Iridium(III) Complexes of η ⁶-Arenes with Olefinic and Cyclopropyl Substituents: Facile Conversion to η ³-henylallyl Complexes

Hyunmok Jeong, Kwang-Suk Joo, and Chong Shik Chin*

Department of Chemistry, Sogang University, Mapoku, Seoul 121-742, Korea Received January 23, 1997

Olefinic and cyclopropyl group substituted arenes (C_6H, Y) react with $[Cp*Ir(CH_3COCH_3)_3]\Lambda_1(A=CIO_1^+, OTf^+)$ to give η^{-6} -arene complexes, $[Cp*Ir(-\eta^{-6}-C_6H, Y)]^2$ (1a : Y=-CH=CH₂(a), -CH=CHCH₃(b), -C(CH₃)=CH₂(c),

-CH-CH₂CH₁(d)). Complex **1b-1d** are readily converted into η^2 -allyl complexes, [Cp*(CH₂CN)Ir(η^2 -CH(C₁I), CH(H₂)] (**2a**) and [Cp*(CH₂CN) Ir(η^2 -CH₂C(C₆H₄)CH₂)] (**2b**), in the presence of Na₂CO₁ in CH₃CN. The η^2 -styrene complex. **1a** reacts with NaBH₄ to give η^2 -cyclohexadienyl complex, [Cp*Ir(η^2 -C₆H₆-CH=CH₂)] (**3**), while with H₂it gives η^2 -ethylbenzene complex [Cp*Ir(η^2 -C₆H₆CH₂CH₂)]² (**4**). Complex **1a** and **1c** react with HCl to give [Cp*Ir(η^2 -C₆H₆CH₂CH₂CH)² (**5a**) and [Cp*Ir(η^2 -C₆H₆CH(CH₂)]² (**5b**), respectively.

Introduction

Cp* (η^{-3} -C,Me,⁻) containing cationic η^{-3} -allyl iridium(III) complexes. [Cp*Ir(η^{-3} -allyl)(L)] have been prepared in the course of C-H bond activation. ¹⁻⁴ Bergman¹⁻² reported reactions of Cp*(PMe,)Ir(CII₂)(OTf) (OTf=OSO[CF₂) with *p*-xylene and cyclopropane, and [Cp*IrCl₂], with CII₂=CIICI₂-MgCl to obtain [Cp*(PMe,)Ir(η^{-3} -allyl)] OTf⁻¹(allyl=CII₂C₆-H₄CH₄, C₃H₄) and Cp*IrCl(η^{-3} -C₃H₄), respectively, while Stryker³ and Maitlis⁴ used [Cp*Ir(S)₃]² (S= CH₃CN, CH₄-COCH₃) to react with olefins to produce [Cp*Ir(olefin)(η^{-3} -allyl)]. During our investigation on the reactions of η^{-6} -arenes coordinated to iridium(III), we observed facile conversion of olefinic and cyclopropyl group substituted η^{-6} -arene compounds of iridium(III), [Cp* Ir (η^{-6} -C₆H₄Y)]²⁺⁴ (1, Y=-CH=

CHCH₃(**b**), -C(CH₃)=CH₃(**c**), -ĈH-CH₃CH₄(**d**)) to η^{-3} -allyl iridium(III) compounds, [Cp*Ir(h⁻³-C₃H₄C₆H₄(CH₃CN)] (**2**). We have also observed somewhat interesting reactivities of complex **1a** toward NaBH₄, H₃ and HC1 giving η^{-5} -cy-clohexadienyl complexes ([Cp*Ir(η^{-5} -C₃H₂CIH₂CI=CII)], **3**), η^{-2} -ethylbenzene complex ([Cp*Ir(η^{-6} -C₃H₅CIH₂CI+CH₂CH₂CH₂CI)]⁻⁷, **4**) and η^{-2} -chloro-ethylbenzene complex ([Cp*Ir(η^{-6} -C₃H₅CH₅CH₅CH₂CH₂CH₂CI)]⁻⁷, **5a**).

Experimental

Caution. Metal-perchlorato complexes and perchlorates are potentially explosive. Extensive precautions should be taken in handling those compounds.

