Synthesis and Structural Characterization of Five- and Six-Coordinate Cobalt(II) Complexes of Tripodal Liand, Tris-(2-benzimidazolylmethyl)amine

Myoung Soo Lah* and Mooshin Moon

Deparment of Chemistry. Colloge of Science, Hanumy (niversion 1271, Sa-I-dong. Ansom, Kymggi-do $\mathbf{4 5 - 7 9 1}$ Korea

Recerved Jomury 31, 1997

Abstract

The various coball(II) complexes were synthesized and characterized using tris-(2-benzimidazoly lmethyl)amine (ntb) as a ligand where the ntb plays as a tripodal tetradentate ligand to form complexes with a trigonal pyramidal gemerty. The compleves have 5 and 6 coordinate cobale(II) ions depending on the additional ligand used. In each complex the additional ligand, chloride anion, or acetate anion occupies the "open" site trans to the apical tertiany nitrogen atom of nth ligand. Complex $\mathbf{1}$, $[\mathrm{Cos}(\mathrm{II})($ nth $) \mathrm{Cl}] \mathrm{Cl}$ has a trigenal bipyramidal geometry. This geometry was easily constructed using ntb as a tetradentate ligand and chloride as a monodentate ligand. The complex is isostructural to the corresponding manganese(II) complex. Cystal data are as follows: $[\operatorname{Cor(11)(ntb)C1]C1}$ MeOII, $\mathbf{1}$, triclinic space group P1: $\mathrm{a}=13.524(2) \AA, \quad \mathrm{b}=14.037(2) \AA, \mathrm{c}=17.275(1) \quad \AA ; \alpha=$ $78.798(9), \beta=84.159(8)^{\circ}, \gamma=65.504(9)^{\circ} ; \mathrm{V}=2929.6(6) \AA^{3} ; 7=4: \mathrm{RI}=0.0715, w R 2=0.1461$ for rellections of $\mathrm{l}>$ $2 \sigma(\mathrm{I})$. Six coordinate complex $2[\mathrm{Co(nib})(\mathrm{OAc})](\mathrm{OAc})$ was synthesized using ntb as a tetradentate ligand and acetate as a bidentate chelating ligand.

Introduction

The metal complexes of tripod-like ligands with a variety of ligating groups have been widely investigated, since they may serve as model compounds for the active site of metalloproteins' in addition to their special chemical, physical, structural properties." There has been a considerable amount of restarch conducted on the coball-substituted metalloproteins. 'The primary reason for the substitution, for example cobalt for zinc, is the paramagnetism of cobalt and its sensitivity to changes in its coordination geometry that appear in its visible absorption spectra.
Geometry preference of the tripodal ligand, tris-(2-henoimida\%olylmethyl)anine(ntb) is marginal. Depending on metal ions and additional ligands used, various geomerries have been observed. Both trigonal bipyramidal and octahedral geometries were ohserved in mangancese and zine complexes." llowever, iron complexes preferred octahedral geomelry."
To date, although many tripodal metal complexes have been reported, it appears that there are only a few structurally characterized tripodal cobalt(II) complexes. ${ }^{\text {d }}$ In this sludy, we synthesi\%ed and characterized various cobalt(II) complexes of tripod-like ligand, ntb. These complexes may serve as model complexes of the coball(II)-substituted metalloprocins where the imidazole portion of the ligand serves as the model for the histidine residue and the benzene portion of the ligand for the hydrophohic environment. They may also give information on the flexibility of ntb ligand and the geometry preference of the cobalt(II) ion.

Experimental Section

Materials. The following were used as received with no further purification: ntb(Aldrich), cobalt chlonide hexahydrate(Yakuri), cohalt acetate tetrahydrate (Aldrich), and methanol (Carlo Firha)

