istry.
11. Oh, J.: Kim, Y.: Won, Y. Bulletin Korean (hem. Soc. $1995,16,1153$.
12. Ha, S. N.: Madsen, I.. I.: Brady, I. W. Bropolymers 1988, 27, 1927.
13. Kim, Y: Ohlrogge, T. B.: Prestegard, J. Biochemical Pharmacology 1990, 10, 7.
14. Kim, Y.: Prestegard, 1. Biochemistry 1989, 28, 8792
15. Molecular Simulation Inc., San Diego. CA.
16. Bax, A.: Subramanial, S. J. Magn. Reson. 1986, 67, 565.
17. Jchikawa, Y: Lin, Y: Dumas, D. P.: Shen, G. T.: Gar-
cia-Junceda, E:: Williams, M. A.: Bayer, R.: Ketcham, C.: Walker, I. E.: Paulson, J. C.: Wong. C. J. Am. Chem. Soc: 1992, 114, 9283.
18. Neuhaus Λ.: keeler, I. J. Magn. Resom. 1986, $68,568$.
19. Bothner-By, A. A.: Stephens, R. I.: Lce, T. M: Warren, C. D.: Jeanloz, R. W. J. Am. Chem. Soc. 1984, Io6, 811.
20. Haanoot, C. A. G.: De Lceun, F. A. A. M.: Altona, C. Tetrathedrom 1980, 36. 2783.
21. Brookis S. R.: Bruceoleir, R. F.: Olalson, B. D.: States, D. J.: Swauninathan, S: Karplus M. J. Compta. (hem. 1983, t, 187.

Hyperfine Interaction Integrals for NMR Chemical Shifts in $5 f$ Paramagnetic Systems

Kee Hag Lee*, Ji Young Lee, and Dong Hee Kim
Department of Chemishr, H'onAwang liniversity: /hsan 570-7f9, Norea
'Deparment of Chemistry, Amsan Aational Linversity' Kusan 573-701, Korea

Recelved Febrtary 10, 1997

Abstract

To study the NMR chemical shilit arising lrom the 51°-electron orbital angular momentum and the 50°-electron spin dipolar-nuclear spin angular momentum interactions, the evaluation of the hyperfine integrals has been extended to any pairs of SCF type 51° orbitals adopting a general method which is applicable to a general vector R, pointing in any direction in space. From the electronic wavelunctions lor 57° orbitals expressed in eommon coordinate system. the radial part of the heperfine interaction integrals are derived by translating the exponential part, $r^{*} \exp \left(-2 \beta r\right.$, in tems ol $R, r_{\text {, }}$ and the modilied Bessel functions. The radial integals for $5 f^{\circ}$ orbitals are tabulated in analytical forms. When two ol the hyperline integrals along the (100), (010), (001), (110), and (111) aves are calculated using the derived radial integrals, the calculated values for the $5 t$ system change sign for $R-$ values larger than $R=0.35 \mathrm{~nm}$. But the caleulated values for the 44° systems change sign for R-values larger than $\mathrm{R} \simeq 0.20 \mathrm{~nm}$.

Introduction

In the past two decades a substantial amount of work has been devoled toward evaluation of the contaet and pseude contact contributions to the observed isotropic shifts in the ${ }^{3} \mathrm{H}$ nuclear magnetic resonance (NMR) spectra of uranium (IV) organometallic compounds. ${ }^{* *}$ Nuclei in different molecular electronic environments experience different shielding field and such differences in shielding field give rise to the chemical shifts in high resolution NMR spectroscopy: The chemical shifts are extremoly important in the applications of NMR to molecular structure studies. The interpretation of the NMR shift in 5 f paramagnetic systems has been based on the Fermi contact interactions and psendo contact interactions. A large number of organometallic actinide compounds have been synthesized and their NMR spectra in solution are studied. Much of this NMR work has been reviewed by Fiseher and by I uke and Streitweser. 'In those cases in which the preudo contact shift could be reliably estimated, it was found that when the pseude contact shift was subtracted from the experimental shilt a sizeable shilt,

Which has generally been called the contact shift. remained. The results of the pseado contact interaction were interpreted using the dipolar approximation expressed in terms of the magnetic susceptibility components. ${ }^{5}$ But Golding et al., ${ }^{211.14}$ Ahn et al. ${ }^{11,14}$ and Tee and Iece et al. ${ }^{5}$ have shown that the use of such an expression may lead to serious errors in the interpretation of the NMR shift through this mechanism, especially if only the dipolar term is considered.