The NMR spectra were obtained either on a Varian Gemini 200 or 300 MHz for 'H and 75 or 68 MHz for "C. A Shimadzu IR-440 was used for infrared spectral measurements. Elemental analyses were carried out at the Organic Chemistry Research Center, Sogang University, Korea. A Wiss-Tech Werstatten Weilheim/Obb. LBR conductivity meter was used for conductance measurements. Compounds, 1 ([Cp*Ir($\eta^{-6}-C_{a}H_{a}Y$)]²) were prepared by the literature method⁶ via the generation of [Cp*Ir(CH_aCOCH_a)_a]² in solution to which arenes were added to produce 1 (see Experimental for details). Most organic compounds were reagent grade (from Aldrich) and used as purchased.

Synthesis of η $^{\rm 6}\text{-}arene\ complexes,\ 1$

 $[Cp*Ir(\eta^{6}-C_{6}H_{5}CH=CH_{2}](CIO_{4}), (1a). \land 0.11 gram$ of AgClO₁(0.53 mmol) was added to CH₂COCH₂(15 mL) solution of [Cp*IrCl₁]₂(0.10 g, 0.13 mmol) and the resulting reaction mixture was stirred at 25 °C under N for 30 minutes before the white precipitation of AgCl was removed by filtration. A 0.45 gram of styrene (4.35 mmol) was added to the filtrate solution, and the pale-vellow resulting solution was stirred further for an hour before the removal of solvent (CH₃COCH₃) by vacuum distillation to obtain beige solid. After adding CH_iCl_i(10 mL) to this beige solid, insoluble material(s) was removed by filtration. The filtrate was dried by vacuum distillation before recrystallization with CH,CN/(C,H,),O to obtain beige-white mierocrystals of $[Cp*Ir(\eta^{*}-C_{*}H_{*}CH_{*}=CH_{*}H_{*})](ClO_{4})_{2}$, 1a^{*} (0.132 g, 82%). ¹H NMR (CD₂CN, 25 °C) δ 6.23 (d. 1H, J $(H_{2}-H_{2})=11$ Hz, H_{1}), 6.36 (d, 1H, $J(H_{4}-H_{2})=17$ Hz, H_{4}), 6.6 (dd. 1H, H). 2.25 (s. 15H. CH of Cp*), 7.2-7.4 (m, 5H. $C(H_{i})$

[Cp*Ir(η^{6} -C₆H₅CH=CHCH ₃)**](CIO**₄)₂(**1b**). This compound was prepared in the same manner as described for **Ia** above. The yield was 80% based on [Cp*Ir(η^{6} -C₆H, CH₆=CH₅CH₂)](CIO₄)₂, **1b**, ³H NMR (CD₃CN, 25 °C) δ 6.97 (dq, 1H, J (H_a-CH₄)=3 Hz, J (H_a-H_b)=16 Hz, H_{J} , 6.27 (d, 1H, H_{J} , 2.18 (d, 3H, CH₃), 2.22 (s, 15H, CH₄of Cp*), 7.1-7.2 (m, 5H, C₆H₄).

[Cp*Ir(η^{-6} -C₈H₅C(CH₃)=CH₂)**](CIO**₄)₂(**1**c). This compound was prepared in the same manner as described for **1a** above. The yield was 76% based on [Cp*Ir(η^{-6} -C₄H₄C (CH₃)=CH₃H₆](ClO₄)₂, **1c**. ¹H NMR (CD₃CN, 25 °C) δ 6.06 (m, 2H, H₄ and H₃), 2.12 (m, 3H, CH₃), 2.24 (s, 15H, CH₃ of Cp*), 7.3-7.5 (m, 5H, C₆H₂).

[Cp*Ir(η^{e} -C₆H₅CHCH₂CH₂)**](ClO**)₂(1d). This compound was prepared in the same manner as described for 1a above. The yield was 72% based on [Cp*Ir(η^{e} -C₆H₄-

CH₄CH₄H₆CH₄H₆J(ClO₄), **1d.** ⁴H NMR (CD₃CN, 25 ⁴C) δ 2.27-2.42 (m, 1H, HJ, 1.57 (dt, 2H, H₂H₂), 1.10 (dt, 2H, H₁H₂), 2.20 (s, 15H, CH₂of Cp*), 7.1-7.2 (m, 5H, C₆H₂).

