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Dynamic File Allocation Problems In Distributed Systems
Pil-Kyo Seo '

ABSTRACT

In a distributed system, the simple file allocation problem determines the placement of copies of a file, so as to
minimize the operating costs. The simple file allocation problem assumes the cost parameters to be fixed. In
practice, these parameters change over time. In this research, dynamic file allocation problems for both single
and multiple files are considered, which account for these changing parameters. A model for dynamic file allo-
cation problem is formulated as a mixed integer program for which Lagrangian relaxation based branch-
and-bound algorithm is developed. This algorithm is implemented and its efficiency is tested on medium to large
test problems.

1. Introduction

Contemporary organizations are tending lowards
increased delegation of decision making responsi-
bilities and functional specialization, manifest in the

form of decentralized organizational structures [1].
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This, coupled with growing geographic dispersion and
rapid sophistication in computing and communi-
cations technology, has led to the emergence of
Distributed Computing Systems(DCS). A DCS (defined
as a set of computers inter-connected by telecommuni-1
cations facilities) attempts to disperse the data processing
function in order to adhere more closely to the
organizational structure. In addition to its ability to
provide a logically integrated information system for
geographically dispersed corporations, DCS realize



1682 SRYBHMEIED] =2K| M4 M 7%(97.7)

benefits of lower communications cost, quicker access
to data, higher system reliability, and ease of incremental
growth [2].

The evolution of DCS has been followed almost
immediately by the concept of distributed databases.
A major function of a distributed database system is
to provide casy, cost effective sharing of information
between geographically dispersed locations, that are
connected by telecommunication network. In a distri-
buted architecture, it is not necessary to place a copy
of a file at each location that needs it. Files can also
be accessed from other locations via telecommuni-
cation channels or links.

Maintaining file copies in several locations increases
storage and file update costs, while keeping them in
fewer locations increases query cost. The problem of
determining (a) the number of file copies, and (b)
where to keep each copy, in order to minimize the
overall cost, is known as the Simple File Allocation
Problem (SFAP). In the SFAP queries read infor-
mation from a s'ingle file copy which is placed at a
minimum cost node. Updates, on the other hand,
must write information into all copies of the file to
maintain data consistency and integrity.

In the SFAP, it is assumed that all parameters of
the system (query and update rates, cost of storage,
etc.) are fixed and are known a priori. The SFAP is
applied tfo the problems where all parameters of the
system does not change significantly, or the change
does not affect the performance of the distributed sys-
tem. In practice, these parameters change over time.
These changes can occur due to several reasons. New
users added to a computer system or node can in-
crease the query and wupdate rates from that
location, while a decrease in the number of users
would similarly decrease the query and update rates
from that node. Also, the query and update pattern
can change over time, both seasonally and non-
seasonally, due to changes in information needs.
Thus, in each case, the file allocation determined by
the SFAP would no longer be optimal over an

extended time horizon. Applying the SFAP repeatedly
over shorter time spans would not necessarily be opti-
mal over the entire time span due to significant setup
costs incurred in each time period. Setup cost includes
file migration cost from a remote node. The SFAP
treats setup cost and storage cost simulta-
neously i.e., each time a copy of a file is placed at a
node, a setup cost and storage cost are incurred.
However, when the problem is extended to several
time periods, the setup cost will be incurred at a node
in time period t, only if a copy of the file is to be kept
at that time period, but was not present in the
immediately preceding time period. Thus, in actuality,
the setup cost in a given time period is a function of
file placements in the previous time period.

A significant component of change in file access
patterns is seasonal in nature, i.e. a pattern that keeps
repeating itself. This is usually due to the nature of
the query and update. This phenomena can be
illustrated using an example borrowed from Gavish
and Sheng [3]. This example concerns an airline
database used to maintain all flight and reservation
data. The semi-annual transaction frequencies of the
airline database depicted in Table 1 indicate significant
seasonal variations for the reservation activities in
Tucson and Syracuse. To reduce remote communi-
cation in transaction processing, a sensible allocation
could be to assign a copy of the database to Chicago,
Denver and Syracuse during the summer season. This
allocation requires file reallocations to take place
when the season changes. For example, copies of the
database have to be moved to Nashville and Syracuse
during summer. There is a setup cost, which include a
file migration cost, associated with this movement.
However, this setup cost, would not be incurred if
copies of the database already resided in Nashville
and Syracuse from November through April. On the
other hand, additional costs, involving the storage
costs of the additional file copy and the update over-
head to keep it consistent with other copies, are in-
curred. Such tradeoffs are inherent in such dynamic



file allocation problems.

