619 (0.98.3)
CN	-3.697 (0.988)	3.133 (0.963)
NO	-3.407 (0.981)	2.804 (0.959)
multiple regression		$\rho 0^{-}-1.566$
		$\rho_{i}-3.752$
		$\rho_{\text {\%i- }}{ }^{-}-0.661(0.937)$

"corelation cocfficient values are shown in parentheses.
from the migrating ring (7,-ring) toward the nonmigrating ring (Y -ring). However due to the relatively strong in-
twaction caused by the vicinal $n-\sigma^{*}$ overlap in the initial state (lla), the initial state is relatively stabilized. Moreover there oceurs a complete reversal in the effects of substituents Y and \angle from the initial to transition state, which will no doubt brings a relatively large structural change on going from the initial to the tramsition state. Thus there is relatively larger increase in the interaction between the two substituents, Y and 7 , in the $T S$ and hence results in a relatively larger magnitude of $\rho_{x c}(=-0.53)$ compared to that for the similar slep in the base-catalyed benzilic rearrangement ($\rho, s=-0.48$) : for the latter no such initial state interaction exists and results in a relatively smaller increase in the interaction in the TS with a larger magnitude of $\rho_{s z}$ Charge dispersal in the $I S$ leads to an increase in $\rho_{2}: \rho_{z}$ and ρ_{37} values in water.

Acknowledgment. We thank Inha University for support of this work. One of authors (C. K. Kim) also thanks the Korea Science and Engineering Foundation (961-0305-(046-2) For support of this work.

References

1. Wolff, L. Amm. 1902, 325, 129.
2. (a) Wolif, I. Am. 1912, 394. 23. (b) Staudinger, H : 1 lirzel. II. Ber: Dent. Chem. Ges. 1916, 49, 2522. (c) Gilman. H.: Adams, Ch. Г. Rec. Trav. Chim. 1929, 48 , 464. (d) Georgian, V.: Boyer, S. K.: 「dwards, B. J. Org (hem. 1980, 45 . 1686 . (c) Tomioka, H.: Hayashi, N.: Asano, T.: Izawa, Y. Buhl. Chem. Soc. Jopan, 1983, 56,758.
3. Sehroeter, G. Ber. Dent. (them. Ges. 1909, 42, 3356 .
4. Kirmse. W. Carbene Chemistry; Academic I'ress: New York, U. S.A., 1964: p 118.
5. (a) Lee. I. Chem. Soc: Rev. 1990, 19, 317. (b) Lee, I. Ach: Phes. Org. (Wem. 1992, 27, 57. (c) Ice, I. Chem. Soc: Rev. 1995, 24, 223.
6. Iec, I. J. Phys Org. (hem. 1992, 5, 736 .
7. (a) Dewar, M. J. S.: 7ochisch, T. G.: Healy, T. P.:

Stewart, J. I. P. J. Am. Chem. Soc: 1985, 107, 3902. (b) $\mathrm{MOP}^{\prime} \wedge C$ 6.0 program, available from Quantum Chemistry Program Fxchange (QCPF) No. 506.
8. Csizmadia, 1. G. Theom and Practice of 10 Caladafions on Orgamic Molecules: Elsevier: Amsterdam, 1976: р 239.
9. (a) Liotard, D. $\Lambda .:$ Howkins, (i. D.: Lynch, (. C.: Cramer. C. J.: Truhlar, D. G. J. Comput. (hem. 1995, 16 , 422. (b) Cramer, C. T.: Truhlar, D. G. J. Am. (hem. Soc. 1991, //3, 8305. (c) Cramer, C. T.: Trulilar, D. G. J. Comput. (hem. 1992, 13, 1089, (d) Cramer, C. J.: Trullar, D). G. J. Am. Chem. Socc. 1994, 1/G. 3892. (e) Giesen, D. T.: Storer, J. W.: Cramer C. J.: Truhlar, D. G. J. Am. Chem. Soc: 1995, 117,1057 . (t) $\triangle \mathrm{MSOL} 5.0$ program, available, from Quantum Chemistry Program Fxchange (QCPF) No. 606.
10. Storer, J. W.: Giesen, D. J.: I lowkins, (i. D.: Lynch, (i. C.. Cramer, C. J.: Truhlar, D. G.: I iotard, D. A. Situchwe and Reactivity in Aqueous Solution. Characterization of Chemical and Biological Sustems; Cramer, C. I., Truhlar, D. G. Fd.: American Chemical Society: Washington D.C., 1994: chapter 3.
11. (a) Brunck, I. K:: Weinhold, F. J. Am. Chem. Soc. 1979, 101, 1700, (b) Weimhold, F.: Brunck, T. K. J. Am. Chem. Soc. 1976, 98, 3745. (c) Brunck, I. K: Weinhold, F. J. Am. Chem. Soc. 1976, 98, 4392. (d) Lee, I.: Cheun, Y. G.: Yang, K. J. Comput. Chem. 1982, 3. 565.
12. Sutton, L. E. Ed. Tables of Interatomic Distances and Configarations in Molecules and lons Special Publication Vo. H, The Chem. Soc. London, 1958.
13. Exner, O. Correlation Inalysis in Chemisty: Plenum Press: New York, 1978, chapter 10.
14. Ice, I.: Ice D.: Iec, J. K.: Kim, C. K.: I.ee, B.-s. J. Chem. Soc. Pethin Trans 2, 1996, 2519.
15. Iee, I.: Kim, C. K.: I.ee, B.-S.: Kim, C. K.: I.ee, H. W.: Han, I. S. I. Phes. Org. (hem. submited for publication, 1996.

[^0]: *To whom correspondence should be addressed