AgOTf (AgOSO₂CF₃) can be used to prepare OTf salts ([Cp*Ir(η -C II,Y)](OTf) for example) in approximately the same yields (70-80%).

Synthesis of η^{3} -allyl complexes, 2

 $[Cp^*(CH,CN)Ir(\eta^3-CH,CHCHC_sH_s)](OTf), 2a. A$ colorless CH,CN (10 mL) solution of 1b, [Cp*Ir(η -C H,CH =CHCH₃)](OTf)₂(0.1 g, 0.14 mmol) was refluxed in the presence of Na₂CO₄(slightly dissolved) (0.04 g, 0.4 mmol) for 40 minutes during which time the reaction mixture turned vellow. Vacuum distillation of CH,CN resulted in vellowish solid which was dissolved in CH.Cl.(10 mL). Insoluble compounds (Na,CO, and NaOTf) were removed by filtration and pale vellow micro crystals of 2a were obtained by recrystallization with CH,CL/(C,H,),O. The yield was 0.051 g or 64% based on $|Cp^*(CH,CN)|r(n^3-CHH)|$ - $C_{b}\Pi_{b}C_{c}\Pi_{c}C_{b}\Pi_{c}$ (OTf). **2a.** ¹H NMR (CDCl, 25 °C) δ 4.25 (d, 1H, J (H,-H,)=11 Hz, H), 5.15 (m, 1H, H), 3.40 (d, 111, $J(\Pi_{h}-\Pi_{e})=7$ Hz. H), 2.43 (d, 111, $J(\Pi_{h}-\Pi_{e}=10$ Hz, II.), 2.88 (s. 311, CH,CN), 1.60 (s. 15H, CH, of Cp*), 7.2-7.4 (m, 5H, C_aH₃). ^BC NMR (CDCl₂, 25 °C) δ 70 (C_a), 84 (C_b), 48 (C_c), 100 (Cp*), 131, 132, 134, 144 (C_bH_s), 4, 123 (CH₂CN). Anal. Caled for IrC₂,H₂,F₃NO₂S: C₂ 41.63; H₂ 4.29; N. 2.21. Found: C, 41.29; H, 4.19; N, 2.29

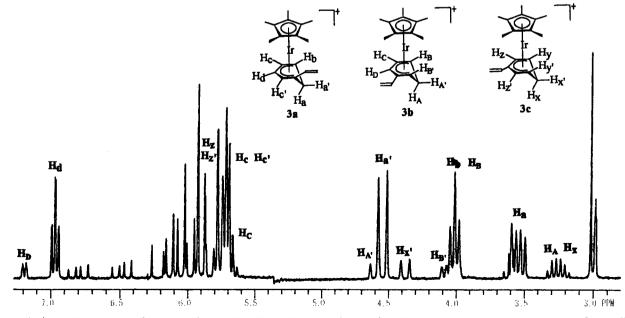
[Cp*(CH₃CN)Ir(η^{3} -CH₂C(C₆H₃)CH₂](OTf), 2b. This compound was prepared in the same manner as described for 2a above. The yield was 76% based on [Cp*(CH₃CN)Ir(η^{3} -CH₂₀H_{aut}C(C₆H₄)CH₂₀H_{aut}](OTI), 2b. ¹H NMR (CDCI, 25 °C) δ 4.41 (dd, 2II, J=1.5 and 2.0 Hz, H_{20}), 2.30 (dd 211, H_{20}), 2.00 (s. 311, CH₃CN), 1.60 (s. 15H, CH₃ of Cp*), 7.3-7.7 (m, 5H, C₆H₄).

The reaction of cyclopropylbenzene compound, [Cp*Ir(η)-

 $C_6H_5CHCH_4CH_4$](OTI)₄(1d) with CH₄CN in the presence of Na₅CO₅ gave only 2a but not 2b at all. The yield was relatively low (57%) based on 2a.