This seasonal change in the query and update pat-
tern can be estimated from historical data. In this re-
search, an extension of the SFAP model is proposed
that captures this seasonal change. The dynamic
model proposed provides file placements for each
season by incorporating the setup costs explicitly.
Therefore such a model provides the overall optimal
solution for the time period that covers all the
seasons.

This single file model is extended to multiple files
with capacity restriction at each node. For instance, a
database can be fragmented when it is distributed to
computing sites. For example, transactions generated
in Tucson will most often reference information on
flights departing or arriving at Tucson. In order to re-
duce the amount of remote communications, the frag-
ment of the airline database consisting of local
(Tucson) flight information could reside in Tucson. In
allocating fragmented airline database, a fragment of
a database can be regarded as a file. Usually each
computing site has its storage capacity. In this case
single file model can be extended to multiple file
model with capacity restriction at each site.

This research is organized as follows. In section 2,
the literature on file allocation problems is reviewed.
In section 3, models for dynamic file allocation problem
for single and multiple files are developed. In section
4, solution procedures for the two models are
described. Section 5 provides the computational

(Tabie 1) Seasonai query and update frequencies of the
airline database

riods| November-April May-October
City Queries | Updates | Queries | Updates
Chicago 100 50 100 50
Denver 80 20 60 15
Nashville 60 15 80 20
Syracuse 20 5 80 20
Tucson 80 20 20 5
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results and the conclusion can be found in section 6.
2. Literature Review

The primary issue in the file allocation problem is
to determine the number of file copies that must be
maintained in the distributed system, and the location
of each file copy. The SFAP was initially studied by
Chu {4]. In this model, multiple file copies are
allocated with the objective of minimizing operating
costs. Chu’s model take into account the memory size
restrictions of individual processors and an average
delay constraint for queries. Casey [5] investigated
simpler versions of the SFAP where capacity restriction
on individual processors and' delay constraints for
on-line queries were ignored. Levin and Morgan [6]
proposed a comprehensive model that explicitly took
into consideration the dependencies between program
and data files. However, the proposed solution pro-
cedure is capable of solving relatively small problems
only [7]. The SFAP has also been studied in conjunc-
tion with the network design problem (7-13]. In ad-
dition to system operating costs, these models include
non-cost performance measures such as
attainment of an acceptable level of file availability,
processor location, device capacity, and average
delay. The overall architectural design of a distributed
system, that includes database (and computer) allo-
cation, along with the assignment of report gener-
ation sites have been studied in [9, 14].

In contrast to the static SFAP, the dynamic file
allocation problem (DFAP) involves the determination
of file reallocation policies over time. Segall {15] made
a unique attempt in solving the dynamic file allo-
cation problem, permitting a file copy to move at any
point in time, by applying dynamic programming
techniques. The purpose of this paper was to find op-
timal policies for the dynamic allocation of files in a
distributed system, which works under time-varying
operating conditions. It is assumed that the demand

patterns in all computers are known to the controller.
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Levin and Morgan [16] relaxed the static/one period
assumption by permitting the access rates to vary
over time. They also took into account the file trans-
fer cost involved in reallocating a file from one time
period to the next. They used a dynamic pro-
gramming formulation and presented a procedure to
reduce the state space at each stage to make a poten-
tially large dynamic programming problem
computationally feasible. No computational results
on how these solution procedures performed are
reported. Levin [17] reported the study of an adaptive
strategy for allocating programs and data files in a
computer network, when only imperfect information
on access request rates are available. This adaptive
system is based on a set of computer procedures that
collect access statistics, estimates frequencies, and
finds optimal file assignment based on expected
improvements in performance. The file is then
redistributed accordingly over the network nodes.
Gavish and Sheng[3] presented a Markov decision
model for optimizing the file migration policy in a
distributed system. The file migration operations
involve only a single copy of a file.

