Chem. Soc: 1994, $116.8804-8805$ (b) Cummins, C. C.: Schrock. R. R.: Davis, W. M. Iforg. ('hem. 1994, 33, 1448-1457. (c) Nugent, W. A.: Harlou, R. L. J. Am. Chem. Soc: 1994, M6. 6142-6148. (d) Lang, Y.: Dong, Y.: Que, I. Jr. J. Am. Chem. Soc. 1995, /I7. 11691170. (e) Gou, S: You, X: Yu, K.: Lu, I. Inorg. Chem. 1993, 32, 1883-1887. (1) Chin, T.: Banašc』yk, M.: Jubim, V.: 7ou, X. J. Am. Chem. Soc. 1989, 1H, 186190. (g) Fanshawe, R. I.: Blackman, A. G. Inorg. Chem. 1995, 34. 421-423.
3. Vila, ^. 1.: Femandez, C. O. J. Am. Chem. Soc: 1996, H8. 7291-7298.
4. (a) Goodson, P. A.: Oki, A. R.: Holgsom, D. J. Ihorg. Chim. Acfa 1990, 177, 59-64. (b) Oki. A. R.: Bommameddy, P. R.: 7hang. H.: Hosmane, N. Joorg. Chim. Acfo 1995, 231, 109-114. (c) Takahashi, K: Nishida, Y.: Kida, S. hoorg. (him. Acta 1983, 77. I.185-I.186. (d) Takahashi, K. Nishida, Y.: Kida, S. Bull. Chem, 'soc. Jpn. 1984, 57, 2628-2633. (e) Lab. M. S.: Chun, II. horg. (hem. In press.
5. (a) Hartmann, U.: Gregorzik, R.: Vahrenkamp, II. Chem. Ber. 1994, 127, 2123-2127. (b) Gregorzik, R:: Hartmann,
U.: Vahrenkamp, H. Chem. Ber: 1994, 127, 2117-2122.
6. (a) Nishida, Y.: Watanabe, L.: Unoura, K. Chem. Lett. 1991, 1517-L.1520. (b) Wang, S:: Luo, Q.: Wang, X.: Wang. L.: Yu. K. J. Chem. Soc., Dalton Trans. 1995, 2045-2055. (c) Buchanan, R. M.: O'Brien, R. J.: Richardson, I. F.: Latour I.-M. Inorg. Chim, Acta 1993, 2/4, 33-40. (d) Nishida, Y.: Nasu, M.: Tokii, T. Inorg. Chim. Acta 1990, 169, 143-145, (e) Adams, 11.: Bailey, N. A.: Crane, I. D.: Fenton, D. E.: Latour, I.-M.: Williams. J. M. J. Chem. Soc., Dalton Trans. 1990, 17271735. (f) Gomez-Romero, P’: Casan-P'astor, N.: BenHussein. A.: Jameson, G. B. J. Am. ('hem. Soc. 1988, 110, 1988-1990.
7. (a) Sheldrick; G. M. Acta Crystallogr: 1990, . 1+6. 467473. (b) Sheldrick G. M. SHEI.XI.93. University of G ttingen: Gttingeen, Germany, 1993.
8. Shannon, R. D. Acta Cryst. 1976, A32, 751-767.
9. Thompson, L. K.: Ramasuamy. B. S.: Seymour, F. A. Can J. (hom. 1977, 55, 878-888.
10. Sakurai, T.: Oi, H.: Nakahara, A. Iforg. (him. Acta 1984, 92, 131-134.

Selective Acyl and Alkylation of Monobenzoyl p-tert- Buty 1calix[4]arene

Jong Min Kim, Jong Chul Chum, and Kye Chun Nam*
Departmen of Chemistry, (homam Nothonal lmmersity, Kwangiu 500-757, Korea
Recemed Jantary 31, 1997

Abstract

Sereral calixarene derivatives of $5,11,17,23$-tetra- tent-butyl-25-(3,5-dinitrobenzoy loxy)-26,27,28-trihydroxycalis [4]arene 2 were synthesized by the reaction ol 2 with several acyl and alkylating agents in the presence of their cortesponding 1,3-diacyated cali:[4]arenes $\mathbf{3 a - 3 g}$. On the other hand alkyation of 2 produced a variety calix[4]arene derivatives such as 1,2 and 1,3 -disubstituted calix[4]arenes ta-4e, te-4f, or $1.2,4$-trisubstituted calix[4]arene 4d. 1,2-Disubstituted calix[4]arenes are chiral. All derivatives exist as a cone conformation based on NMR studies.

Introduction

Gutsehe and his coworkers ${ }^{12}$ discovered the selective esterification of p-tent-butylcalix[4]arene by the reaction of 3,5dinitrobenzoyl chloride with calisarene in the presence of hase. They reported that under the carelully controlled reaction conditions one monoester, two diesters (1,2- and 1,3disubstituted) and one triester could be prepared selectively. By taking advantage of the reaction of the preparation of monoester, we recently published the synthetic procedure ${ }^{3}$ For the monoalkyl calix[4]arene and the selective acylation ${ }^{4}$ of calis[4]arene. To further extend the chemistry of selective functionalization of calix[4]arene we utilized the function of bulky group such as 3,5 -dinitrohenzoyl at the lower tim and p-fert-butyl group at the upper rim of calixarene for the selective introduction of the different second and third, and possibly the fouth substituents at the lower rim of

calixarene.

For the introduction of second substituents, 5,11:17,2.3-tetra- tert-butyl-25-(3.5-dinitrohenzoy loxy)-26,27,28-trihydroxycalix[4]arene(25 -monoester 2 ") was treated with several different acyl as well as alkyl halides in the presence of hase, which produced ester and ether substituents in one calixarene. For the reaction of acyl halides all 1.3 -disubstituted ealivarenes were ohtained as expeeted, hut a variety of products such as 1,2-(chiral), 1.3-disubstituted and 1.2,4trisubstituted calix[4]arenes were obtained for the reaction of alkyl halides.

Results and Discussion

Acylation of Monobenzoylated Calix[4]arene 2.

Since it is not possible to introduces" directly two difterent acy groups between the four hydrowy moities at the lower
rim of calix[4]arene. we developed a method to put wo different acyl substituents at the lower rim by the two step reactions. Previously, we reported that 25-(3,5-dinitrobenzo-ylony)-26,27,28-trihy droxycalix[4]arene which do not have tery-butyl group at the para position reacted with several acy chloride in the presence of py ridine to yield a various $A B C B$ type calix[4]arencs. Following the previous procedure developed by our group, monoherzoylated p-tertbutylcalix[4]arene 2 treated with acyl halide such as benzoyl chloride. 2-bromobenzoyl chloride, 4 -methowbenzoyl chloride, acetyl chloride, isobutyryl chloride, 3-methosycarbonylpropionyl chloride, and 4 -methoxy carbonylbutanoyl chloride in the presence of pyridine. The various $\triangle B C B$ type calix $[4]$ arenes $\mathbf{3 a - 3 g}$ were prepared selectively as shown in scheme 1. All reactions have been camied out in THF at reom temperature without any dilificulty. Substitution of acyl groups was oceured only at the opposite side of the existing 3,5 -dinitrohenzoyl group with a cone conformation. In these reactions, 3,5 -dinitrobenzoy 1 group obviously controlled the pesition of second acyl group presumably by the steric factor.