Reactions

Reactiona of [Cp^*Ir(\eta^*-C_sH_sCH=CH_2] (CIO₄)₂ (1a) with NaBH₄. A 0.01 g NaBH₄ (0.26 mmol) was very slowly added for an hour into a THF solution (10 mL) of 1a (0.1 g, 0.16 mmol) at -60 °C under N and the resulting reaction mixture was warmed up to 25 °C and stirred for an hour before it was filtered. Beige-white solid of 3 was obtained through recrystallization with CH₂Cl/(C₂H₄)₂O after the solvent (THF) was removed by vacuum distillation. The yield


NMR (CD₂COCD₃, 25 °C, see Figure 1 and 2 for signal as-

signments) **3a** ([Cp*lr(η³⁺CH₄CH₄CH₄CH₄CH₄C(CH=CH₄)]CH₄-H₄)]ClO₄); δ 3.55 (dd, 1H, J (H₈-H₄)=13 Hz, J (H₈-H₆)=7 Hz, H_2 , 4.56 (d, 1H, H_2), 4.02 (t, 1H, J (H₆-H₄)=7 Hz, H_3), 5.68 (t, 1H, J (H₆-H₄)=7 Hz, H_2 , H_2 , 5.76 (d, 1H, J (H₆-H₄)=7 Hz H_2 , 6.97 (t, 1H, 1H₄), 5.8-6.3 (m, 3H, -CH=CH₂, overlapped with vinyl protons of other isomers), 2.31 (s, 15H,

CH. of Cp*). **3b** ([Cp*Ir(η^{-1} -CH_CH_CH_C(CH=CH_)CH_zCH_z-H_A)]ClO₄): **b** 3.25 (dt (sextet like), 1H, $J (H_A-H_A)$ =13 Hz, $J (H_A-H_B)$ = $J (H_A-H_B)$ =7 Hz, H_A), 4.62 (d, 1H, H_A), 4.02 (t, 1H, $J (H_B-H_A)$ = $J (H_B-H_C)$ =7 Hz, H_Z), 4.08 (d, 1H, $J (H_B-H_D)$ =7 Hz, H_Z), 4.08 (d, 1H, $J (H_B-H_D)$ =7 Hz, H_B), 5.68 (t, 1H, $J (H_B-H_D)$ =7 Hz, H_Z), 7.19 (d, 1H, H_B), 6.61 (dd, $J (H_C - H_B)$ =17 Hz, $J (H_C - H_D)$ =10 Hz, 111, -CH $_{E}$ =CH $_{B}$ H₂), 5.8-6.3 (m, 2H, -CH=CH₂, overlapped with vinyl protons of other isomers), 2.33 (s, 15H, CH, of Cp*).

3c ([Cp*Ir(η ^s-CH,CH,C(CH=CH,)CH,CH,CH,H,)]CIO₄): δ 3.25 (dt (sextet like), 1H, J (H_x-H_x)=13 Hz, J (H_x-H_y)=(H_x-H_y)=7 Hz, HJ, 4.38 (d, 1H, HJ, not observed (2H, H_1 and H_2), 5.77 (t, 211, J (H_z-H_y)=7 Hz H] and HJ, 6.49 (dd, 111, J (H_a-H_g)=17 Hz, J (H_a-H_g)=10 Hz, 1H, -CH_g=CH_gH_g), 5.8-6.3 (m, 211, -C11=CH_x, overlapped with vinyl protons of other isomers), 2.33 (s, 1511, CH_yof Cp*).

Reactions of [Cp*Ir(η° -C₆H₅CH=CH₂)](ClO₄)₂ (la) with H₂. A CH₂CN solution (20 mL) of 1a (0.2 g, 0.32

Figure 1. 'II NMR spectrum of [Cp*Ir(η '-C,IL-CH_2)](ClO₃), **3** (mixture of **3a**, **3b** and **3c**, see also Figure 2 and text for detailed assignments) in (CD₂) CO at 25 °C at 200 MHz.

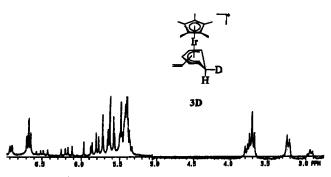


Figure 2. H NMR spectrum of $[Cp*Ir(\eta [-C.H.D-CH CH])]$ (CIO₂), **3D** in (CD₂) CO at 25 C at 200 MHz.