Since our interest is centered on the NMR shitt arising from the 5 f -electron orbital angular momentum and the $5 \mathrm{t}^{\circ}-$ electron spin dipolar-nuclear spin angular momentum ineractions for an 5t-electron in a enystal field enviromment eentered at $O_{\text {wison }}$, it is neessary to evaluate the theoretical hamiltonian representing the pseudo contact part. ${ }^{\text {id }}$

$$
\begin{equation*}
H_{n}=H+H \tag{1}
\end{equation*}
$$

Where

$$
\begin{equation*}
H_{\mathrm{L}}=\frac{2 \mu_{0}}{4 \pi} \mathrm{~g}_{\mathrm{N}} \mu_{\mathrm{B}} \mu_{\mathrm{N}}\left\{l_{\mathrm{N}} I / r_{\mathrm{N}}^{3}\right\} \tag{2a}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{H}_{\mathrm{D}}=\frac{\mu_{0}}{4 \pi} \mathrm{~g}_{\mathrm{N}} \mu_{\mathrm{B}} \mu_{\mathrm{N}} \mathrm{~g}_{\mathrm{s}}\left\{\frac{3\left(\boldsymbol{r}_{\mathrm{N}} \boldsymbol{S}\right) r_{\mathrm{N}} \boldsymbol{I}}{\boldsymbol{r}_{\mathrm{N}}^{5}}-\frac{\boldsymbol{S} \cdot \boldsymbol{I}}{\boldsymbol{r}_{\mathrm{N}}^{3}}\right\} \tag{2b}
\end{equation*}
$$

In equations (2a) and (2b). $\mu_{\text {, }}$, is the permeability constant of free space. g, the nuclear g-value of the nucleus being shiclded (that is. the NMR nucleus). μ_{k} the Bohr magneton. μ_{s} the nuclear magneton. g , the free electron Lande' splitting factor ($\mathrm{g},=2.20023 \mathrm{~N}$) and S the spin angular momentum of the electron. r, is the radius vector of the electron about the nucleus with nuclear spin angular momentum. I. Here the first part represents the electron orbital angular momentum-nuclear spin angular momentum interaction and the second part. \boldsymbol{H}_{1}. the electron spin dipolar-nuclear spin angular momentum interaction. Thus taken together equations (2a) and (2b) define the operators which account for pseudo contact interactions between nuclei and unpaired clectrons.

The position of the nucleus on which the f-electrons are centered. with respect to the NMR nucleus N . is given by the vector R, as shown in Figure 1.

In order to evaluate the hyperfine integrals involving if orbitals. we adopt the general method. which is applicable to a general vector R, pointing in any direction in space. developed by Gelding et al. "In this method. the integrand is expressed as a function of R and $r_{\text {: }}$ using the translation and the integration is performed in the $\mathrm{O}_{\mathrm{x}} \mathrm{x}_{\mathrm{y}} z_{y}$ system. This method is applied to derive the required radial integrals of the hyperfine integrals to $3 \mathrm{~d}^{\prime \prime}$ systems. " +d " systems. ${ }^{12}$ 5d systems ${ }^{\circ}$ and $+\Gamma$ systems. ${ }^{1.1}$ As far as we are aware no previous attempt has been made to craluate the hyperfine integrals insolving SCF 5¢ orbitals.
The purpose of this work is to claluate the required radial integrals of the heperfine integrals involving 5 f orbitals which are required to investigate the NMR chemical shift in analytical form for $5 \mathrm{f}^{\prime \prime}$-electrons systems in a crystal field environment adopting the nonmultipole expansion method.

Evaluation of the required radial integrals of the hyperfine integrals

We choose a SCF type function of the form.

Figure 1. The coordinate system for calculation of the NMR ehemical shift.