Substitution pattern and conformation of diacylated calix $\lfloor 4 J$ arene were contirmed by the NMR spectra. The 'II NMR spectrum of 3 a showed two pair of doublets at $3.52-$ 3.94 ppm arising from the bridged methylene protons and a singlet at 4.94 ppm for the two hydrosy protons, indicating that second substitution was oceurred at the opposite side of 3,5 -dinitrobenzoy group of calix[4]arene 2 . The 12 absoption band of 3 a showed at $3500 \mathrm{~cm}^{-1}$ as a shanp singlet for the OH and at $1740 \mathrm{~cm}^{-1}$ for the $\mathrm{C}=0$ stretching hand, indicating that two hydroxy groups are not hydrogen bonded each other. The 'H NMR spectrum of $\mathbf{3 b} \mathbf{b}-\mathbf{3 g}$ showed the similar pattern as described above such as two pair of doublets at $3.45-4.02 \mathrm{ppin}$ for the methylene protons and a sin-

glet at $4.8-4.9 \mathrm{ppm}$ for the two bydroxy protons. The IR absorption band of $\mathbf{3 b}-\mathbf{3 g}$ also showed the similar pattern as observed for 3a. The conformation of diacy lated calix[4] arenes 3a-3g was deduced from the ${ }^{\text {" }} \mathrm{C}$ NMR chemical shifts of the bridge methylene carbons. In a syn orientation, the methylene signals appear around 31 ppm , whereas they appear around 37 ppm when both phenol rings are anti oriented. ${ }^{\text {s }}$ All of those diacylated calis[4]arenes show two peaks at about 31 ppm indicating that they exist as a cone conformation. The diacylated p-fert- butylcalix[4]arene $\mathbf{3}$ could be a useful starting material for further elaboration as synthetic route of $A B C D$ type chiral calix|4|arenes.". ${ }^{\text {. }}$
Alkylation of Monobenzoylated Calix[4]arene 2; Synthesis of Chiral Calix[4]arenes. We have previonsly reported ${ }^{3,4}$ that alkylation of monobenzoylated p - $11-$ calix[4]arene with various alkyl halide results in the formation of 1 , 3 -disubstituted calix;[4]arene exeept methylation which end up 1,2 -product. Under the similar reaction condition, on the other hand, monobenzoylated p-fert-butylealix [4]arene 2 reacted with several alkylating agents such as benzyl bromide. allyl bromide, ethyl bromoacetate and pbromobenzenesulfonyl chloride (it is not alkyl halide, but reace under the same condition) to produce a variely of substituted calixarenes such as 1,2-, 1,3-disubstituted, and 1.2,4trisubstituted calix[4]arenes fa-4f depending on the alkylating agents as shown in Scheme 2. 1,2-Disubstituted calix;[4] arenes are chiral regardless of confomation, but 1,3 -disubstituted and 1,2.4-trisubstituted calix[4]arenes are not if they exist as a cone conlonnation.

Chiral 1.2-disubstituted calix|4|arene ta was obtained when 2 treated with allyl bromide in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$. The 'II NMR spectrum of ta shows four singlets at 0.8-1.3 ppon for the t-butyl protons, and four pair of doublets at 3.34.5 ppm for the eight bridge methylene protons, clearly indicating that fa is chiral as shown in Figure 1. One hydroxy proton peak appears at 9.88 ppm , on the other hand, the wher appears at 6.49 ppm as conlimed by adding $\mathrm{D}_{2} \mathrm{O}$

5

Figure 1. ${ }^{1} \mathrm{H}$ NMR spectrum of Chiral Calix[4]arene 4a.
into the NMR solution. One hydrosy proton near the ester carbonyl group could form a hydrogen hond with carbonyl oxygen, which causes down tield shift, but the other one could not able to form a hydrogen bond due to a relatively long distance toward carbonyl oxygen. The ${ }^{13} \mathrm{C}$ NMR spectrum shows four peaks at $30-32$ ppm for the bridging carbons, indicating that 4 a exists as a cone conformation. Prevously we reported that the 1,2-disubstituted calix[4]arene existed as a partial cone confommation when two substituents are 3,5 -dinitrobenooyl and methyl and without t-buty group at the para position. The ${ }^{13} \mathrm{C}$ NMR signals of the bridge methylene carbon showed four peaks at $37.89,37.41$, 31.47. and 31.12 ppm as expected for the two anti and two swn oriented carbons for the partial cone confomation. We do not have a good explanation at this moment for the different confommation, but t-butyl group at the para position might direct the cone conlormation of fa.
The 1,3-disubstituted calix[4]arene 4b was obtained when $\mathbf{2}$ was treated with ethyl bromotacetate under the same condition applied above. Reactivity between allyl bromide and ethyl bromoacetate toward calis[4]arene 2 in the presence of $\mathrm{K}_{2} \mathrm{CO}_{4}$ in THF under rellux might not much difler. Both reaction took about 5-7 hrs to complete. But the size of two alkyl halides could play a detemining role for the reaction position. I arge ethyl bromoacetate might preter to approach as far away from the bulky ester group, which produce 1,3-
disubstituted calix [4]arene 4b. But a relatively small allyl bromide could react to the hydrony group next to ester without much difliculty to produce 1,2 -disubstituted calix[4] arene ta. Similar 1.2 -substitution was observed ${ }^{+}$when de-tert- butylated calix[4]arene treated with small alkyl halide such as methyl iodide under the similar reaction condition.
The 1,3 -disubstituted calis:[4]arene to was formed also at the beginning of the reaction when benzyl bromide was treated with 2, but $\mathbf{4 c}$ slowly changed to $1.2,4$-trisubstituted 4d when the reaction misture rellused more than 2 hours in the presence of excess benzyl bromide and $\mathrm{K}_{2} \mathrm{CO}_{3}$. First benzy lation at the opposite side of 3,5 -dinitrohenvoyl group of 2 could be explained easily by the steric factor mentioned above, but the second benylation might not be simple. Two benzel groups at $4 d$ are located at the 2,4-position to the relative to the 3,5 -dinitrobenzoyl group, which indicate that the migration of 3.5 -dinitrobenzoyl group took place. Most likely explanation for the hervoyl shitt is as followed. After the first benzylation. 4e could form an anion in the presence of base, even though the anton formed could not attack benzyl bromide at this stage presumably due to the neighboring large benosl and benooy groups. But the anion can attack benooyl ester group near by to produce 1,2-disubstituted anion, which then attack benzyl bromide easily due to much tavorable steric envitoment to produce 1,2,4-trisubstituled $\mathbf{4 d}$ as shown in Figure 2. The 1,
$4 c$

4d
7

Figure 2. The Proposed Reaction Pathway for 1.2.4-Trisubstitution.

2 -disubstituted intermediate 7 could not be isolated and not detected by TI.C analysis. This suggest that the migration of benooyl group is much slower than second benzylation. Dibenzylation was confirmed by the hydrolysis of $\mathbf{4 d}$ which produced 1,3-dibenzylated calix[4]arene 5. Benzoyl migration was only observed when benzyl bromide treated with $\mathrm{K}_{2} \mathrm{CO}_{3}$, suggesting that benzyl bromide happened to be a right alkylating agent for the ben\%oyl migration. When pbromobenzenesulfonvl chloride treated with 2 in the presence of $\mathrm{K}_{2} \mathrm{CO}_{1}$, a mixture of $1,2-(4 \mathrm{e})$ and 1,3 -disubstituted product (4 f) were obtained. We do not have good explanation for this lack of selectivity. To understand the effeet of sise of alkyl group for the substitution pattern. 2 was treated with a number of alkyl halide such as methyl iodide, ethyl bromide ete, but unfortunately most ordinary alkyl halide do not react under the reaction condition applied. Even though methyl iodide do react with 2, we failed to isolated any identiliable products.

Experimental

Melting points of all compounds were measured on a Mel-lemp apparatus without calibration. Infrared (IR) spectra were determined on a Nicolet 520 FFI-IR spectrometer. Nuelear magnetic resonance (NMR) speetra were recorded on a Varian $300 \wedge \mathrm{MX}$ spectrometer. Chemical shifts are reported as δ values in parts per million relative to tetramethylsilane $(\delta 000)$ as an intemal standard. Thin layer chromatography (TI.C) analyses were carried out on silica gel plates Column chromatography was carried out with Γ. Merck silica gel (230-400 mesh ASTM).