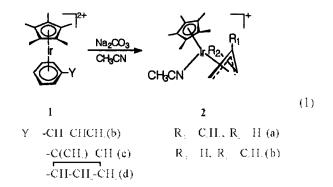
mmol) was kept at room temperature for 2 days under $H_2(4 \text{ atm.})$ in a bomb reactor (Parr 1341, 360 mL). Beige-white solid of 4 ([Cp*h(η]-C,H,C,H,)](ClO,)) (81 %) was isolated by filtration after saturation with (C,H,),O (10 mL). 4 : ⁴H NMR (CD₂CN, 25 °C) & 2.75 (q, 2H, *J* (CH₂-CH₃)=7 Hz, -CH₂-CH₃), 1.36 (t, 3H, -CH₂-CH₃), 7.23 (m, 5H, C₆H₅), 2.28 (s, 15H, CH₃of Cp*)

Reactions of [Cp*Ir(η^* -C₆H₅CH=CH₂)](ClO₂)₂ (1a) with HCl. Dry HCl gas was bubbled into CH₃CN solution (15 mL) of 1a for 1 minute in a 200 mL round bottom flask at 0 °C and the resulting solution was stirred for 12 hours under HCl (*ca.* 1 atm.). After removing HCl and solvent by vacuum distillation, beige-white solid of 5a (JCp* Ir(η^* -C₆H₂CH₂CH₂CH₂Cl)](ClO₄)₂, (85%)) was obtained through recrystallization with CH₄Cl₂/(C₁H₄)₄O. 5a : 'H NMR (CD₃-COCD₃, 25 °C) δ 3.95 (t, 2H, J (CH₂-CH₂CH)=6 Hz, CH₂-CH₂Cl), 3.12 (t, 2H, CH₂CH₄Cl), 7.38 (m, 5H, C₆H₄), 2.31 (s, 15H, CH₄of Cp*).

Reactions of [Cp*Ir(η° -C₆H₅C(CH₃)=CH₂](CIO₄)₂ (1c) with HCI. This reaction was carried out in the same way as described above for the reaction of 1a with HCI except that the reaction time was 4 hours. 'H NMR spectrum of the beige-white solid product shows all the signals due to 1c (57%) and new signals (see data below) due to [Cp*Ir (η° -C₈H₂CH(CH₄)CH₂CI)[(CIO₄)₂, 5b (43%). 5b : 'H NMR (CD₃COCD₃, 25 °C) δ 3.38 (m, 1H, CH(CH₃)), 3.90 (m, 2H, CH₂CI), 1.42 (d, 3H, J (CH₃-CH(CH₃))=7 Hz, CH(CH₃)), 7.39 (m, 5H, C₆H₃), 2.31 (s, 15H, CH₅ of Cp*).

Results and Discussion

While Cp*Ir(III) complexes containing η^{-6} -arenes (with various substituents) and related ligands have been prepared before, " no olefin substituted η -arene containing Cp*Ir(III) complexes, to the best of our knowledge, have been reported thus far. Complex 1 (Cp*Ir(η^{-6} -C₆II,Y)]"; Y=-CII=


CH₁(**a**), -CH=CH-CH₂(**b**), -C(CH₃)=CH₁(**c**), -CH-CH₂-CH₁(**d**)) were prepared from the reactions of [Cp*Ir(CH₃CO-CH₃)₃]² with C₈H₂Y in the same manner as reported previously for [Cp*Ir(η° -arene)]².⁶ Spectral data (see Experimental) analysis unambiguously suggests that C₈H₂Y in complex 1 are coordinated to iridium through the π - system of the arene ring in η° -fashion as previously reported,^{6,9} but not through the π - system of the olefinic group. For example, 'H NMR spectra of 1 show no significant shifts for the sig-

Chong Shik Chin et al.

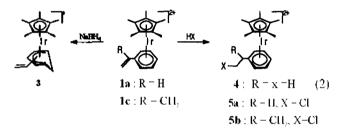
nals due to the olefine protons of Y upon coordination of C_sH_sY to "Cp*Ir" (see data in Experimental section). X-ray crystal analysis for **1a** clearly show no interaction between iridium and the olefinic group, -C_sH=C_bH_s(for example, Ir-C_s=3.38 Å, Ir-C_s=4.28 Å⁵).