3. Model Formulation

In this research, two closely related problems are
considered. The first problem, the Dynamic File Allo-
cation Problem for Single File (DFAPS), extends the
SFAP to time periods. It is assumed that the query
and update rates associated with each node are
known for each time period. Further, a setup cost is
incurred at each node in time period t, if a copy of
the file is to be kept in that time period, but was not
present in the previous time period. An optimal sol-
ution procedure is developed for this problem. The
second problem, the Dynamic File Allocation Problem
for Multiple Files (DFAPM), extends the first problem,
the DFAPS, to many files. Storage capacities at each
node place additional restrictions on where to place
copies of each file in a given time period. Heuristic

solution procedures are considered for this problem.
In this section, integer programming formulations for
the problems, the DFAPS, and the DFAPM, are
presented. For both DFAPS and DFAPM, it is
assumed that the distributed system is homogeneous.
Each site in the system is equipped with computing,
storage and telecommunication devices. Copies of a
file can exist at each node in each time period. File
access requests originate due to query and update
transactions. A query needs to access only one copy
of a file while an update needs to access all the copies
of a file in order to maintain data consistency. Query
and update request rates can change over time

periods.

3.1 The dynamic file aliocation problem for singie
file (DFAPS)
The following notations is used in the presentation
of the DFAPS.

I:Index set of user nodes
J: Index set of file nodes
T:Index set of time period (t=1, 2,---,s)
S;:Storage/maintenance cost associated with storing a
copy of a file in location j. ($).
Vi:Average data volume transmitted per query in
period t (megabyte).
Nii: Total number of queries generated at node i in
period t
Gt Unit transmission cost between i and j in period t
($/megabyte)
Vi * Nii - Cy:Query transmission cost satisfying the
need of users in location i entirely from
location j, in period t.
Mi;,: Total number of updates originating from node i
in period t
W,: Average data volume transmitted per update in
period t (megabyte).
E' Ci + M;; - W,: Update cost in location j
in period t
F;:Setup cost in location j.



Y; = 1:if the file is present at node j in period t
=0:otherwise
X :proportion of need for file that is satisfied by
location j, for the user in location i in period t.
P;=1:a setup cost is incurred at node j in period t

=0:otherwise

The DFAPS can be stated as 0/1 integer progra-

mming formulation as follows:

(DFAPS)
Z=MinYL L S;-Yy+

tET jeI

Y XY X VioNy-Cy- Xyt
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In the objective function, the first term represents
the storage cost. The second and the third terms rep-
resent the communication cost incurred in processing
query and update transactions on remotely stored
files, respectively. The fourth term represents the file
set up cost. Constraint set (1) describes the demand
constraint that each node i needs to access the file, in
each period t. Constraint set (2) ensures the existence
of a copy at node j in order to satisfy query from
node i. In constraint set (3), Variable P; is associated
with setup cost. Setup cost is incurred only when the
file is placed the node j in time period t, but it was
not kept in the (t—1)'* time period. Constraint set (3)
ensures this relation.
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3.2 The dynamic file ailocation problem for muitiple

files (DFAPM)

The DFAPM can be considered to be the DFAPS,
extended to f number of files. However, since more
than one file type may reside at the same node, the
storage capacities at each node place additional
restrictions on where to place copies of each file in a
given time period. The following additional notations
will be used in the presentation of the DFAPM.

D: Index set of file type (d=1, 2,-,1)
S;’:Storage/maintenance cost associated with storing
a copy of a file d in location j. ($).
V:’:Average data volume transmitted per query to
file d in period t.(megabyte).
N :Total number of queries to file d generated at
node i in period t '
Vv?. N¢- Cy:Query transmission cost of file d satis-
fying the need of users in location i
entirely from location j, in period t.
N¢ :Total number of updates to file d originating
from node i in period t
W¢ : Average data volume transmitted per update to
file d in period t.(megabyte).
X Cy - Mg+ W{ :Update cost of file d in location j
et in period t
F}:Setup cost of file d in location j.
K: Storage capacity of node j(megabyte).
B¢:Size of file type d (megabyte)
Yji=1:if the file d is present at node j in period t
=0:otherwise
Xi‘j‘t: proportion of need for file d that is satisfied by
location j, for the user in location i in period t.
P;’l =1:a setup cost for file d is incurred at node j in
period t
=0:otherwise

The DFAPM can be stated as 0/1 integer progra-
mming formulation as follows:

(DFAPM)
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In the objective function, the first term represents
the storage cost of f number of files. The second and
the third terms represent the communication cost
incurred in processing query and update transactions
on file type d, which are remotely stored, respectively.
The fourth term represents the set up cost of f num-
ber of files. Constraint sets in (DFAPS) are
extended to f number of file types, such as constraint
set (6) through (10). Constraint set (11) ensures that
all the files placed at node in time period t should not
exceed the storage capacity of node j.