5,11,17,23-Tetra - tert- butyl-25-(3,5-dinitrobenzo-yloxy)-26,27,28-trihydroxycalix[4]arene 2. was prepared by the reaction of p-tert-butylcalix[4]arene with 3,5 dinitrobenzovl chloride in the presence of 1 -methylimidarole lollowing the reported procedure': mp $170^{\circ} \mathrm{C}$ dec.
5,11,17,23-Tetra- tert- butyl-25-(3,5-dinitrobenzo-
yloxy)-27-benzoyloxy-26,28-dihydroxycalix[4]
arene 3a. To a solution of $0.3 \mathrm{~g}(0.36 \mathrm{mmol})$ ol 2 in 30 mI , ol dry THF, 0.047 mI . (0.45 mmol) ol pyridine and then, $0.068 \mathrm{~mL}(0.45 \mathrm{mmol})$ of benzoyl chloride was added slowly. The mixture was stirred roon temperature for 1 h . \wedge fter removed the solvents by evaporation, the residue was triturated with methanol. Nter filtration, the crude product was recrystallized from $\mathrm{CllCl}, \mathrm{MeO} I \mathrm{I}$ to give $0.24 \mathrm{~g}(72 \%)$ pale yellow crystalline 3a. mp 295-298 ${ }^{\circ} \mathrm{C}$. 'II NMR (CDCl_{3}) $\delta 9.60(\mathrm{~d} .2 \mathrm{Il}, \mathrm{ArI}$ of $\mathrm{ArNO}, J=2.1 \mathrm{IIz}), 9.33(\mathrm{t}, 1 \mathrm{II}, \mathrm{ArI}$
 $2 \mathrm{H}, \mathrm{ArH}), 7.06(\mathrm{~s} .4 \mathrm{H}, \mathrm{ArH}), 6.90(\mathrm{~s} .2 \mathrm{H}, \mathrm{ArH}), 6.88$ (s, $2 \mathrm{II}, \mathrm{MrH}$) , 4.94 (s. 2H, OII), 3.94, 3.95 and 3.47, 3.52 (two pairs of d, $8 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}_{,}, J=13.8 \mathrm{H} \%$ and $14.1 \mathrm{H} \%$) $1.19(\mathrm{~s}$, $18 \mathrm{H},-\mathrm{C}(\mathrm{CH})), 1.00\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{C}\left(\mathrm{CH}_{3}\right), 0.99\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{C}\left(\mathrm{CH}_{3}\right)\right)\right.$) ${ }^{11} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 165.15,161.36\left(-\mathrm{CO}_{2}-\right), 150.10,149.41$. $149.02,148.96,142.95,142,84,142.81,133.98,133.61$ $131.60,131.42,130.26,130.19,128.66,127.94,127.82$, $126.11,125.69,125.64$, and $122.79(\mathrm{Ar}) .34 .08,34.03,33.83$. $33.02,32.72 .31 .45$, and $30.95\left(\mathrm{ArCH} / \mathrm{Ar}\right.$ and $\left.-\mathrm{C}\left(\mathrm{CHI}_{3}\right)_{3}\right)$. IR $(\mathrm{KBr}) 3500 \mathrm{~cm}^{-1}(\mathrm{OH}), 1740 \mathrm{~cm}^{-1}(\mathrm{C}=0), 1540$ and 1350 $\mathrm{cm}^{-1}\left(\mathrm{NO}_{2}\right)$.

5,11,17,23-Tetra- tert- butyl-25-(3,5-dinitrobenzo-yloxy)-27-(2-bromobenzoyloxy)-26,28-dihydroxycalix[4]arene 3b. Following the procedure described for 3a with 2-bromobenzorl chloride, 0.17 g (47%) of 3b was obtained after recrystallization from ClCCl_{3}-MeOH mp 302$305^{\circ} \mathrm{C}$. 'H NMR (CDCl $\left.{ }_{3}\right) \delta 9.49\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH}\right.$ ol $\mathrm{ArNO}_{2}, J=$ $2.1 \mathrm{IL}), 9.26\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{Arll}\right.$ of $\left.\mathrm{ArNO} \mathrm{O}_{2}\right), 8.15(\mathrm{~d}, 111, \mathrm{Arll}, J=$ 7.8 H.$), 7.75(\mathrm{~d}, \mathrm{lH}, \mathrm{ArH}), 7.36(\mathrm{t}, 1 \mathrm{H}, \mathrm{ArH}), 7.21(\mathrm{t}, 1 \mathrm{H}$,
 rrl), 4.84 (s. 2II, OHI), 4.02, 3.90 and 3.54, 3.45 (two pairs ol d, $8 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}_{,}, J=13.8 \mathrm{Hr}$ and $14.1 \mathrm{Hr} \%, 1.18$ (s,
 ${ }^{11} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 164.60,161.32\left(-\mathrm{CO}_{2}-\right), 150.04,149.48$. $149.17,148.90,143.08,142.70,142.68,134.83,133.45$, $133.32,131.42,131.35,131.06,130.98,130.13,128.02$, $127.82,127.25,126.18,126.10,125.85,125.56,122.74$ and $122.64(\mathrm{Ar}), 34.09,34.04,33.82,32.93,32.67,31.43$, and $30.94\left(\mathrm{ArCli} / \mathrm{Ar}\right.$ and $\left.-\left(\mathrm{ClHL}_{3}\right)_{\mathrm{j}}\right)$. IR $(\mathrm{KBr}) 3550 \mathrm{~cm}^{-1}$ $(\mathrm{OH}), 1745 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}), 1540$ and $1330 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right)$.