Complex **1b-1d** are readily converted into η^{3} -phenylallyl iridium(III) compounds, $|Cp^*(CH_sCN)|r(-\eta^2-CH(C_sH_s))|$ CHCH₁)] (2a) and [Cp*(CH₂CN)Ir(η^{3} -CH₂C(C₆H₂)CH₂)] (2b) in refluxing CH_iCN in the presence of $Na_iCO_i(eq. 1)$. Formation of 2 occurs very slowly even in the absence of $Na_{i}CO_{i}$. Complex 2a is the only product from the reaction of 1d (complex 2b has never been observed). 'H NMR and ¹³C NMR spectra of **2** (see Experimental section) show all those well-established signals due to η^3 -allyl molety¹⁰ along with those due to coordinated Cp* and CH,CN. Complex 2a can also be prepared from the reaction of [Cp*Ir(CH₃- $(CN)_{i}^{p}$ with $C_{e}H_{e}CH_{e}CH_{e}$ in the presence of Na,CO₂ where $[Cp*Ir(\eta^{*}-C_{s}\Pi_{s}C\Pi_{s}C\Pi_{s}C\Pi_{s})]^{2}$ has never been isolated even in the absence of Na₂CO₃. It should be mentioned that η^{3} -phenylallyl complex 2a and 2b are also obtained from direct reactions of [Cp*Ir(CH₁CN)_i]²⁻⁶ with $C_hH_cCH=CHCH_a$ and $C_hH_cC(CH_a)=CH_a$, respectively in the presence of Na₁CO₂,

NOE difference spectroscopy has been used for elucidation of the relative positions of Cp* and η^{3} -allyl group in Cp*M(η^{3} -allyl) species.^{10,2} The NOE measurements for **2a**¹⁸ show that i) β -carbon of the allyl group is toward to Cp* group (called as *exo* form¹²) and ii) the phenyl group is also toward to Cp* to some extent as shown by **2** in equation 1.

Cationic allyl complexes of $[Cp*Ir(-\eta^{-2}-allyl)(L)] \in (L=PR_{s})^{-1}$ Cl.² olefin²⁴) have been prepared in various methods,¹⁵⁴ to which we now wish to add another way of preparing $[Cp*Ir(-\eta^{-3}-allylC_{s}H_{s})(CH_{s}CN)]^{-1}$ from olefin substituted η^{-4} -arene complexes. **1** according to eq. 1. The OTf – salts of **1** are preferred reactants (rather than the CIO₄ – salts) for this reaction (eq. 1) since the OTf – salts seem to give slightly higher yields of **2** than do CIO₄ – salts and are evidently safer than CIO₄ – salts.

While the reaction of complex la with NaBH, gives cyelohexadienyl complexes, $[Cp*Ir(\eta -C_0H_0(-CH=CH_2))]$ (3) (eq. 2), olefinic group hydrogenated η -ethylbenzene complex, $[Cp*Ir(\eta -C_0H_0(-C_1H_0))]^2$ (4) and olefinic group HCl added η -2-chloroethylbenzene complex, $[Cp*Ir(\eta -C_0H_0)]^2$ (5a) are obtained from the reaction of 1a with H_1 and HCl, respectively (eq. 2).


Detailed 'II NMR spectral data for η '-cyclohexadienvl

metal complexes and related compounds have been reported.^{38,445} It has been well-established that H attacks iridium-coordinated arenes in $[Cp*Ir(\eta^{*}-C_{s}II,Y')]^{*}(Y'=II, CH_{s}, t-Bu, CH_{s}O, CI, OH)$ to give η^{*} -cyclobexadienyl metal complexes, $[Cp*Ir(\eta^{*}-C_{s}H,Y')]^{1/2}$ For example, three isomers (ortho/meta/para=46/37/17) were obtained (while no ipso isomer was observed) from the reaction of $[Cp*Ir(\eta^{*}-C_{s}II,$

Close examination of the ¹ Π NMR spectrum of the product, **3** led us to suggest that it contains three isomers, **3a**

([Cp*lr(η ⁵-CHCHCHCHC(CH=CH_)CH_)]ClO₄), **3b** ([Cp*lr (η ⁵-CHCHCHC(CH=CH_)CHCH_)]ClO₄) and **3c** ([CP*lr(η ⁵-CHCHC(CH=CH_)CHCHCH_)]ClO₄) in the ratio **4** (**3a**) : 1

 $CHCHC(CH=CH_2)CHCHCH_2)$ [CHO₄) in the ratio 4 (3a) : 1 (3b) : 1 (3c) (see Figure 1).