$$
\begin{equation*}
\phi_{. .} \mathrm{Nr}^{\cdots} \exp (-\beta r) \mathrm{Y}_{n,}(\theta, \phi) \tag{3}
\end{equation*}
$$

where / and m are the usual quantum numbers which have integer values. N a nomalization constant. and β the optimized orbital exponent. ${ }^{\text {16 }}$ Therefore the electronic wave functions in real notation for 5 forbitals are

$$
\begin{align*}
& \mid 5 r z^{4}>=N(7 / 16 \pi)^{\prime 2} \pi\left(5 \%^{2}-3 \mathrm{r}^{3}\right) \mathrm{r} \operatorname{cxp}(-\beta r) \\
& \text { | } 5 \mathrm{R} \pi \%^{2}>=\mathrm{N}(21 / 32 \pi)^{12} \mathrm{x}\left(5 \%^{2}-\mathrm{r}^{2}\right) \mathrm{r} \operatorname{cxp}(-\beta \mathrm{r}) \\
& \text { | } 5 \mathrm{f} \mathrm{~K}^{2}>=\mathrm{N}(21 / 32 \pi)^{2} \mathrm{y}\left(5 \pi^{2}-\mathrm{r}^{2}\right) \mathrm{r} \operatorname{cxp}(-\beta \mathrm{r}) \\
& \text { | } 5 \mathrm{fxy} \mathrm{\%}>=\mathrm{N}(105 / 4 \pi)^{\text {' }} \mathrm{xy} \% \mathrm{rexp}(-\beta \mathrm{r}) \\
& 5 \mathrm{f} /\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)>=\mathrm{N}(105 / 16 \pi)^{12} \quad z\left(\mathrm{x}^{2}-y^{2}\right) \mathrm{r} \exp (-\beta \mathrm{r}) \\
& \mid 5 \Gamma\left(x^{2}-y^{2}\right)>=N(35 / 32 \pi)^{\prime 2} x\left(x^{2}-3 y\right) r \operatorname{cop}(-\beta r) \\
& \text { | } 5 \mathrm{fy}\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)>=\mathrm{N}(35 / 32 \pi)^{12} \mathrm{y}\left(3 \mathrm{x}^{2}-\mathrm{y}^{2}\right) \text { r } \operatorname{cxp}(-\beta \mathrm{r}) \tag{4}
\end{align*}
$$

where N is the nomalization constant delined by

$$
\begin{equation*}
\frac{1}{\mathrm{~N}^{2}}=\int_{n}^{\infty} r \exp (-2 \beta r) d r \tag{5}
\end{equation*}
$$

The hyperfine interaction integrals are evaluated by expressing the electron coordinate system $\mathrm{O}_{\mathrm{x},}$ in the coordinate system $\mathrm{O}_{x} \mathrm{~s}_{3} / 8$ in terms of \boldsymbol{R} and \boldsymbol{r} using the following two mathematical identities. ${ }^{0.1 i}$

Onc. first given in the literature by Moslinsky ${ }^{-1}$ in 1959. translates the harmonic polynomial r Y... (θ, ϕ) :

$$
\begin{align*}
& r^{\prime} Y_{l m}(\theta, \phi)=\sum_{l_{1}=0}^{1} \sum_{l_{2}=t}^{1} \sum_{m=1}^{t_{1}} \sum_{m=-l_{1}}^{t_{2}}(-1)^{y_{1}} \delta\left(l_{1}+l_{2}, l\right) \\
& \times\left\{\frac{4 \pi(2 l+1)!}{\left.2 l_{1}+1\right)!\left(2 l_{2}+1\right)!}\right\}^{1 / 2}\left\langle l_{1} l_{2} m, m_{2} \mid l_{1} l_{2} l m\right\rangle \tag{6}
\end{align*}
$$

where the symbol $\delta(l+I . l)$ is the so-called kronecker delta. it has the value 1 when $l+1=1$ and the value 0 when $l+l, \neq$ l, and $<l_{1} l_{2} m_{1} m_{2} \mid l_{1} l_{2} l m>$ is the Clebsch-Gordan coefficient.

Secondly. the exponential part may also be transformed into the following form:

$$
\begin{equation*}
r^{2} \exp (-2 \beta r)=4 \pi \sum_{n=0}^{\infty} h_{n}\left(R, r_{N}\right) \sum_{n=-t}^{n} Y_{n h}^{*}(\theta, \phi) Y_{n h}\left(\theta_{N}, \phi_{N}\right) \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
& h_{n}\left(R, r_{N}\right)=\left(r_{\alpha} r_{>}\right)^{-12}\left(r_{>}^{3} I_{n+12}\left(2 \beta r_{4}\right) K_{n-12}\left(2 \beta r_{>}\right)\right. \\
& -r^{3} Y_{n+32}\left(2 \beta r_{c}\right) K_{n+12}\left(2 \beta r_{>}\right) \\
& +(4 n+1 / 2 n+1) r_{<}^{2} r_{>} I_{n+12}\left(2 \beta r_{<}\right) K_{n-12}\left(2 \beta r_{>}\right) \\
& -(4 n+3 / 2 n+1) r_{\alpha_{>}} r_{2}^{2} I_{n+32}\left(2 \beta r_{,}\right) K_{n+12}\left(2 \beta r_{>}\right) \\
& +(2(n+1) 2 n+1) r_{<}^{2} r_{>} I_{n+52}\left(2 \beta r_{\curvearrowright}\right) K_{n+32}\left(2 \beta r_{>}\right) \\
& -(2 n / 2 n+1) r_{<} r_{>}^{2} I_{n-12}\left(2 \beta r_{\alpha}\right) K_{n-32}\left(2 \beta r_{>}\right) \tag{8}
\end{align*}
$$