5,11,17,23-Tetra- tert- butyl-25-(3,5-dinitrobenzo-yloxy)-27-(4-methoxybenzoyloxy)-26,28-dihydroxycalix[4]arene 3c. Following the procedure described for 3 a with 4 -methoxybenzov1 chloride, $0.28 \mathrm{~g}(80 \%)$ of 3 c was obtained after recrystallization from $\mathrm{ClICl}_{3}-\mathrm{MeOll}$. mp $287-290^{\circ} \mathrm{C}$ dec. ${ }^{\text {'H NMR }}\left(\mathrm{CDCl}_{3}\right) \delta 59.60\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{O}_{2} \mathrm{NArH}\right.$, $f=2.1 \mathrm{H} \%$) $, 9.33\left(\mathrm{t}, 1 \mathrm{H},()_{2} \mathrm{NArH}\right), 8.16$ and 6.83 (pair of d , $41 \mathrm{I}, \mathrm{MrH}$ from 4 -methoxybenzoyl. $J=9.1 \mathrm{IIz}$). $7.05(\mathrm{~s}, 4 \mathrm{I}$, (rlI), 6.89 (s. $2 \mathrm{HI}, \mathrm{Arll}$), 6.88 ($\mathrm{s} .2 \mathrm{HI}, \mathrm{Arll}) .4 .95$ ($\mathrm{s}, 2 \mathrm{ll}$, OHI), 3.94. 3.93, 3.49, and 3.47 (two pairs of d, 811 , ArCll Ar, $J=14.4 \mathrm{H} /$ and $14.1 \mathrm{H} \ell), 3.90(\mathrm{~s}, 3 \mathrm{H},-0 \mathrm{OCH}), 1.18(\mathrm{~s}$ $\left.1811,-\mathrm{C}\left(\mathrm{ClH}_{3}\right)_{3}\right), 1.00\left(\mathrm{~s}, 91,-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.99(\mathrm{~s}, 911,-\mathrm{C}$ $\left.\left(\mathrm{CH}_{3}\right)_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 164.76,164.17,161.40\left(-\mathrm{CO}_{2}-\right)$, $150.13,149.32,148.98,142.90,142.82,133.67,132.44$, $131.71,131.41,130.23,127.96,127.88,126.11,126.04$ $125.71,125.63,122.73,120.84$, and 114.04 (Ar), 55.56 ($-0 \mathrm{OCl} \mathrm{H}_{3}$) $34.08,34.04,33.83,33.01,32.78,31.46$, and 30.97 ($\mathrm{ArCH} \mathrm{H}_{2} \mathrm{Ar}$ and $\left.-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$. IR (KBr) $3450 \mathrm{~cm}^{-1}(\mathrm{OH}), 1740$ $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{O}), 1540$ and $1350 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right)$.
5,11,17,23-Tetra- tert- butyl-25-(3,5-dinitrobenzo-
yloxy)-27-acetyloxy-26,28-dihydroxycalix[4]arene 3d. Following the procedure described for 3 a with acety 1 chloride, $0.25 \mathrm{~g}(80 \%)$ of $\mathbf{3 d}$ was obtained after recrystalli/ation from $\mathrm{CHCl}_{3}-\mathrm{McOH} . \mathrm{mP}^{2} 262-264{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) 89.44(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH} \text { of } \mathrm{ArNO})_{2}, J=2.1 \mathrm{H} \%$). $9.29(1$, $1 \mathrm{H}, \mathrm{ArH}$ of ArNO_{2}), $7.07(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 6.97(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH})$, 6.95 ($\mathrm{s}, 41 \mathrm{I}, \mathrm{Arll}$), 4.87 ($\mathrm{s}, 211, \mathrm{OHI}), 3.85 .3 .75$ and 3.56 , 3.47 (1wo pair of d, $8 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}, J=13.8 \mathrm{H} \%$ and $14.4 \mathrm{H} \%$. $2.41\left(\mathrm{~s}, 311,-\mathrm{CH}_{s}\right), 1.17\left(\mathrm{~s}, 1811,-\mathrm{C}_{(}\left(\mathrm{CH}_{s}\right)\right)$). $1.04(\mathrm{~s}, 911,-\mathrm{C}$ $\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 1.03\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{C}\left(\mathrm{CH}_{3}\right),{ }^{18}{ }^{18} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right) \delta 168.58\right.$. $161.09\left(-\mathrm{CO}_{-}\right), 150.32,149.38,149.34,148.95,143.57$, $142.60,133.54,131.69,131.60 .130 .24,127.65,127.14$, 126.39. 126.29. 125.65. 125.53. and 122.79 (Ar). 34. 12. 33.83. $33.75,31.49,31.02$, and 30.98 ($\mathrm{ArCH}, \mathrm{Ar}$ and $\left.-\mathrm{C}_{2}\left(\mathrm{CH}_{2}\right)_{3}\right)$, $20.63\left(-\mathrm{ClH}_{3}\right) \cdot 1 \mathrm{R}(\mathrm{KBr}) 3450 \mathrm{~cm}^{-1}(\mathrm{OHI}) .1730 \mathrm{~cm}^{-1}(\mathrm{C}=0)$, 1540 and $1340 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right)$
5,11,17,23-Tetra- tert- butyl-25-(3,5-dinitrobenzo-yloxy)-27-isobutyryloxy-26,28-dihydroxycalix[4] arene 3 e . Following the procedure described for 3 a with isobutyryl chleride, $0.18 \mathrm{~g}(64 \%)$ of 3 e was obtained aller recrystallization from CilCls-MeOHI mp $290^{\circ} \mathrm{C}$ dec. 'II NMR (CDCl_{3}) $\delta 9.48$ (d. 2 II , ArI of $\mathrm{ArNO}_{1}, \delta=2.1 \mathrm{Iz}$), $9.32(\mathrm{t}, \mathrm{IH}, \mathrm{ArH} \text { ol } \mathrm{ArNO},)_{,} 7.09(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 7.04(\mathrm{~s}, 2 \mathrm{H}$, Arll), $6.85(\mathrm{~s}, 41 \mathrm{I} . \mathrm{Arll}) .5 .00(\mathrm{~s}, 211.011), 3.89,3.80$ and $3,47,3.43$ (two pairs of d, $8 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{Ar}_{2}, J=13.8 \mathrm{Hy}$ and $14.4 \mathrm{H} \%$), 3.06 (seplet, $1 \mathrm{H},-\mathrm{CH}-$), $1.42\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{CH}_{3}, J=6.9\right.$ $\mathrm{Hz}), 1.24$ (s. $\left.181 \mathrm{II},-\mathrm{C}^{(}\left(\mathrm{ClH}_{3}\right)_{3}\right), 0.98$ (s. $\left.\left.911,-\mathrm{C}_{(\mathrm{CH}}^{3}\right)_{3}\right), 0.95$ $\left(\mathrm{s}, 9 \mathrm{H},-\mathrm{C}\left(\mathrm{CH}_{3}\right)\right.$) \quad " C NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 175.24,161.39$ $\left(-\mathrm{CO}_{-}\right) .150 .13,149.20 .149 .01 .148 .97,142.91,142.84$, $142.26,133.42,131.29,130.07,128.01,127.55,126.10$, $126.03,125.55$, and 122.89 (Ar), 34.01, 33.98, 33.86, 32.86, 32.74. 31.50, and 30.93 ($\mathrm{ArCH} \mathrm{A}_{2} \mathrm{Ar}$ and $-\mathrm{C}_{\left(\mathrm{CH}_{3}\right)}$), 30.89 , $19.33\left(-\mathrm{CH}\left(\mathrm{CH}_{3}\right)\right)$. IR $(\mathrm{KBr}) 3450 \mathrm{~cm}^{-1}(\mathrm{OH}), 1740 \mathrm{~cm}^{-1}$ $(\mathrm{C}=0)$. 1540 and $1350 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right)$.