Deutero cyclohexadienyl compounds, [Cp*Ir(η^{3} -C₆II,D (-CH=CH₂))]'(**3D**) were also obtained from the reaction of **1a** with NaBD₄. Comparing the 'H NMR spectra of the two products (**3** and **3D**) enabled us to assign the signals due to the incoming II (or D'), *i.e.*, IIa' (δ 4.56 ppm, **3a**), II₄·(δ 4.62 ppm, **3b**) and H_x(δ 4.38 ppm, **3c**) in Figure 1 disappear in the spectrum of **3D** in Figure 2. Differences in coupling pattern between the '11 NMR spectra of **3** and **3D** along with decoupling measurements for most signals were also useful for us to assign other signals such as those due to II₄ and II₆.

It may be said that the ratio of isomers (3a / 3b / 3c = 4/1/1)in the product **3** is not the one (2:2:1) that one can predict by random attack of II on arene carbons.

It is interesting to notice that molecular hydrogen (II₂) attacks the olefinic group of **1a** to give η ⁶-ethylbenzene complex, **4** leaving the coordinated arene ring intact (see eq. 2) since no such study has been previously reported. Detailed reaction pathways are yet to be investigated. The olefinic group hydrogenation of the coordinated styrene in **1a** prompted us to look into the reaction of **1** with HC1. Anti-Markovnikov addition of 11Cl to -C _aH= C _bH₂in **1a** to give **5a** and to $-C_{\circ}(CH_{3})H=C_{\beta}H_{2}$ in **1c** to give **5b** (eq. 2) may suggest the initial attack of H on α - carbon (unlike the attack of H on the arene ring of Ia as described above) followed by CI attack on β - carbon.

Acknowledgment. Authors wish to thank the Ministry of Education, Republic of Korea (Grant No. BSRI-95-3412) and Korea Science and Engineering Foundation (Grant No. 94-0501-01-01-03) for their financial supports of this study.

References

- Burger, P.; Bergman, R. G. J. Am. Chem. Soc. 1993, 115, 10462.
- Maghee, W. D.; Bergman, R. G. J. Am. Chem. Soc. 1988, 110, 4246.
- Wake field, J. B.; Stryker, J. M. Organometallics 1990, 9, 2428.
- White, C.; Thomson, S. J.; Maitlis, P. M. J. Chem. Soc. Dalton 1978, 130, 1305.
- 5. X-ray analysis for the crystals of $[Cp*lr(\eta^*-C_0\Pi,C\Pi=C\Pi_i)](ClO_i)_i$ has been determined and will be reported elsewhere.
- White, C.; Thomson, S. J.; Maitlis, P. M. J. Chem. Soc. Dalton 1977, 1654.
- White, C.; Maitlis, P. M. J. Chem. Soc. (4), 1971, 3322.
- Espinet, P.; Bailey, P. M.; Downey, R. F.; Maitlis, P. M. J. Chem. Soc. Dalton 1980, 1048.
- Grudy, S. L.; Maitlis, P. M. J. Organomet. Chem. 1984, 272, 265.
- Ir(η³-CH₂CHCH(C₄H₃)) moiety has been also identified in the x-ray crystal analysis for the product ([Ir(η³-CH₂ CHCH(C₄H₃)(NH=C(CH₃)(NCH₂CH₃))]^{2*}) of the reaction of **2a** with diethylamine, which will be reported elsewhere.
- Periana, R. A.; Bergman, R. G. J. Am. Chem. Soc. 1986, 108, 7346.
- Tjaden, E. B.; Stryker, J. M. Organometallics 1992, 11, 16.
- 13. Irradiation of CH₃(1.6 ppm) of Cp* shows a significant enhancement in the signal due to the β carbon bound proton, H₆(7.2%) at δ 3.40 and somewhat smaller effects in the signals due to the *endo* proton (H₆, 2, 9%) bound to α carbon of the allyl group and the phenyl protons (2.5%).
- Gaudet, M. V.; Hanson, A. W.; White, P. S.; Zaworotko, M. J. Organometallics 1988, 8, 286.
- Thompson, R. L.; Geib, S. J.; Cooper, N. J. J. Am. Chem. Soc. 1991, 113, 8961.