Elemental Analysis. C, II, N and Co determinations were performed by the elemental analysis laboratory of the Korcan Institute ol Basic Science.
IR spectra. Infrared spectra were recorded as KBr pellets in the range $4000-400 \mathrm{~cm}^{-1}$ on a Bio-Rad FT-IR spectrometer.
Absorption spectra. Absorption spectra were obtained in methanol on a Perkin Elmer Lambda 7 UV spectrometer.
Mass spectra. Positive ion FAB mass spectra were obtained using a JEOL ILXI $10 \mathrm{~N} / 1 \mathrm{XXI} 10 \mathrm{~A}$ Tandem Mass Spectrometer in 3-nitrobenzel alcohol matrix.
Magnetic Susceptibility Measurements. Room temperature magnetic susceptibilities were made on well ground solid samples using an Evans balance. The measurements were calibrated using $\mathrm{Hg}\left[\mathrm{Co}(\mathrm{SCN})_{7}\right]$ standard
Synthesis. $[\mathrm{Co}(\mathrm{II})(\mathrm{ntb}) \mathrm{Cl}] \mathrm{Cl} .1 .0 .407 \mathrm{~g}(1 \mathrm{mmol})$ of nitb was added to 20 mI . of methanol in a 100 mI . Firlenmeyer flask. When 0.235 g (1 mmol) of cohalt(II) chloride hevahydrate was dissolved in 5 mL of methanol in 50 mI , flask, the solution was purple. The cobalt chloride solution was added to the ligand solution over a one-minute period. The misture solution was stirred for five minutes. Alter slow evaporation of the solution for two days, pale purple rectangular crystals suitable for crystallographic study were ohtained ($0.405 \mathrm{~g}, 68 \%$ yield). Anal. Caled for [$\mathrm{Co}(\mathrm{II})(\mathrm{nth}) \mathrm{CIICl} \cdot \mathrm{H}_{2} \mathrm{O}\left(\mathrm{CoC}_{2} \mathrm{H}_{2} \mathrm{~N}, \mathrm{O}_{4} \mathrm{Cl}_{2}\right): \mathrm{C}, 48.75: \mathrm{H}, 4.60$: N, 16.58: Co, 9.97%. Found: C. 48.85 : II. 4.53: N. 16.27: $\mathrm{Co}, 9.72 \%$ FAB (Fast Atom Bombardment) mass spectrum:
 BM. $\lambda_{\ldots}(\varepsilon), 554 \mathrm{~nm}(290 \mathrm{~L} / \mathrm{mol} \cdot \mathrm{cm}): 591 \mathrm{~nm}(272 \mathrm{~L} / \mathrm{mol}$ $\mathrm{cm})$.
$[\mathrm{Contb})(\mathrm{O} \wedge \mathrm{c})](\mathrm{OAc}) \mathrm{II}_{2} \mathrm{O}$, 2. Complex was prepared similarly to that for $[\mathrm{Co}(\mathrm{II})(\mathrm{nth}) \mathrm{Cl} \mid \mathrm{Cl}, 1.0 .407 \mathrm{~g}(1 \mathrm{mmol})$ of nth was dissolved in 20 mI . of methanol and $0.249 \underline{g}(1$ mmol) of cobalt(II) acetate tetrahydrate was dissolved using 10 mI . of methanol in another tlask. Two solutions were
mixed and stirred. The mixture turned to a pink colored turbid solution. After one hour of stirring the solution was filtered. Alter slow evaporation of the filtrate solution for two davs, pale pink colored needles were obtained $(0.29$ g. 45% yield) Anal. Caled for [Co(ntb)(OAc)](OAc) $\mathrm{H}_{2} \mathrm{O}\left(\mathrm{CoC}_{28}-\right.$
 C, 52.35 : H. $5.16: \mathrm{N}, 15.35$ Co, 9.78%. FAB mass spectrum: m / R of $[\mathrm{Co}(\mathrm{ntb})(\mathrm{OAc})]^{\prime}, 525.2, \mathrm{~m} / \%$ of $[\mathrm{Co}(\mathrm{ntb})-\mathrm{H}]^{\prime}$, $465.1 \mathrm{IR}: 1575 \mathrm{~cm}^{-1}$ and $1545 \mathrm{~cm}^{-1}$ (shoulder). $1400 \mathrm{~cm}^{-1}$ fior two acetate ions. $\mu, 465 \mathrm{BM} . \lambda_{m, 4}$ (c), 529 mm ($214 \mathrm{I} /$ mol cm) : 590 ($174 \mathrm{I} \mathrm{mol} \cdot \mathrm{cm}$).