4. Solution Procedures

4.1 The dynamic file allocation problem for single

file (DFAPS).

A zero-one integer programming problem quite
clearly has a finite number of solutions that need to
be considered in identifying an optimum. But it is
easy to see the computational effort involved in total
enumeration, i.e., by trying all those finitely many

possibilities, would soon become prohibitive. For
problem DFAPS, a branch-and-bound method is
developed to solve it optimally.

The branch-and-bound technique involves a well-
structured systematic search of the space of all feasible
solutions of constrained optimization problems that
have a finite number of feasible solutions. Usually the
space of all feasible solutions is repeatedly partitioned
into smaller and smaller subsets (branching) and a
lower bound (for a minimization problem) is calculated
for the cost of solutions within each subset (bounding).
After each partitioning, those subsets with a bound
that exceeds the cost of a known feasible solution are
excluded from all further partitioning. Thus, large
subsets of solutions may be excluded from consi-
deration without examining each solution in these
subsets. A procedure for branching to a set of
subproblems and bounding them is called branch-
and-bound algorithm [18). The principal feature of
the algorithm developed here is the use of Lagrangian
relaxation as a means of obtaining lower bounds at

each node of the branch-and-bound tree.

4.1.1 Lagrangian Relaxation and Dual Problem

Lagrangian relaxation, a scheme for obtaining supe-
roptimal bounds to integer programming problems,
has been successfully applied to many combinatorial
optimization problems [19). Lagrangian relaxation of
a particular problem can be obtained by dualizing a
set of complicating constraints whose removal would
make the problem relatively easy to solve.

Erlenkotter [20] developed a highly efficient algor-
ithm to solve the uncapacitated plant location problem.
In this problem, facilities need to be placed in m poss-
ible sites, with the objective of minimizing the total
cost for satisfying demands specified at n locations.
The costs include a fixed charge of opening a facility
at each location and a cost associated with satisfying
the demand of location j from facility i. In his ap-
proach, a tight linear programming formulation of
the location problem is considered. Empirical studies



{21, 22] have found that the LP relaxation of such a
formulation frequently yields natural integer solutions
or provides bounds close to the optimal. He exploited
this observation and considered the dual of the LP
relaxation. Although the dual, a linear program, can
be solved using a simplex procedure, it exhibits a
special structure consisting of only one kind of a dual
variable. A very efficient dual ascent procedure is
used to solve this dual problem. This procedure
begins with any dual-feasible solution and repeatedly
cycles through the demand locations one by one,
attempting to increase dual variable to the next
higher value. When all the dual variables are blocked
from further increases, the procedure terminates.
To derive feasible primal solutions from dual solutions,
complementary slackness relationships for the optimal
linear programming solutions are used. If the integer
primal solution obtained exhibits no complementary
slackness violation, then it is optimal. If not, the gap
between the primal and dual solutions is closed by
using a branch-and-bound procedure.

For (DFAPS), if constraints (3) are ignored, then
an uncapacitated plant location problem structure is
obtained for each time period. Each such problem
can be solved by Erlenkotter’s efficient algorithm.
Thus, the constraints (3) are treated as the compli-
cating constraints. To dualize these constraints, we
first define non-negative multipliers u; and add the
non-positive term w; + Yy ~Yj—; —P;) for t#1 and
u - (Y; —Y;,—P;) for t=1 to the objective function
of (DFAPS) and define

(LR, (u)
Z[)(u)-_-Mln Z E SJ M th +

teT jE€J

Z Z Z Qijt'xij!+

LET i€l j€)

Z Z an‘ th+2 Z Fj * Pj\+
LET j€I teT j€J
E Uy (le —Yju'_le)+
J€J

T ouyc (Y=Y —Pp

€T%1) j€J
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Subject to
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where Q= V; * N; * Cy and
sz ='Z Cij ‘M- W,
i€l

The objective function of LR,(u) can be alternately
expressed as follows;

Zp(u)=Min
xs'rz(n:#l) jg.l (8 +Up +up—uy) - Yyt

_Zj((sj+U,-,) Fu—uy) - Y+
JE

Z Z > Qijz‘xijz"'

teT i€l jes

\g'r jgj (Fj—ujl) . Pj(

For a fixed value of multiplier ujt, we can solve for
the variables, X and Y, usingErlenkotter’s algorithm.
After we get the file location Yijt for all j and t, the
optimal values of P can be obtained as follows;

Pj1= 1 if Fj"llj‘< 0
=0 otherwise

vj’t

It is clear that for a fixed value u (u = 0), Zp(u)
gives a lower bound on the optimal value of (DFAPS)
because we have merely added a non-positive term to
the objective function of (DFAPS). In order to get
the tightest lower bound, corresponding Lagrangian
dual problem (D) is solved.