where r is the smaller of the pair R and $r_{\vee} r$ is the larger of R and $r_{:}$. and I_{v} and $\mathrm{K}_{\text {, }} s$ are the modified Bessel functions.

To evaluate the lyperfine interaction integrals. the integrand is expressed as a function of R and r : using equations (6) and (7). For the angular part constitution. the required computer progran ${ }^{18}$ are already set up. Thus we only need to derive the analytical formulas for the radial integral.

For the radial part of integrals for if orbitals. we define the radial integral as

$$
\begin{equation*}
R_{N}^{(2)}(r)=4 \beta^{11}(-R)^{\mu} \int_{0}^{\infty} r_{N}^{s-1} h_{\mathrm{N}}\left(R, r_{N}\right) d r \tag{9}
\end{equation*}
$$

where $t=2 \beta \mathrm{r}$ and further for convenience

$$
\begin{align*}
& U_{,}^{\prime}(t)=R^{\prime \prime \prime}(t) \\
& \Gamma_{v}(t) \quad R_{r}^{\prime \prime \prime}(t) \\
& \text { I' }(t)=R^{\prime \prime}(t) \\
& \mathrm{I}_{\mathrm{v}}(t) \quad R_{\mathrm{v}}{ }^{\prime \prime}(t) \\
& Y_{v}(t) \quad R^{\prime \prime}(i) \\
& Z_{n}(i)=R^{\prime}(1) \\
& B_{1}(t) \quad R_{v}^{\prime \prime}(t) \tag{10}
\end{align*}
$$

This detinition provides a suitable notation that enables handling of the radial parts of the hypertine integrals. From the angular parts of the hyperline interaction integrals we obtain selection rules on n. Due to this selection rules on n. only a lew radial integrals were required

The recuired radial integrals are list in Table 1
Since $h_{N}\left(R, r_{\mathrm{s}}\right)$ is a Green's function type expression, the integration was conducted in two parts,

$$
\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{R} \cdots d r_{\mathrm{N}} \text { and } \int_{R}^{\infty} \cdots d r_{\mathrm{N}}
$$

Table 1. The required radial integrals for 51 -orbitals

```
U(t)- \beta}{3\mp@subsup{\textrm{t}}{}{\prime}8-\mp@subsup{\textrm{c}}{}{\prime}(\mp@subsup{t}{}{\prime}192-\mp@subsup{t}{}{\prime}64+t:16+3\mp@subsup{t}{}{\prime}16+3\mp@subsup{t}{}{*}:8-3\mp@subsup{t}{}{\prime}8)
V:(t)-- - ``{3t:8-c'(t'64-\mp@subsup{t}{}{\prime}16-3\mp@subsup{t}{}{\prime}}16-3\mp@subsup{t}{}{\prime}8+3\mp@subsup{t}{}{\prime}8)
```



```
    417514):
W.(1)- \beta`{31:8-\mp@subsup{e}{}{\prime}(1:6+1.31.32\cdot91.321.318)}
W.(1)- \beta}{(31:8-4514) 'e'(1:3219t . 32, 31:2 21t 41451:4 45t
        4):
W.(t)-\beta{(3t>8-75t 4-1470 2)-c'(t 24+2t 3-51t 8-343t'8+
        41512}2\cdot27901\cdot1470\cdot1470:1)
X(t)-- \beta{(3t>-15t4)-c (t32-5t':16-3t:2+15t:4+15t/4)}
```



```
        585121630)630:1)}
```



```
        2955t*4+19755t4+23940+80640t+170100 t = 170100 t')%
Y(1)-\beta:(31:81514)-\mp@subsup{e}{}{\prime}(1/321.31:8.151:8.1514)}
Y(t)}\mp@subsup{|}{}{\beta}{(3+8-15t 2-1 26 t)-c'(t'8+15t;8+27t:2+111t 2-126--
        126:t)}
Y(1)-\beta{(31:8-13514 1890)1-56700: ) <e(30.4.331:2.7651:
        4.580514.7560.26460:56700:1 156700:1) ?
Y(t)-\beta
        6t-1170t*-14100t-124110-812070 t-389400 t + 13041000
        1127442800:14127442800: %)
Z:(t)-- 的{(3t* 8-15t2-42t)-c '(t 8+2t'-27t 2-42-42 t)}
```



```
        97213672:48100: 18100:1)!
Z.(t)}\mp@subsup{)}{}{-}\mp@subsup{\beta}{}{\prime}{(3\mp@subsup{t}{}{\prime}8-45t+3780t-226800t'+7484400t ) -c'(6t'-180
```



```
        7484400:147484400:1)%
```



```
        1620t+1620t);
BA(t)- \beta{{3t 8-15t-756t-32400t *-831600 t')-c'(6t+168t+
```



```
B.(t)- \beta}}{(3+8-225t 4-6300t-567000t-37422000t*-
        1362160800t')-c'(60t+2340t-46620+609840 t+
        5681.3401 - 38612700)t - 18060480) (' 64.365840)t
        1362160800:1".13621608004t);
```