Crystallographic Data Collections and Refinements of Structures. Crestal \mathbf{I} loses its structural solvents tithin a minute. Crystal 1 was mounted in the glass capillary with mother liquor to prevent the loss of the structural solvents during data collections. Preliminary examinations and data collections were perfomed with Mo $\mathrm{K} \alpha$ radiation $(\lambda=0.71069 \AA$) on an Tinral-Nonius CAD4 computer controlled kappa axis diffractometer equipped with a graphite crystal. incident beam monochromator. Cell constants and orientation matrixes for data collections were obtained from least-squares refinement, using the setting angles of 25 reflections. Data were collected at a room temperature using 0 sean technique. Three standard rellections were monitored every hour and no intensity variations were monitored. Iorent\% and polarization corrections were applited to the data. No absoption comections were applied to the data. The structure was solved by direct method using SIIELXS-86 and refined by full-matrix least-squares with SHFI.XI,-93. ${ }^{\text {n }}$ All non-hydrogen atoms were relined anisotropically; hydrogen atoms were ridden on a geometrically ideal position with 1.2 times isotropic lemperature lactors of the attached non-hydrogen atoms.

Details on erystals and intensity data are given in Table 1

Results and Discussion

Five Coordinate Cobalt(II) Complex. $[\mathrm{Co}(\mathrm{II})(\mathrm{ntb})$ ClJCl, $\mathbf{1}$ could be synthesized using cobalt(II) chloride as a metal source and nib as a neutral tropodal tetradentate ligand, Crystal structure showed two erystallographically independent but chemically identical molecules. An ORIEP drawing of one of these molecules (complex 1) is shown in Figure 1. The neutral tripodal tetradentate ligand forms trigonal pyramidal geometry with the cobalt(11) ion and the monodentate chloride anion occupies the remaining "open" axial position to limish the trigonal bipyramidal geometry. Another chloride anion exists as a connter ion. The charge balance of the erystal structure and the magnetic susceptibility measurement suggest that the oxidation state of cobalt ion is +2 . F $\wedge B$ mass spectrum of complex 1 gave a peak at 500.9 of $\mathrm{m} / \%$. for $[\mathrm{Co}(\mathrm{nth}) \mathrm{Cl}]^{\circ}$. The average bond distance between the cobalt ion and the apical nitrogen atom (N1) is $2.396 \AA(2.384(6) \AA$ and $2.407(5) \AA)$ and is about $0.36 \AA$ longer than those between the cobalt ion and the trigonal basal nitrogen atoms ($2.029(6) \AA-2.055(6) \AA$, avg. $=2.040 \dot{\AA})($ Table 2$)$. This significant clongation is also observed in other cobalt complexes of tripodal tetradentate ligand with a benzimidazolylmethyl group. ${ }^{\text {d }}$ Similar elongations are also observed in manganese, zine, and iron complexes of analogous ligands. ${ }^{\text {d. }}$ The average bond angle (N_{3} -

Co- N_{H}) of apical nitrogen atom (N_{A}), cobalt ion, and trigonal basal nitrogen atom (N_{H}) is $75.4^{\prime \prime}$. The cobalt ion is $0.51 \AA$ above the trigonal basal plane. The litth ligand chloride anion is located trams to the apical nitrogen, and the bond angle $\mathrm{N}_{\mathrm{s}}-\mathrm{CO}-\mathrm{Cl}$ is 178.5°. An isostructural manganese (II) complex has recently been known (Table 2). " The aterage bond distance of the cobalt complex is about $0.11 \AA$ shorter than that of the comesponding manganese complex This difference in the bond distance is due to the difference of the metal sire. The ionic radius of a high spin tive coordinate de cobalt ion is $0.67 \AA$ whereas of a high spin tive coordinate d manganese ion is $0.75 \AA^{8}$.