(D) Zp=Max Zp(u)
u
u=>90

In order to obtain a good muitiplier (u) that nearly
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solves (D), Subgradient method is used as a dual heu-

ristic.

4.1.2 Dual Heuristic

We propose using a Subgradient method [19] for
obtaining optimal or near optimal solutions to the
dual problem. This method begins at an initial point

u* and generates a sequence u* by the rule

uk =k - d,
where t, is a positive scalar step size and d*= Idkl v
3, 1, is a direction vector. In DFAPS, the direction

vector is given by

=Y~ Yy —Py V€L tET({#1)and
d4=Y;~Y,—P; Vj€EJ

A formula for tk that has proven effective in practice
is

b= I'k(Z'—ZD(uk))

“ k2

Here Ty is a scalar satisfying 0 <T, < 2, and Z* is an
upper bound on DFAPS, which can be calculated by
the primal heuristic in section 4.1.3.

In the course of searching for a better multiplier
which will give a better lower bound, a sequence of k
is determined by setting I',=2 and halving I', when-
ever Zp, (u¥) fails to increase in some fixed number of

iterations.

4.1.3 Primal Heuristic

The Lagrangian relaxation developed here can also
be used to provide good incumbent solutions with
little additional effort. Given any fixed value for Y;
and uy found by the dual solution, we can get the up-
per bound on DFAPS. The feasible P values for all j
and t, which satisfy the constraint (3), are given by

Pi=1 if Yy=1 and Y;_,=0
=0 otherwise

where t # 1, and
Pi=1 if Y;=1 and Y;=0

=0 otherwise

The upper bound on DFAPS, which we denote Z(P)
is therefore given by

ZP)=Zp— Y L wpr (Y3=Yjo,—Pp
LET(H#1) jeJ
=X Y- (Ya—Y;—Py)
tET jeI

4.1.4 Branch-and-Bound Procedure

To solve a particular DFAPS, we first apply the
primal and dual heuristic described in sections 4.1.2
and 4.1.3. If we find that the lower bound and an up-
per bound are equal, we stop as the DFAPS has been
solved optimals. Otherwise, the search for an optimal
solution can be completed with a branch-
and-bound algorithm that use the primal and dual
heuristic at each node of the branch-and-bound tree.
For this purpose, we have employed a conventional
0-1 branch-and-bound algorithm based on implicit
enumeration of the 2/¥! possible value of Yj. The
branch-and-bound procedure for the DFAPS observes
the following rules.

(1) Branching Rule

The idea behind the branching rule used here is to
reduce the difference between the lower bound and
upper bound calculated at each node from which we
are about to branch. The gap between a primal and
dual solution occurs when the value of

Z Uje * (YjQ_th_l "‘Pjt)+

tET#1) jer

X owy e (Yi=Y;—Py)

jE€J

is not equal to zero. This implies that some of the
complementary slackness conditions are violated.
Two different branching schemes are used. One works
at finding a good upper bound quickly and the other



at finding a better lower bound. For the first scheme,
the coefficient of Y; whose value is the largest is
selected. The reason is that this variable is most likely
to be 0 in the true optimal solution. The other scheme
is associated with the complementary slackness viol-
ation. Each Yj appears exactly two times in the ob-
jective function of LR((u). The Y, which appears
most often among the complementary slackness viol-
ation terms is selected as a branching variable. In
both the schemes, fixing these branching variable 0 or
1 can be easily done by enforcing the coefficient of
the branching variable to a large positive or negative

number.

(2) Lower Bounding Rule

At each node of the branch-and-bound tree, a
lower bound is derived from the Lagrangian relaxation
and dual heuristic.

(3) Fathoming Rule

The incumbent solution is used for the fathoming
test. An incumbent solution is the value of the objec-
tive function of DFAPS for the best feasible solution
identified thus far. If the lower bound obtained at a
node in the branch-and-bound tree exceeds the in-

cumbent solution, then that node if fathomed.

(4) Searching Strategy

In the branch-and-bound tree, a depth-first search
is used.