where by taking the limit as $\varepsilon \rightarrow 0$ the singularity at the magnetie resonance nucleus was dealt with.

Results and Discussion

The analytical expansion formulas for $r \exp (-2 \beta r)$ of the hyperline integrals arising from the pseudo contact interaction for a $5 f^{\circ}$ system, adopting the nommultipole expansion method are derived as shown in Table 1. The angular part of lisystems was reported in relerence 18, The hypertine integrals for SCF twpe 51° atomic orbitals have been derived separately by expressing the spherical harmonics part in terms of the coordinate $\left(R, r_{N}\right)$ of the relerence point, and by translating the exponential part, F^{*} expe $-2 \beta \%$ in terms of R, r, and the moditied Bessel functions. Some calculated $\boldsymbol{l} \cdot \boldsymbol{I}$ hyperfine interaction integrals for the 51° system in a crystal field environment at different values of R along the (100), (010), (001), (110) and (111) axes are given in Tables 2 and 3. Here we choose $\beta=3.866$. In addition, we compare the results for the $4 f$ hypertine integrals and the $5 f$ hepertine integrals, respectively.

Table 2. Calculated values for $\mathrm{P}_{\mathrm{z}}\left|t_{\mathrm{r}} r_{1}\right| f_{\mathrm{za}}$ of 4 h hepertine integrals with those of 5 f hypertine integrals for specitic R values along (001). (100). (010). (110), and (111) axes ($\beta-3.866$)

$r(\mathrm{~nm})$	[001]	[100]	[111]	[001]	[100]	$11]$
0.05	1.848	1.161	1.390	14.315	14.197	14.236
0.10	1.594	1.035	1.221	13.782	13.360	13.500
0.15	1.179	0.831	0.946	12.767	12.016	12.263
0.20	0.489	0.569	0.541	11.068	10.225	0.497
0.25	-0.611	0.270	-0.024	8.403	8.060	8.156
0.30	-2.269	-0.050	-0.786	4.418	5.599	5.176
0.35	-4.6.35	-0.378	-1.785	-1.301	2.922	1.477
0.40	-7.856	-0.70s	-3.062	-9.213	0.100	-3.041
0.45	-12.071	-1.024	-4.660	-19.806	-2.809	-8.493
0.50	-17.41.3	-1.332	-6.619	-.33.578	-5.75.3	-15.002

Here the calculated values along the [100] axis are the same to those along the $[010\rceil$ and $\lceil 110\rceil$ axes.
 perline integrals with those of st hyperline integrals for speeific R-values along (001). (100). (010). (110). and (111) axcs (β 3.866)