Six Coordinate Cobalt(II) Complex. [Co(ntb) $(O A C)](O A C), 2$ was synthesized similarly to that for complex 1 using cobalt(II) acetate as a metal source. Magnetic suseeptibility measurement suggests that complex 2 abso hat a high spin cobalt(II) ion. IR spectrum of complex 2 is very similar to that of complex 1 exeept for additional broad acetate peaks at $1575 \mathrm{~cm}^{-1}, 1545 \mathrm{~cm}^{-1}$ (shoulder) and 1400 c m^{-1}. $\mathrm{F} \wedge \mathrm{B}$ mass spectrum of comples 2 shows m / z of 525.5

Table 1. Cr sistal data and structure refinement tor $[\mathrm{Co}(\mathrm{ntb}) \mathrm{Cl}]$ $\mathrm{Cl} \cdot \mathrm{McOH}, 1$

Empirical formula	$\mathrm{CnC} \mathrm{H}_{\mathrm{N}, \mathrm{OCl}}$
Formula weight	601.39
Temperature	293 (2) K
Wavelength	0.71069
Space group	P1
Unit eell dimensions	$\begin{aligned} & a=13.524(2) \AA \text { alpha }=78.798(9) \\ & b=14.037(2) \AA \text { beta }=84.159(8) \\ & c=17.275(1) \AA \text { gamma }=65.504(9) \end{aligned}$
Volume	$2926.6(6) \AA^{3}$
7.	4
Crystal size	$0.20 \times 0.40 \times 0.70 \mathrm{~mm}$
θ range for data collection	1.20 to 22.48
Independent rellections	7644
Goodness-of-fit on $\mathrm{F}^{\text {: }}$	1.148
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})\rceil \mathrm{R} 1=0.0715, \mathrm{wR} 2=0.1461$	
R indices (all data)	$\mathrm{R} 1=0.1072 . \quad \mathrm{wR} 2=0.1602$
Largest clili peak and hole	c. 0.324 and $-0.267 \mathrm{c} . \AA$

Figure 1. An ORTEP drawing of complex $1,\lceil\mathrm{Co}(\mathrm{II})(\mathrm{ntb}) \mathrm{Cl}\rceil$

Table 2. Comparison of the bond lengths [\AA] and angles [$]$ for $[\mathrm{Co}(\mathrm{ntb}) \mathrm{Cl}] \mathrm{Cl} \cdot \mathrm{McOH} .1$ and $[\mathrm{Mn}(\mathrm{ntb}) \mathrm{Cl}] \mathrm{Cl}{ }^{-}$