Now the complete branch-and-bound procedure
can be stated as follows:

STEP 1:Calculate an incumbent solution and a lower
bound without fixing any variables.

STEP 2:1If there is no node to be visited, then stop.
Otherwise, go to step 3.

STEP 3:Branch on a variable Yj, using a branching
rule.

STEP 4:Find the lower bound, using the lower
bounding rule.

STEP 5: Update the incumbent solution

STEP 6: Do fathoming test using the fathoming rule.
STEP 7:If the node is not fathomed, then go to step
2. Otherwise go to step 8.

STEP 8:1IF the node is fathomed, then backtrack. Go
to step 2.

4.2 The dynamic file allocation problem for multiple

files (DFAPM)

Since the DFAPM is an extension of DFAPS to f
number of files with capacity constraints, the DFAPM
can be solved based on the solution procedure for the
DFAPS. Two heuristic procedures are proposed to
obtain a good solution for the DFAPM.

4.2.1 Using the DFAPS procedure for all file

type.

In the DFAPM, if we ignore the constraints (11),
then the DFAPM can be solved by solving the
DFAPS for each file type d. If the solution procedure
to solve the DFAPS is applied to each file type, then
the file placement for each time period and each file
type will be given. Given these file placement, a pro-
cedure to satisfy the capacity constraints is presented
as follows:

For each time period, perform the following pro-

cedure.

STEP 1:Find the nodes which do not satisfy the
capacity constraints.

STEP 2:Drop the files from those nodes until the
capacity constraints are satisfied.

STEP 3:Check whether all the file types are placed in
the network, and define the missing file set.

STEP 4:If the missing file set is null, then stop.
Otherwise go to step 5.

STEP 5:Sort the missing files by the file size.

STEP 6:Pick one file which is the largest among the
missing file set.

STEP 7:Find the available nodes which can keep the
file.
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STEP 8: Among them, pick one nodes which use that
file most frequently. Place that file at that node.

STEP 9:Subtract that file from the missing file set. If
the missing file set is null, then stop. Otherwise, go to

step 6.

4.2.2 Nested Lagrangian Relaxation Procedure

Another approach to obtain a good solution for
the DFAPM uses a nested Lagrangian relaxation. In
the DFAPM, if the constraints (11) are dualized, the
Lagrangian relaxation can be solved by calling the
DFAPS solution procedure as a subroutine. The

Lagrangian relaxation is stated as follows:
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At a fixed vj value, the (LRMt(v)) can be solved by
the DFAPS solution procedure. The feasible solution
can be obtained by enforcing the violated capacity
constraints. The procedure to satisfy the capacity
constraints used in section 4.2.1 can be applied to
find feasible solution to the DFAPM.

5. Computational Results

A set of computational experiments for the DFAPS
was conducted. It was designed to test the performance
of the Lagrangian relaxation based branch-and-bound
algorithm. This algorithm was coded in Fortran and
experiments were performed on the IBM 3090 com-
puter. A number of test problems were generated,
which were used in the experiment. The chara-
cteristics of these test problems are described in Table
2. In the DFAPS, the number of user nodes (i) and
the possible location of the file (j) are equal. The
number of nodes were varied from 5 to 15. For a
given number of nodes, the number of time periods
were varied from 2 to 6. In the DFAPS problem,
three kinds of costs are involved. They are the query
transmission cost Qy, the update cost Uy, and the
setup cost Fj. In the problem data set, these three
costs were randomly generated within a given range.
In general, query costs are higher than update cost in
each time period, and setup costs are between the
range of query and update cost. The cost ranges used
reflect this.

In the Table 3, average CPU times and average
gaps between upper boimds and lower bounds at the
parent node of the branch-and-bound tree are de-
scribed. Average values were obtained by running
three different cases in each data set. In the problem
data set, setup cost lies between the range of query
cost and update cost. For most test problems, the gap
between the lower bound and upper bound were
found to be within 0.1 percent. It was observed that
with higher setup cost, the gap between upper and
lower bound tended to be bigger. However, for those
problem where a gap existed, it was found to be low.
Also, it was observed that average CPU time spent at
parent node was relatively short in spite of the
increase of the number of variables. From the results,
the Lagrangian relaxation for the DFAPS can be
expected to perform efficiently in terms of the CPU
time. Also, the gap between the upper bound and
lower bound can be expected small. In most cases, we
can expect to get the optimal solutions at the parent