5,11,17,23-Tetra- tert- butyl-25-(3,5-dinitrobenzo-yloxy)-27-(3-methoxycarbonylpropionyloxy)-26,28-
dihydroxycalix[4]arene 3f. Following the procedure described for 3 with 3-methoxycarbonylpropionyl chloride, $0.21 \mathrm{~g}(62 \%)$ or $\mathbf{3 f}$ was obtained alier recrestallization firm $\mathrm{CHCl}_{3}-\mathrm{McOH} . \mathrm{mp} 276-279{ }^{\circ} \mathrm{C}$. 'H NMR (CDCl_{3}) $89.45(\mathrm{~d}$, $2 \mathrm{II}, \mathrm{ArIf}$ of $\mathrm{ArNO}_{2} . J=2.1 \mathrm{lz}$), 9.30 (t, $1 \mathrm{III}, \mathrm{ArI}$ of ArNO), $7.13(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 6.99(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 6.94(\mathrm{~s}, 4 \mathrm{H}, \mathrm{ArH})$, $4.89(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}), 3.87,3.83$ and $3.54,3.46$ (two pairs of d, 811. ArllCi i_{2} Ar. $J=14.1 \mathrm{~Hz}$ and 14.4 llz), 3.70 ($\mathrm{s}, 3 \mathrm{II}$, $-\left(\mathrm{CH}_{3}\right), 3.01\left(1,2 \mathrm{H},-\mathrm{CH}_{2}-, J=6.9 \mathrm{H} \%, 2.81\left(1,2 \mathrm{H},-\mathrm{CH}_{2}-\right)\right.$, $1.18\left(\mathrm{~s}, 1811 \mathrm{C}-\mathrm{C}\left(\mathrm{CHI}_{3}\right)_{3}\right), 1.03\left(\mathrm{~s}, 911,-\mathrm{C}^{2}\left(\mathrm{Clll}_{3}\right)_{3}\right), 1.01(\mathrm{~s}, 9 \mathrm{H}$, $-\mathrm{C}(\mathrm{CH})$). ${ }^{10} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 172.31,170.68,161.13$ $\left(-\mathrm{CO}_{2}-\right), 150.26,149.36,149.21,148.90,143.39,142.58$, $133.46 .131 .63,131.61,130.24,127.65,127.26,126.29$, 126.26. 125.60, 125.51, and $122.82(\mathrm{AT}), 52.02\left(-\mathrm{OCHH}_{3}\right)$, $34.86,33.82,33.66,33.45,30.98,31.46$, and 30.95 (Ar$\left(\mathrm{CH}_{2} \mathrm{Ar}\right.$ and $\left.-\mathrm{C}_{(}\left(\mathrm{ClH}_{3}\right)_{3}\right), 28.67,28.59$ ($\left.-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right)$. IR (KBr) $3450 \mathrm{~cm}^{-1}(\mathrm{OH}), 1730$ and $1740 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}), 1540$ and $1340 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right)$.
5,11,17,23-Tetra- tert- butyl-25-(3,5-dinitrobenzo-yloxy)-27-(4-methoxycarbonylbutanoyloxy)-26,28dihydroxycalix[4]arene $\mathbf{3 g}$. Following the procedure described for 3a with 4-methosy carbonylbutanoyl chloride, $0.33 \mathrm{~g}(9.3 \%)$ of $\mathbf{3 g}$ was ohtained alter reerstallization from $\mathrm{CHCl}_{1}-\mathrm{McOH} . \mathrm{mp} 269-273^{\circ} \mathrm{C}$ dec. 'H NMR (CDCI) δ 9.47 (d, 2H, O_NArII, $J=2.1 \mathrm{~Hz}$), $9.30\left(\mathrm{t}, \mathrm{III}, \mathrm{O}_{2} \mathrm{NArH}\right)$,
7.07 ($\mathrm{s}, 2 \mathrm{II}, \mathrm{ArH}$), 6.99 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Arll}), 6.91(\mathrm{~s}, 41 \mathrm{I}, \mathrm{Arll})$, 4.89 (s, 211, OH), 3.85, 3.76, 3.53, and 3.45 (two pairs of d, $811, \mathrm{ArCli}, \wedge \mathrm{r}, J=14.4 \mathrm{~Hz}$ and 14.1 Hz$), 3.68\left(\mathrm{~s}, 31 \mathrm{I},-\left(\mathrm{CHL}_{y}\right)\right.$, $2.80(\mathrm{t}, 211,-(\mathrm{Cl1}-, J=7.5 \mathrm{~Hz}), 2.49(\mathrm{t}, 211,-(\mathrm{II}-, J=7.5 \mathrm{~Hz})$, 2.14 (quintet, $\left.2 \mathrm{H}_{-}-\mathrm{CH}_{-}-, J=7.5 \mathrm{H} \%\right), 1.19(\mathrm{~s}, 18 \mathrm{H},-\mathrm{C}(\mathrm{CH}))$) 1.01 ($\left.\mathrm{s}, 9 \mathrm{H},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.00\left(\mathrm{~s}, 9 \mathrm{II},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$). ${ }^{41} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 173.18,170.99,161.17\left(-\mathrm{CO}_{2}-\right), 150.22,149.31$, $149.26,148.98,143.26,142.71,142.50,133.44,131.49$ $130.25,127.74,127.36,126.26,126.20,125.59,125.52$ and $122.83(\mathrm{Ar}), 51.65\left(-\mathrm{OCH}_{3}\right), 34.09,33.84,33.44,32.70$ 32.44, 31.50, and 30.98 (ArCll Ar and $\left(-\mathrm{C}(\mathrm{ClH})_{3}\right), 30.96$ and $19.88\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right)$. IR $(\mathrm{KBr}) 3470 \mathrm{~cm}^{-1}(\mathrm{OH}), 1745$ and $1740 \mathrm{~cm}^{-1}(\mathrm{C}=0)$.
5,11,17,23-Tetra- tert butyl-25-(3,5-dinitrobenzo-yloxy)-26-allyloxy-27,28-dihydroxy-calix[4]arene 4a. To a solution of $0.3 \mathrm{~g}(0.36 \mathrm{mmol})$ of $\mathbf{2 , 0 . 1 5}$ g (1.08 mmol) of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and 0.62 mI (7.20 mmol) of allyl bromide in 60 mL of TIIF was added and then retluxed for 5 hrs. The solvents were evaporated and the residue was dissolved with 30 mL of $\mathrm{CHICl}_{\text {, and }}$ washed with 0.1 NHCl . The organic layer was separated, dried over anhy drous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ e evaporated the solvents, and the residue triturated with methanol. Recrystallization of crude products from $\mathrm{CHCl}_{3}-\mathrm{McOH}$ to give $0.15 \mathrm{~g}(49 \%)$ of line yellow thaky crystal ta. mp 243-246 ${ }^{\circ} \mathrm{C}$ dec. 'H NMR (CDCl ${ }^{\prime}$) 89.88 (.) 111, OLI), 9.05 and 9.02 (two t, 1HI, rrNO_{2}), 8.95 (d, 21 I , ArNO, $J=2.1 \mathrm{HIz}$), 7.40 (d, $1 \mathrm{HI}, \operatorname{ArlI}, J=2.4 \mathrm{IIz}), 7.37$ (d, $1 \mathrm{H}, \mathrm{ArH}), 7.23$ ($\mathrm{d}, 1 \mathrm{H}, \mathrm{ArH}$), $7.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ArH}), 6.91(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{ArH}), 6.75(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ArH}), 6.47(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 6.49(\mathrm{~s}$ $1 \mathrm{H}, \mathrm{OH}$), $5.12(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}=$ from ally I$)$, 4.84-4.68 (q .2 H , $-\mathrm{CH}_{2}=$ from ally 1), 3.93 and 3.74 (two pairs of d, 2 H - $-\mathrm{CH}_{2}$ Irom allyl, $J=11.7 \mathrm{~Hz}$), $4.50,4.23 .3 .86,3.69 .3 .48$. 3.44 , 3.41 , and 3.31 (four pairs of d, $811, \triangle \mathrm{ACH}_{2} \mathrm{Ar}, J=13.5 \mathrm{IIz}$ and 14.1 Hr$)-1.43\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{C}\left(\mathrm{CH}_{3}\right), 1.35\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{C}\left(\mathrm{CH}_{3}\right)\right)\right.$, $1.02\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{C}\left(\mathrm{CH}_{3}\right)\right), 0.69(\mathrm{~s} .9 \mathrm{H},-\mathrm{C}(\mathrm{CH})$,$)) { }^{10} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) 8163.14\left(-\mathrm{CO}_{2}-\right), 161.76,150.35,149.74$. 149.15, 148.84. 148.27. $147.95,147.82$. $144.04,142.67,142.09$, $134.88,134.21,133.95 .133 .90 .133 .78,131.94,131.43$ $131.09,130.94,129.12,128.97,128.85 .126 .75,126.68$ 126.42. 126.08. 126.02, 125.72. 125.65, 125.13, 124.84, 122.42, 122.38, and $119.34(\mathrm{Ar}), 78.18$ ($-\mathrm{CHI}_{2}$ - from ally), $34.53,34.38,33.95 .33 .79 .32 .32$, and $31.38\left(-\mathrm{C}(\mathrm{CH})_{3}\right)$, 31.73. 31.60. 30.99 and 30.91 ($\mathrm{ArCH}, \mathrm{Ar}$). TR (KPr) 3450 $\mathrm{cm}^{-1}(\mathrm{Oll}), 1735 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}), 1625 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}), 1540$ and $1340 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right)$