$\mathrm{Co}(1)-\mathrm{N}(1)$	$2.384(6)$	2.407(5)	$\mathrm{Mn}(1)-\mathrm{N}(1)$	$2.519(8)$	2.501(9)
$\mathrm{Co}(1)-\mathrm{N}(2)$	$2.039(6)$	$2.051(6)$	$\mathrm{Mn}(1)-\mathrm{N}(2)$	$2.137(8)$	$2.169(10)$
$\mathrm{Co}(1) \mathrm{N}(4)$	2.055 (6)	$2.03046)$	$\mathrm{Mn}(1)-\mathrm{N}(4)$	$2.149(9)$	$2.162(9)$
$\mathrm{Co}(1)-\mathrm{N}(6)$	2.029(6)	$2.033(5)$	$\mathrm{Mn}(1)-\mathrm{N}(6)$	$2.166(8)$	$2.154(10)$
$\mathrm{Co}(1)-\mathrm{Cl}(1)$	$2.288(2)$	$2.296(2)$	$\mathrm{Mn}(1)-\mathrm{Cl}(1)$	$2.363(3)$	2.357(4)
$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{N}(1)$	$75.8(2)$	$75.8(2)$	$\mathrm{N}(2)-\mathrm{Mn}(1)-\mathrm{N}(1)$	72.7(3)	72.9(3)
$\mathrm{N}(4)-\mathrm{Co}(1)-\mathrm{N}(1)$	$74.8(2)$	75.7(2)	$\mathrm{N}(4)-\mathrm{Mn}(1)-\mathrm{N}(1)$	73.1(3)	73.6(3)
$\mathrm{N}(6)-\mathrm{Co}(1)-\mathrm{N}(1)$	$75.5(2)$	$74.9(2)$	$\mathrm{N}(6)-\mathrm{Mn}(1)-\mathrm{N}(1)$	$72.6(3)$	73.6.3)
$\mathrm{Cl}(1)-\mathrm{Co}(1)-\mathrm{N}(1)$	177.9(2)	179.1(2)	$\mathrm{N}(4)-\mathrm{Mn}(1)-\mathrm{N}(2)$	$117.9(3)$	117.04 (4)
$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{N}(4)$	$110.5(2)$	115.4(2)	$\mathrm{N}(6)-\mathrm{Mn}(1)-\mathrm{N}(2)$	111.4(3)	107.0(4)
$\mathrm{N}(6)-\mathrm{Co}(1)-\mathrm{N}(2)$	112.72)	109.1(2)	$\mathrm{N}(6)-\mathrm{Mn}(1)-\mathrm{N}(4)$	105.4(3)	112.3(3)
$\mathrm{N}(2)-\mathrm{Co}(1)-\mathrm{Cl}(1)$	$106.2(2)$	103.5(2)	$\mathrm{N}(2)-\mathrm{Mn}(1)-\mathrm{Cl}(1)$	106.5(3)	103.9(3)
$\mathrm{N}(6)$ - $\mathrm{Cos}(1)-\mathrm{N}(4)$	118.2(2)	117.2(2)	$\mathrm{N}(4)-\mathrm{Mn}(1)-\mathrm{Cl}(1)$	$109.4(3)$	105.2(3)
$\mathrm{N}(4)-\mathrm{Co}(1)-\mathrm{Cl}(1)$	1039(2)	104.1(2)	$\mathrm{N}(6)-\mathrm{Mn}(1)-\mathrm{Cl}(1)$	105.5(3)	111.06
$\mathrm{N}(6)-\mathrm{Cos}(1)-\mathrm{Cl}(1)$	104.04)	106.002)	$\mathrm{Cl}(1) \mathrm{Mn}(1)-\mathrm{N}(1)$	177.3(2)	175.1(3)
disp. "	0.516(4)	0.512(4)		$0.6 .35(5)$	$0.619(6)$

"displacement of metal ions from N2. N4 and N6 atom plane

Figure 2. Proposed structure for complex 2, $[\mathrm{Co}(\mathrm{II})(\mathrm{nib})(\mathrm{OAc})]^{*}$.
for $[\mathrm{Co}(\mathrm{ntb})(\mathrm{O}) \wedge \mathrm{c})]^{-}$.
Recently the same tripodal ligand not manganese complex with a chelating bidentate acetate group, $\lceil\mathrm{Mn}(\mathrm{II})(\mathrm{nth})$ (OAc)]Cl, was reported. , ntb formed the trigonal pyramidal geometry with manganese ion in the complex, and the remaining "open" axial site of the complex was occupied by a chelating bidentate acetate anion. The complex has a sincoordinate manganese geometry. The comparison of the IR spectra of both cobalt(1I) and manganese complexes, the separations of acetate peaks ($175 \mathrm{~cm}^{-1}$ and $145 \mathrm{~cm}^{-1}$ for complex $2: 150 \mathrm{~cm}^{-1}$ for $\left.[\mathrm{Mn}(\mathrm{II})(\mathrm{nib})(\mathrm{OAc})\rceil^{\prime}\right)$ and the mass spectra of the cobalt complexes suggest that both metal compleses are isostructural to each other except the counter ions. The manganese complex binds the aeetate ion at the "open" axial position as a chelating bidentate ligand. Presumably, the complex 2 binds the acetate ion at the same location, as shown in Figure 2.

Geometry preference of the tripodal ligand, ntb is marginal. The cobalt(1l) complex could have various geometries depending on the location of additional ligands. In the presence of chloride anions the complex has trigonal bipyramidal geometry. In the presence of a bidentate acetate anion the complex has trigonal pyramidal partial geometry with additional ligand coordinated at the trans "open" site.

However in the presence of isothiothianate anion the complew has distorted octahedral geometry. ${ }^{14}$ Similar behavior has been observed in the corresponding manganese complexes. " Iron(III) complexes, however, preferred distorted octahedral geometry. Dinuclear iron(III) complex, $\left[\mathrm{Fe}(\mathrm{II})_{2}(\mathrm{nlb})_{2} \mathrm{OCl}_{2}\right]^{2}$ had distorted octahedral iron centers. The complexes of tripodal ligand, ntb could have various geometries depending on the metal used and the additional ligands coordinated.