(Table 2) Input Data Characteristics

Data{No. {No.of [No.of |No. of |{Cost range
set |of Time Intege |Real
No. |Nodes jPeriods |r Var |Var

1 5 2 20 50 1200 < Q; < 500
2 5 4 40 100 }150 < Uy <350
3 5 5 50 125 (100 < F; <200
4 5 6 60 150
5 10 2 40 200
6 10 4 80 400
7 10 5 100 500
8 10 6 120 600
9 15 2 60 450
10 15 4 120 900
11 15 5 150 1125
12 15 6 180 | 1350

node itself. In general, since the gap is small, we can
expect the number of nodes visited in branch-and-
bound tree to be small.

As explained earlier in section 4.1.4, two different
branching schemes were used in branch-and-bound
tree. Branching scheme I is based on the cost
coefficients of Y; variables, and branching scheme I1
is based on complementary slackness violation. Table
4 shows the comparison of scheme I and scheme IIL
The data set 2, 6, and 7 show the difference in num-
ber of node visited in the branch-and-bound tree and
total CPU time. From the results, it seems that
scheme II is better than scheme I in terms of the
computational time taken. Although there exists a
gap between the upper bound and lower bound at the
parent node, branching scheme II showed a faster
way to get the optimal solution. In scheme II, the
number of node visited in branch-and-bound tree was
less than 5. Also, total CPU time taken in branch-
and-bound tree was less than 35.3 seconds. These
results clearly show that the Lagrangian relaxation
based branch-and-bound algorithm with branching
scheme II is a very efficient algorithm, which is
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capable of solving large DFAPS problems in reasonable

time.

{Table 3) Average CPU time and gap at parent node

Data Avg. CPU Avg. Gap as %
Set time(Sec) at of lower bound
No. parent Node

1 0.06 0.00

2 0.11 5.30

3 0.25 0.00

4 0.52 0.00

5 0.13 0.00

6 1.94 3.23

7 6.47 2.63

8 8.22 0.00

9 0.56 0.00

10 1.05 0.00

11 1.89 0.00

12 211 0.00

(Tabie 4) Comparison of Scheme | and Scheme Il

Data Scheme 1 Scheme 11
Set No. of CPU No. of CPU
No. Nodes Time Nodes Time
Visited (Sec.) Visited (Sec.)
1 1 0.06 1 0.06
2 5 543 3 2.32
3 I 0.25 1 0.25
4 1 0.52 1 0.52
5 1 0.13 1 0.13
6 33 128.9 S 35.3
7 3 239 3 239
8 1 82 1 8.2
9 1 0.56 1 0.56
10 1 1.05 1 1.05
11 1 1.89 1 1.89
12 1 211 1 2.11
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6. Conclusion

Distributed database systems have become superior
substitutes for centralized systems, and they offer
economic and operational advantages over centralized
systems. Simple file allocation problems (SFAP)
determine the placements of copies of a file, so as to
minimize the storage, setup, and transmission costs.
The SFAP treats query and update rates as fixed

parameters. In practice, these parameters change over

time. One of the significant components of the change
is seasonal in nature. In this research, the seasonal
change is incorporated while allocating the file. Dif-
ferent query and update rates in each season are con-
sidered to optimize the file placements for all the
seasons.

The dynamic file allocation problem for a single file
(DFAPS) incorporates the setup cost, incurred between
the seasons, explicitly. The DFAPS is formulated as
an integer programming problem. To solve DFAPS, a
branch-and-bound algorithm is developed. A Lagra-
ngian relaxation method is used to find lower bounds
in the branch-and-bound tree. The lower bounds are
obtained in a relatively short time. In most cases, the
gap between the upper bound and lower bound at the
parent node is less than 0.1 percent. Two branching
schemes were considered in the branch-and-bound
algorithm. The scheme I was based on the cost, and
the scheme II was based on complementary slackness
violation. Branching scheme II was found to be more
effective. Thus the Lagrangian relaxation based
branch-and-bound algorithm with branching scheme
II can be considered as an efficient way to solve the
DFAPS problems.

The DFAPS is directly extended to a multiple file
allocation problem (DFAPM). Since the DFAPM has
capacity constraints, heuristic solution procedures are
developed for this problem. In future research, this
method will be implemented. The Lagrangian relaxation
based branch-and-bound algorithm of the DFAPS
and DFAPM will be compared with an LP-based

branch-and-bound algorithm in the computational
study.
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