5,11,17,23-Tetra- tert- butyl-25-(3,5-dinitrobenzo-yloxy)-27-(ethoxycarbonylmethyloxy)-26,28-dihydroxycalix[41arene $\mathbf{4 b}$. A mixture of $0.30 \mathrm{~g}(0.36$ mmol) of $2,0.15 \mathrm{~g}(1.08 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and 0.48 mL (4.68 mmol) of ethyl bromoacetate in 60 mL of THIF was reflused for 7 hrs and worked up as deseribed for ta. Column chromatography (eluent: CHICl_{3}) gave a 0.16 g (47%) of fine pale yellow erystal 4b. mp 213-217 ${ }^{\circ} \mathrm{C}$. 'H NMR (CDCl $) ~ \delta 9.74\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{O}_{2} \mathrm{NAFH}, J=2.1 \mathrm{H} \%\right), 9.27(\mathrm{t}$,
 ($\mathrm{s} .2 \mathrm{H}, \mathrm{OH}$) , $6.88(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 6.84(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 4.78(\mathrm{~s}$, $2 \mathrm{II},-\mathrm{CII} \mathrm{CO}_{2}$-), 4.20 (quartet. $2 \mathrm{H}_{2},-\mathrm{CH}_{-}$- of ethyl). 4.06, 3.47 and 3.30 (two pairs of d. $8 \mathrm{II}, \mathrm{ArCII}, \wedge \mathrm{Ar} . J=13.9 \mathrm{Hzz}$ and 14.1 $\mathrm{H} \%$) $1.30\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{CH}_{1}\right.$ of chhyl), $1.27\left(\mathrm{~s}, 18 \mathrm{H},-\mathrm{C}\left(\mathrm{CH}_{4}\right)\right.$)), 1.03 (s. 9II - $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .0 .93^{\circ}$ (s, $\left.9 \mathrm{H} .-\mathrm{C}\left(\mathrm{CHI}_{3}\right)_{3}\right) .{ }^{12} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{1}\right) 8168.78,161.92\left(-\mathrm{CO}_{2}-\right), 150.18,149.06,148.84$,
$148.78,147.84,142.84,142.10,134.39,133.89,132.18$, $131.50,130.88,130.74,128.59,126.28,125.61,125.56$, 125.32, 124.67, and $122.36(\mathrm{Ar}), 72.49$ (-CH-), $61.87\left(-\mathrm{CH}_{-}\right.$ $\left(\mathrm{CH}_{3}\right), 34.11,33.93,33.82,32.17,31.98,31.61,31.40,31.23$, $31.08,30.89$, and $30.87\left(\mathrm{MrCl}{ }_{2} \mathrm{Ar}\right.$ and $-\left(\mathrm{C}\left(\mathrm{Cll}_{3}\right)_{3}\right), 14.03$ $\left(-\mathrm{ClH}_{3}\right)$ IR $(\mathrm{KBr}) 3450 \mathrm{~cm}^{-1}(\mathrm{OHL}), 1735$ and $1740 \mathrm{~cm}^{-1}(\mathrm{C}$ $=(0), 1550$ and $1350 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right)$.
$5,11,17,23$-Tetra- tert- butyl-25-(3,5-dinitrobenzo-yloxy)-27-benzyloxy-26,28-dihydroxycalix[4]arene 4c. A mixture of $0.3 \mathrm{~g}(0.36 \mathrm{mmol})$ of $2,0.15 \mathrm{~g}(1.08$ mmol) of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and 0.85 mL . (7.20 mmol) of heneyl bromide in 60 mL TIIF was refluxed for 2 his and worked up as described for 4 a to give $0.20 \mathrm{~g}(60 \%)$ of fine yellow needles tc. mp 231-233 ${ }^{\circ} \mathrm{C}$. ${ }^{1}$ II NMR (CDCl_{5}) $\delta 9.68$ (d, 2 II , $\left.\mathrm{O}_{2} \mathrm{~N} / \mathrm{rll}, J=2.1 \mathrm{llz}\right), 9.34\left(\mathrm{t}, \mathrm{Ill}, \mathrm{O}_{2} \mathrm{~N} / \mathrm{rll}\right), 7.50-7.20(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{ArH}$ from benzyl), 7.08 (d, $2 \mathrm{H}, \mathrm{ArH}$), 7.00 (d, 2 H , Mrll), 6.88 (s, 2ll, Mrll), 6.74 ($\mathrm{s}, 2 \mathrm{II}, \mathrm{Mrl}), 6.46$ ($\mathrm{s}, 2 \mathrm{ll}$, $\mathrm{OH}), 5.42\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right.$ from benzyl), $3.98,3.78,3.28$, and 3.26 (two pairs of d, 811, $\left.\left.\Delta \mathrm{rCll}_{2} \Lambda \mathrm{r}\right), 1.26\left(\mathrm{~s}, 1811,-\mathrm{C}\left(\mathrm{ClH}_{3}\right)\right)_{3}\right)$, $1.01\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.87\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{9} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 161.83\left(-\mathrm{CO}_{2}-\right), 150.14,148.86,148.54,147.87$, $142.99,142.21,134.88,134.29,132.32,131.28,130.58$, $129.69,129.13,128.77,126.28,126.22,125.49,124.71$, and 122.53 (Ar), 79.95 (-Clle-from benzyl), 34.05, 33.87 , $33.83,32.10,31.60,30.92$, and 30.83 ($\mathrm{ArCH}_{2} \mathrm{Ar}$ and t - butyl). IR (KBr) $3500 \mathrm{~cm}^{-1}(\mathrm{OH}), 1740 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}), 1540$ and $1350 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right)$.

5,11,17,23-Tetra- tert- butyl-25-(3,5-dinitrobenzo -yloxy)-26,28-bisbenzyloxy-27-hydroxycalix[4] arene 4d. Procedure A, A misture of 0.3 g (0.36 mmol) of $2,0.15 \mathrm{~g}(1.08 \mathrm{mmol})$ of $\mathrm{K}_{2} \mathrm{C}^{\prime} \mathrm{O}_{3}$ and 0.85 mI , (7.20 mmol) of benzyl bromide in 50 mL of TLIF was refluxed for 12 hrs and worked up as deseribed for 4 to give 0.18 g (54%) of light yellow crystalline $\mathbf{4}$. ${ }^{\text {Procedure }} \mathrm{B} ; ~ \Lambda$ mixture of $0.5 \mathrm{~g}(0.54 \mathrm{mmol})$ of $4 \mathrm{c}, 0.22 \mathrm{~g}$ of $\mathrm{K}_{2} \mathrm{CO}$, and 1.28 mL . of bencyl bromide in 50 mI . of THF was relluxed for 28 hrs and worked up as described for ta to give 0.40 g (73%) of $\mathbf{4 d}$. mp $310^{\circ} \mathrm{C}$ dee. 'H NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.36$ (d, $2 \mathrm{H}, \mathrm{ArH}$ ol $\left.\mathrm{ArNO}_{2}, J=2.1 \mathrm{H} \%\right), 8.43\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{ArH}\right.$ of $\left.\mathrm{ArNO}_{2}\right)$, 7.35 ($\mathrm{s}, 2 \mathrm{ll}, \mathrm{Mrll}), 7.16$ ($\mathrm{s}, 2 \mathrm{II}, \mathrm{Mrll}), 6.56(\mathrm{~s}, \mathrm{lll}, \mathrm{OLI})$, $6.97-6.87(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 4.50$ and 4.36 (pair of $\mathrm{d}, 4 \mathrm{H},-\mathrm{CH}_{-}$, $J=9.6 \mathrm{H} \%$ and $10.5 \mathrm{H} \%$) $4.53,4.13,3.39$, and 3.38 (lwo pairs of d, $8 \mathrm{H}, \mathrm{ArCH}_{3} \mathrm{Ar}_{,}, J=12.9 \mathrm{H} \%$ and $14.4 \mathrm{H} \%$), 1.42 (s ,
 ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 8164.00\left(-\mathrm{CO}_{2}-\right), 150.97,150.20,149.18$. $147.38,146.57,145.32,144.22,141.31,135.70,134.83$, $132.83,132.18,131.54,131.29,130.63,129.18,128.08$, $128.03,127.45,125.89,125.79,125.29,125.11$, and 122.90 $(\Lambda \mathrm{r}), 78.76\left(-\mathrm{Cll}_{2}-\right.$ from benzyl $), 31.81,31.61\left(\mathrm{MrCl}_{2} \mathrm{Ar}\right)$, $34.43,33.93,33.85,31.41,30.99$, and $30.61\left(-\mathrm{C}\left(\mathrm{CH}_{4}\right)_{3}\right)$. IR (KBr) $3450 \mathrm{~cm}^{-1}(\mathrm{OH}), 1740 \mathrm{~cm}^{-1}(\mathrm{C}=0), 1550$ and 1340 $\mathrm{cm}^{-1}\left(\mathrm{NO}_{2}\right)$