Acknowledgment. We wish to thank the Korean Institute of Basic Science for cemental analyses and mass spectra, and National Institute of Technology and Quality for the use of an X-ray diffractometer. This work was supported by the Basic Research Institute Program. Ministry of Education, Republic of Korea (grant No. BSRI-96-3443) and Hanyang TVniversity.

Supporting Information Available. Tables giving atomic coordinates, bond lengths, bond angles, and anisotropic themal parameters for non-hydrogen atoms and atomic coordinates for hydrogen atoms of $\mathbf{1}$ (12 pages) and an ORTEP drawing with complete atomic numbering of $\mathbf{1}$ is availathe Supplementary materials are available fom M . S. Lah.

References

1. (a) Chiou, Y.-M., Que. L., Jr. J. Am. Chem. Soc. 1995, 117. 3999-4013. (h) Cummins, C. C.: Schrock, R. R. Ihorg, Chem. 1994, 33, 395-396. (c) Fujisawa, K.: Tanaka, M.: Moro-oka, Y.: Kitajima, N. J. Am. (hem. Soc. 1994, 116, 12029-12080. (d) Koolhaas, (. . J. $\Lambda . \Lambda .:$ Driessen. W. L.: Reedjik, J.: Kooijman. H.: Spek. A. L. J. Chem. Soc., Chem. Commma. 1995, 517-518 (c) Nanda, K. K.: Sinn. E.: Addison. A. W. Inorg. Chem. 1996, 35, 1-2. (t) Govindaswamy, N.: Quarless, D. A. It.: Koch. S. A. J. Am. Chem. Soc. 1995, 117, 8468-8469. (g) Bernal. I.: Jensen. I. M.: Jensen. K. B.: McKenzie, C. J. Totilund, H.: Tuchagues, J.-P. J. (hem Soc. Dalton Trans. 1995, 3667-3675
2. (a) Shih. K.-Y: Schrock. R. R.: Kempe. R. J. . $1 m$.

Chem. Soc: 1994, $116.8804-8805$ (b) Cummins, C. C.: Schrock. R. R.: Davis, W. M. Iforg. ('hem. 1994, 33, 1448-1457. (c) Nugent, W. A.: Harlou, R. L. J. Am. Chem. Soc: 1994, M6. 6142-6148. (d) Lang, Y.: Dong, Y.: Que, I. Jr. J. Am. Chem. Soc. 1995, /I7. 11691170. (e) Gou, S: You, X: Yu, K.: Lu, I. Inorg. Chem. 1993, 32, 1883-1887. (1) Chin, T.: Banašc』yk, M.: Jubim, V.: 7ou, X. J. Am. Chem. Soc. 1989, H1, 186190. (g) Fanshawe, R. I.: Blackman, A. G. Inorg. Chem. 1995, 34. 421-423.
3. Vila, ^. 1.: Femandez, C. O. J. Am. Chem. Soc: 1996, H8. 7291-7298.
4. (a) Goodson, P. A.: Oki, A. R.: Holgsom, D. J. Ihorg. Chim. Acfa 1990, 177, 59-64. (b) Oki. A. R.: Bommameddy, P. R.: 7hang. H.: Hosmane, N. Joorg. Chim. Acfo 1995, 231, 109-114. (c) Takahashi, K: Nishida, Y.: Kida, S. hoorg. (him. Acta 1983, 77. I.185-I.186. (d) Takahashi, K. Nishida, Y.: Kida, S. Bull. Chem, 'soc. Jpn. 1984, 57, 2628-2633. (e) Lab. M. S.: Chun, II. horg. (hem. In press.
5. (a) Hartmann, U.: Gregorzik, R.: Vahrenkamp, II. Chem. Ber. 1994, 127, 2123-2127. (b) Gregorzik, R:: Hartmann,
U.: Vahrenkamp, H. Chem. Ber: 1994, 127, 2117-2122.
6. (a) Nishida, Y.: Watanabe, L.: Unoura, K. Chem. Lett. 1991, 1517-L.1520. (b) Wang, S:: Luo, Q.: Wang, X.: Wang. L.: Yu. K. J. Chem. Soc., Dalton Trans. 1995, 2045-2055. (c) Buchanan, R. M.: O'Brien, R. J.: Richardson, I. F.: Latour I.-M. Inorg. Chim, Acta 1993, 2/4, 33-40. (d) Nishida, Y.: Nasu, M.: Tokii, T. Inorg. Chim. Acta 1990, 169, 143-145, (e) Adams, 11.: Bailey, N. A.: Crane, I. D.: Fenton, D. E.: Latour, I.-M.: Williams. J. M. J. Chem. Soc., Dalton Trans. 1990, 17271735. (f) Gomez-Romero, P’: Casan-P'astor, N.: BenHussein. A.: Jameson, G. B. J. Am. ('hem. Soc. 1988, 110, 1988-1990.
7. (a) Sheldrick; G. M. Acta Crystallogr: 1990, . 1+6. 467473. (b) Sheldrick G. M. SHEI.XI.93. University of G ttingen: Gttingeen, Germany, 1993.
8. Shannon, R. D. Acta Cryst. 1976, A32, 751-767.
9. Thompson, L. K.: Ramasuamy. B. S.: Seymour, F. A. Can J. (hom. 1977, 55, 878-888.
10. Sakurai, T.: Oi, H.: Nakahara, A. Iforg. (him. Acta 1984, 92, 131-134.