	4 f					
$r(\mathrm{nml})$	$\lceil 001]$	$\lceil 010]^{\top}\lceil 111]$	$\lceil 001]$	$\lceil 010]^{\top}[111]$		
0.05	-2.958	-2.690	-2.780	-28.417	-28.499	-28.472
0.10	-2.574	-2.372	-2.444	-26.927	-27.028	-27.003
0.15	-1.962	-1.843	-0.898	-24.430	-24.540	-24.547
0.20	-1.064	-1.063	-1.091	-20.811	-20.979	-21.051
0.25	0.188	0.017	0.046	-15.929	-16.269	-16.428
0.30	1.866	1.457	1.595	-9.610	-10.306	-10.541
0.35	4.047	3.322	.3 .647	-1.661	-2.970	-3.197
0.40	6.809	5.684	6.291	8.129	5.884	5.843
0.45	10.228	8.620	9.616	19.984	16.419	16.862
0.50	14.382	12.211	1.3 .70 .3	.34 .1 .32	28.812	.30 .164

Here, the calculated values along the [010] axis are the same to those along the $[100]$ and $[110\rceil$ axcs.

As shown in Tables 2 and 3, the calculated values along the (100) axis are in agreement with those along (010) and (110) axes. The calculated values along the (001), (010), and (111) axes are different from each other for all values of R. Along the (001), (100), and (111) axes, the calculated values in $4 f$ and $5 f$ systems are found to change sign when $\mathrm{R} \simeq 0.20 \mathrm{~nm}$ and 0.35 nm , respectively. Here, the values are found to be positive for smaller R values and negative for greater R values in Table 2 From Table 3 along the (001), $(010),(100),(110)$, and (111) axes, the calculated values in $4 f$ and 5 f systems also change sign when $\mathrm{R} \simeq 0.20 \mathrm{~nm}$ and 0.35 nm , respectively. But the values are negative for smaller R values and positive for greater R values.

This work is applied to investigate the paramagnetic NMR shift for 5 f systems and enables, for the first time, an estimate of errors coming from the usually used approximation.

Acknowledgment. The paper was supported by WonKwang University in 1996.

Reference

1. Edelstein, N.; La Mmr, G. N.; Mars, F.; Streitwieser, A. Ir Chem. Phys. Lett. 1971, 8, 399.
2. Streitwieser, A. Jr, Dempf, D.; La Mar, G. N.; Karraker, D. G.; Edelstein, N. J. Am. Chem. Soc. 1971, 93, 7343.
3. Streitwieser, A, Jr; Harmon, C. A. Inorg. Chem. 1973, 12, 1102.
4. Streitwieser, A. Jr, Kinsley, S. A. in Fundamental and Technical Aspects of Organo-f-Element Chemistry (T. J. Marks and I. L. Fragala, Eds.), 1985, 77-114, Reidel,

Dordrecht.
5. Orrell, K. G. Nuch. Magn. Reson. 1985, 14, 318.
6. Fischer, R. D. in Organometallics of the f-Elements (T. J. Marks and R. D. Fischer, Eds.), 1979, 337-377, Reidel, Dordrecht.
7. Luke, W. D.; Streitwieser, A, Jr in Ranthanide and Actinide Chemisty and Spectroscopy (N. M. Edmond, Ed.), ACS Symposium Series Vol. 131, pp. 93-140, American Chemical Society, Washington, D. C., 1980.
8. Kurland, R. J.; MCGarvey, B. R. J. Magn. Reson 1970, 2, 286.
9. Golding, R. M.; Pascual, R. O.; Vrbancich, J. J. Mol. Phys. 1976, 31, 731.
10. Golding, R. M.; Stubbs, L. C. J. Magn. Reson 1979, 33, 627.
11. Golding, R. M.; Stubbs, L. C. Proc. Roy. Soc. 1977, 354, 223.
12. Ahn, S.; Suh, H. C.; Lee, K. H. Bull. Kor. Chem. Soc. 1983, 4, 17.
13. Ahn, S.; Oh, S. W. J. Magn. Reson. 1987, 71, 405.
14. Golding, R. M.; Pacual, R. O.; Ahn, S. J. Magn. Reson. 1982, 46, 406.
15. (a) Lee, K. H. J. Magn. Reson. 1991, 92, 247. (b) Kim, D. H.; Lee, K. H. Bull. Kor. Chem. Soc. 1996, 17, 69. (c) Ahn, S.; Lee, K. H. J. Magn. Reson. 1986, 68, 499.
16. Clementi, E.; Raymondi, D. L.; Reinardt, W. P. J. Chem. Phys. 1968, 47, 1300.
17. Moshinsky, M. Nucl. Phys. 1959, 13, 104.
18. Ahn, S in Calculation of Some Interactions in Molecular System; Ph.D thesis, 1980, Univ. New South Wales, Australia.