5,11,17,23-Tetra- tert- butyl-25-(3,5-dinitrobenzo-yloxy)-26-(p-bromobenzenesulfonyloxy)-27,28dithydroxycalix[4]arene 4e. A mixture of 0.30 g (0.36 $\mathrm{mmol})$ of $2,0.15 \mathrm{~g}(1.08 \mathrm{mmol})$ of K, CO, and $0.93 \mathrm{~g} \mathrm{(} 3.60$ mmol) of p-bromobenzenesulfonyl chloride in 60 mL of THF was relluxed for 6 hrs and worked up as deseribed for fa. Separation by column chromatography (eluent: CHCl_{4}) gave $0.08 \mathrm{~g}(21 \%)$ of light yellow needles 4 e and 0.10 g (27\%) of pale yellow erystalline 4 . Compound 4 e : mp 274-
$276{ }^{\circ} \mathrm{C}$, 'II NMR $\left(\mathrm{CDCl}_{5}\right) 89.78$ ($\left.\mathrm{s}, \mathrm{IH}, 01 \mathrm{~L}\right), 9.13$ and 9.04 (two 1, $1 \mathrm{H}, \mathrm{ArNO}_{2}$), 8.87 (d, $2 \mathrm{H}, \mathrm{ArNO} 2, J=2.1 \mathrm{H} /$), 7.61 and 7.22 (pair ol d, 4 H , ArH from brosyl, $J=8.7 \mathrm{H} \neq$) 7.40 (d, $1 \mathrm{ll}, \operatorname{Arll}, J=2.1 \mathrm{Ilz}), 7.32(\mathrm{~d}, \mathrm{III}, \Delta \mathrm{rlI}, J=2.4 \mathrm{ILz}), 7.16$ (d, $111, \Delta \mathrm{rll}, J=2.1 \mathrm{IIz}), 7.00(\mathrm{~d}, 111, \Delta \mathrm{rlI}, J=2.4 \mathrm{llz}), 6.80$ (d, lll, $\operatorname{Arll}, J=2.1 \mathrm{IIz}), 6.71$ (d, III, $\operatorname{Arll}, J=2.4 \mathrm{ILz}), 6.62$ (d, $1 \mathrm{H}, \mathrm{ArH}, J=2.1 \mathrm{H} \%), 6.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ArH}, J=2.4 \mathrm{H} \%), 4.11$ (s, III, -OIL), 4.21, 3.92, 3.71, 3.70, 3.55, 3.40, 3.14, and 2.67 (four pairs of d, $811, \wedge \mathrm{rClI}, \wedge \mathrm{r}, J=14.1 \mathrm{ILz}, 13.5 \mathrm{Ilz}$, $14.4 \mathrm{H} \%$, and $14.7 \mathrm{H} \%$) $1.42\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{C}\left(\mathrm{CH}_{3}\right)\right.$) $), 1.33(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{ClH}_{j}\right)_{3}\right), 0.93\left(\mathrm{~s}, 91 \mathrm{I},-\mathrm{C}\left(\mathrm{Cll}_{3}\right)_{j}\right), 0.85\left(\mathrm{~s}, 911,-\mathrm{C}\left(\mathrm{ClH}_{3}\right)_{3}\right)$. ${ }^{18} \mathrm{C}$ NMR (CDCl_{3}) $\delta 162.99$, and $161.76\left(-\mathrm{CO}_{2}-\right), 150.10$, $150.06,149.98,149.08,148.93,148.39,143.98,143.81$, $142.00,141.08,134.58,134.00,133.28,133.03,132.81$, $132.65,132.12,130.99,130.54,130.23,130.07,129.41$, $128.88,128.44,126.79,126.64,126.17,126.00,125.55$, $125.49,122.83$, and 122.47 (Ar), $34.56,34.21,34.10,34.01$, $31.82,31.74,31.38,31.66,31.57,30.92$, and $30.86(\mathrm{AClI} \mathrm{Ar}$ and $-\mathrm{C}\left(\mathrm{CH}_{3}\right)$), IR $(\mathrm{KBr}) 3500 \mathrm{~cm}^{-1}(\mathrm{OH}), 1735 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$, 1550 and $1345 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right), 1355$ and $1140 \mathrm{~cm}^{-1}(\mathrm{O}=\mathrm{S}=\mathrm{O})$).

5,11,17,23-Tetra- tert- butyl-25-(3,5-dinitrobenzo-yloxy)-27-(p-bromobenzenesulfonyloxy)-26,28dihydroxycalix[41 arene 4f. mp 217-220 ${ }^{\circ} \mathrm{C}$. 'II NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.50\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArNO}_{3}, J=2.1 \mathrm{H} \%\right), 9.32(1,1 \mathrm{H}$, ArNO 2) , 7.93 and 7.74 (pair ol d, $4 \mathrm{H}, \mathrm{ArH}$ from brosyl, $J=$ 8.7 llz), $7.11,6.70,6.90$, and 6.78 (four s, $8 \mathrm{ll}, \mathrm{Mrll}$), 4.64 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{OH}$), 3.86, 3.82, 3.42, and 3.16 (1wo pairs of d, 8H, $\operatorname{ArCl} l_{2} A \mathrm{r}, J=13.5 \mathrm{lz}$ and 14.1 lz$), 1.22\left(\mathrm{~s}, 18 \mathrm{II},-\mathrm{C}\left(\mathrm{Cll}_{3}\right)_{3}\right)$, $1.00\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.91\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 161.02\left(-\mathrm{CO}_{2}-\right), 149.88,149.81,149.65,149.03$, $142.98,142.52,142.46,135.03,133.10,133.06,132.88$, $131.34,130.37,130.32,129.87,127.71,127.23,126.95$, 126.00, 125.44, and 122.96 (Ar$), 34.11,34.04,33.87,32.98$, $32.69,31.47,30.79,30.91,29.68\left(\mathrm{ArCH}_{2} \mathrm{Ar}\right.$ and $\left.-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{4}\right)$. IR $(\mathrm{KBr}) 3500 \mathrm{~cm}^{-1}(\mathrm{OH}), 1735 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}), 1545$ and $1360 \mathrm{~cm}^{-1}\left(\mathrm{NO}_{2}\right), 1355$ and $1140 \mathrm{~cm}^{-1}(\mathrm{O}=\mathrm{S}=\mathrm{O})$.
$5,11,17,23$-Tetra- tert- butyl-25,27-bisbenzyloxy-26,28-dihydroxycalix[4]arene 5. A mixture of 0.50 g $(0.49 \mathrm{mmol})$ of 4 d , and 1.5 g of NaOll in $100 \mathrm{~mL} \mathrm{TllF}, 30$ mI . FaOH and 60 mJ , of $\mathrm{H}_{2} \mathrm{O}$ was refluxed for 1 hr . Acidified and extracted with CLICl_{4}, evaporated the solvents, and the erude product was reerystallized from methanol to yiclded $0.23 \mathrm{~g}(57 \%)$ of white crystal 5. mp 195-198 ${ }^{\circ} \mathrm{C}$. 'H NMR (CDCl_{3}) 87.63 ($\mathrm{m}, 41 \mathrm{l}, \mathrm{Arll}$ of benzyl), $7.36(\mathrm{~m}, 6[\mathrm{I}$, ArH of benzyl), $7.28(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OH}), 7.04(\mathrm{~s}, 4 \mathrm{H}, \mathrm{ArH}), 6.78$ ($\mathrm{s}, 41 \mathrm{l}, \mathrm{Mrll}$) 5.05 (s, 4[I, -CII- of benzyl), 4.26 and 3.24 (pair of $\mathrm{d}, 811, \mathrm{ArClL} \wedge \mathrm{r}, \mathrm{t}=12.9 \mathrm{llz}), 1.28\left(\mathrm{~s}, 181 \mathrm{I},-\mathrm{C}\left(\mathrm{CHI}_{3}\right)\right.$), $0.94\left(\mathrm{~s}, 18 \mathrm{H}_{2}-\mathrm{C}\left(\mathrm{CH}_{4}\right)_{3}\right) .{ }^{18} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{4}\right) \delta 150.73,149.75$, $146.93,141.26,137.16,132.57,128.59,127.76,127.63$, 127.32, 125.47, and 124.95 (Ar), 77.92 ($-\mathrm{ClI}, \mathrm{Ar}$), 33.91, $33.79,31.69,30.99$, and $29.70\left(-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{4}\right.$ and $\left.\mathrm{ArCH}_{2} \mathrm{Ar}\right)$. IR (KBr) $3500 \mathrm{~cm}^{-1}$ (OLI).