Selective Acyl and Alkylation of Monobenzoyl p-tert- Buty 1calix[4]arene

Jong Min Kim, Jong Chul Chum, and Kye Chun Nam*
Departmen of Chemistry, (homam Nothonal lmmersity, Kwangiu 500-757, Korea
Recemed Jantary 31, 1997

Abstract

Sereral calixarene derivatives of $5,11,17,23$-tetra- tent-butyl-25-(3,5-dinitrobenzoy loxy)-26,27,28-trihydroxycalis [4]arene 2 were synthesized by the reaction ol 2 with several acyl and alkylating agents in the presence of their cortesponding 1,3-diacyated cali:[4]arenes $\mathbf{3 a - 3 g}$. On the other hand alkyation of 2 produced a variety calix[4]arene derivatives such as 1,2 and 1,3 -disubstituted calix[4]arenes ta-4e, te-4f, or $1.2,4$-trisubstituted calix[4]arene 4d. 1,2-Disubstituted calix[4]arenes are chiral. All derivatives exist as a cone conformation based on NMR studies.

Introduction

Gutsehe and his coworkers ${ }^{12}$ discovered the selective esterification of p-tent-butylcalix[4]arene by the reaction of 3,5dinitrobenzoyl chloride with calisarene in the presence of hase. They reported that under the carelully controlled reaction conditions one monoester, two diesters (1,2- and 1,3disubstituted) and one triester could be prepared selectively. By taking advantage of the reaction of the preparation of monoester, we recently published the synthetic procedure ${ }^{3}$ For the monoalkyl calix[4]arene and the selective acylation ${ }^{4}$ of calis[4]arene. To further extend the chemistry of selective functionalization of calix[4]arene we utilized the function of bulky group such as 3,5 -dinitrohenzoyl at the lower tim and p-fert-butyl group at the upper rim of calixarene for the selective introduction of the different second and third, and possibly the fouth substituents at the lower rim of

calixarene.

For the introduction of second substituents, 5,11:17,2.3-tetra- tert-butyl-25-(3.5-dinitrohenzoy loxy)-26,27,28-trihydroxycalix[4]arene(25 -monoester 2 ") was treated with several different acyl as well as alkyl halides in the presence of hase, which produced ester and ether substituents in one calixarene. For the reaction of acyl halides all 1.3 -disubstituted ealivarenes were ohtained as expeeted, hut a variety of products such as 1,2-(chiral), 1.3-disubstituted and 1.2,4trisubstituted calix[4]arenes were obtained for the reaction of alkyl halides.

Results and Discussion

Acylation of Monobenzoylated Calix[4]arene 2.

Since it is not possible to introduces" directly two difterent acy groups between the four hydrowy moities at the lower