Acknowledgment. This work was supperted by the Basic Science Researeh Institule Program, Ministry of Cducation of Korea (BSRI-96-3429).

References

I. See, K. A.; Fronçek, F. R.: Walson, W. H.; Kashyap, R. P.; Gutsche, C. D. J. Org. Chem. 1991, 56, 7256.
2. Gulsche, C. D.: See, K. A. J. Org. (hem. 1992, 57.
4527.
3. Nam, K. C.: Kim, J. M.: Kim, D. S. Bull. Korean Chem. Soc: 1995, 16, 186.
4. J'ark, Y. I.: Shin, J. M.: Nam, K. C.: Kim, J. M.: Kook, S.-K. Bull. Konean (hem. Soc: 1996, 17, 643.
5. Gutsche, C. D.: Lin, L.-(G. Tetrahedron 1985, H1, 1633.
6. Iqbal, M.: Mangiatico, T.: Gutsche, C. D. Tetrahedron 1987, f3. 4917.
7. Nam, K. C.: Kim, T. M: Kook, S. K.: Iee, S. T. Bull.

Korean (Them. Soc: 1996, 17, 499.
8. Jaime, ($:$: Mandoza, J. D.: Parados, P': Nieto, P'. M: Sancher. C.J. Org. (hem. 1991, 56, 3372.
9. Iwamoto, K.: Yanaki, A.: Nrimura, I.: Matsuda, '1': Shinkai, S. Chem. Letters 1990, 1901.
10. Letta, L.: Wollf, A: Vogt, W.: Platt, K.-L.: Bolmer, V Tetrahedron 1991, 47. 1911.
11. Iwamoto, K.: Shimizu, T. D: Araki, K.: Shinkai, S. .J. Am. Chem, Soc, 1993, 115, 3997.

Motional Properties in the Structure of GlcNAc(β 1,3)Gal(β) OMe Studied by NMR Spectroscopy and Molecular Modeling

Gyuchang Shim, Sangwon Lee, and Yangmee Kim*
Departhent of (hemistry, Konkuk Chiversity, Seoul 143-701, Korea
Recerved Febriary 5, 1997

Abstract

Confonnational llexibilities of the GleNAc $(\beta 1,3)$ Gal (β) OMe are imestigated through NMR spectroseopy and molecular modeling. Adiabatic energy map generated with a dielectric constant of 50 contains three local minima. All of the molecular dynamics simulations on three lecal minimum energy structures show thetuations between two low energy structures, N2 at $\varphi=80^{\prime}$ and $\psi=60^{\circ}$ and N3 at $\varphi=60^{\prime \prime}$ and $\psi=-40^{\circ}$. We have presented adequate evidences to state that GlcN $\Lambda c(\beta 1,3)$ (gale β) OMe exists in two confomationally discrete forms. Two state model ol N2 and N3 confomers with a population ratio ol $40: 60$ is used to caleulate the eflective eross relaxation rate and reproduces the experimental noes very well. Molecular dynamics simulation in conjunction with two state model proves successfully the dynamic equilibrium existed in (GlcN $A c(\beta 1,3)$ Gal (β)OMe and can be considered as a powerliul method to analye the motional properties in the structure of earbohydrate. This observation also cautions against the indiscriminate use of a rigid model to analyze NMR data.

Introduction

Cell membranes musi interact with their extemal enviromment as a part of important biological processes such as cell recognition, intercellular adhesion, and regulation of growth and de fence against invading organisms. The interactions are usually achieved by binding of a protein to a carbohydrate receptor anchored to the cell membrane as a part of glycoprotein or glycolipid. These carbohy drates have the biological functions which control the several intracellular reactions as recognition signals. ${ }^{1.2}$ Accordingly, knowledge of structural details of such protein-carbohy drate interactions is fundamental to understand the interaction of eell and its environment. ${ }^{3,}$

N-acelyglucosamine residue oceurs in glyeoproteins, glycolipids, and proteoglycans with a variety of structures. One of the linkages commonly found in all three classes of glycoconjugates is (ilcN $\wedge c(\beta 1,3)$ Gal. Repeating units of this disacchatide are present in certain mucins, membrane glycoproteins, and polyglycosylecramides where they are associated with the li-antigenic structures and serve as preeursors of the $A B H$, ewis, and P, blood group antigens. Specially, leetins such as Wheat Germ Agglutinin (WGA) and Limulus polyphemus agglutinin (LP)) recognize the carbohydrates which contain GileNAc as a terminal sugar
residue in the membrane. Study of interactions between the WGA and various carbohydrate containing CileNAc is our on going project.

According to the our previous NMR study it is found that free lactose and free melibiose exist with a variety of conformational flexibility and there are considerable confirmational changes of melibiose induced by binding to riein. ${ }^{8, y}$ It shows tendeney of protein binding to restrict conformational freedom about glycosidic bond. In order to understand the structural details of such protein-carbohydrate interactions it is neecesary to study the structural changes of oligosaccharide as a recognition signal. Here, structure of β -D-GileNAc-[1-3]- β-5)-(Gal-I-OMe (GleNAc ($\beta 1.3$) (ial(β)OMe) which can be a receptor for proteins having GlcNAc specificity is studied using nuclear magnetic resonance spectroseopy, adiabatic energy map, and molecular dynamies simulation. ${ }^{10 \cdot t}$

NMR is the best method to provide structural data in solution where motional variations are less restricted than in erystals. The nuclear Overhauser eftects used to evaluate interproton distance constraints ate also suseeptible to large variations because of the unusual way that motional averaging can affects the measured parameters. It is important to consider the possibility that the assumption of a static structure, implicit in most structure determination protocols,

