YA 7S T80 oSt LoTos ZRE R NMetA Alg 1821

4 71 71l 213 LOTOS =253 H {4 A

2 o

B =8 ¥ 71e 71y F9 sl LOTOS HAIZRE AP Ag Ad28 A5 443t $8s 7]
gt AANAA A2 FHE s AANA AvE iR AR FEL L3 HE3AUT, E Rural
Chinese Postman tour 7§'d& 7| & & 3 234}

B 22 EFd gig LOTOS HA253E CAESAR £7-9] Petri-netS £§ Al B oM 7|5 & o] &35y
el Aol ZALE QS Aoj el Mol zejLe i) H}Y ANE NALE Y] A8 3
2 oz zH Ao i@ KU A @22 UE sequence(Unique Event sequence)& A o) 3t} £& o] 2§
UE Al 271 22484 g+ deo tiside 38 UE sequence(Partial UE sequence) 3 signature & 4 9] 341
2, E oA §A Ad2o) A HYA AT A3E Feeh §9, A AP AR YA A8 dof
A &4 A#A2EE Rural Chinese Postman tour 78'dol] H &3t Wy M e AUt £ A€
APE NP NB2e] 0F B 99 A5 WY F AHH Al dlME Sesd, A AY Ad2g
BEE ANY EE71YA TTCNL 29 ¥ PHER AMNSNT rpgo sz AdE QAP Ec] U 228
BRle A B T2 EZ A E8r] H 4430 W L 7uA 43AY 29E 4L 98
FHUHAUZ, o] Z2EER] L 5P|t PCS T ATM ZZEEEL ¢ AP AY EFoz Al 4E
Ak

LOTOS Protocol Conformance Testing for Formal
Description Specifications

Byoung Moon Chin ' - Sung Un Kim'" - Young Suk Ryu "

ABSTRACT

This paper presents an automated protocol conformance test sequence generation based on formal methods
for LOTOS specifications by using and applying many existing related algorithms and technique, such as the
testing framework, Rural Chinese Postman tour concepts. We use the state-transition graphs obtained from
LOTOS specifications by means of the CAESAR tool. This tool compiles a specification written in LOTQOS into
an extended Petri net, from which a transition graph of a event finite-state machine(EvFSM) including data is
generated. A new characterizing sequence(CS), called Unique Event sequence(UE sequence) is defined. An UE
sequence for a state is a sequence of accepted gate events that is unique for this state. Some experiences about
UE sequence, partial UE sequence and signature are also explained. These sequences are combined with the con-
cept of the Rural Chinese Postman Tour to obtain an optimal test sequence which is a minimum cost tour of the

T3 3 9:33AA4FUAAT7E Y+
T4 38 ¢€:3230%2 LN Tea
EEAF1996Q 49 109, AAISE 199749 54 199

1822 SXABXN2IES =2 X M4B M735(97.7)

reference transition graph of the EvESM. This paper also presents a fault coverage estimation experience of an
automated method for optimized test sequences generation and the translation of the test sequence obtained by

using our tool to TTCN notation are also given. A prototype of the proposed framework has been built with

special attention to real application in order to generated the executable test cases in an automatic way. This for-

mal method on conformance testing can be applied to the protocols related to IN, PCS and ATM for the pur-

pose of verifying the correctness of implementation with respect to the given specification.

1. introduction

The aim of protocol conformance testing is to
check whether an implementation confirms fo a given
specification. Conformance testing is an important
phase in the overall process of communication protocols
development. Three main problems encountered in
conformance testing are the automatization of the test
generation, the fault coverage estimation of the selec-
ted test cases and the translation of selected test cases
into the standardized test notation TTCN(Tree and
Tabular Combined Notation).

The efficiency and fault coverage of conformance
testing depend heavily on how test cases are selected.
Automated test sequence generation is easier to adapt
to specification changes, and also enables to generate
more complete and consistent test sequences [1]. We
have developed a protocol test sequence generation
method form LOTOS specifications. LOTOS is a formal
description technique for protocols and distributed
systems [2], The purpose of our method is the automated
generation of conformance test cases and optimized
test sequences, from a formal specification of a proto-
col LOTOS. A signature for each state of the FSM
(Finite State Machine) is defined by means of a
Unique Event sequence(UE sequence) or a Partial
Unique Event sequence(PUE sequence). the uniqueness
of UE or PUE sequences in the implementation
should first be verified, before applying an optimized
test sequence based on the concept of the Chinese
Postman Tour. This method has been implemented in
a tool called TestGen-LOTOS, running on SUN4
(Sparce) workstation under UNIX.

On the other hand, the ability of the obtained test

sequence to decide whether an implementation
conforms to its specification relies upon the range of
faults or errors that can be detected [3]. Ideally fault
coverage should be the ratio between the number o
nonequivalent EvFSMs which pass the test and the
number of all possible EvFSMs which can be
generated from the specification EvFSMs. In this
paper, we estimate the fault coverage for the test se-
quence obtained by our software tool, using the
Monte Carlo simulation.

Finally, we also present the methodology underlying
the integration of the TTCN notation into the TestGen-
LOTOS tool. Throughout this paper, we will use a
simple example to illustrate both the application of
the tool TestGen-LOTOS and the work accomplished
on the translation of the test sequences into TTCN.
Throughout this paper, our interest lies in a formal
method for automated test case generation for com-
munication protocol in LOTOS. We made use of sev-
eral existing techniques to from an integrated frame-
work for abstract test case generation from LOTOS
specification. A prototype of the proposed framework
has been built with special attention to real appli-
cation in order to generate the executable test case in
an automatic way. The main contribution ofthis
paper is in giving some state-of-art ideas for the gen-
eration of test sequences from formal speci-
fications and in the development of computer-aided
test tools for practical real application. Theoretical
reasearch has made significant advances in the gener-
ation of test sequences from formal specifications and
in the development of computer-aided test tools.
However, these methods and tools are not too
industrially related and do not quite address the

problems facing testers in the industry. With the
merits of fest case generation from specifications
based on Formal Description Techniques, the abstract
test cases generated in TTCN language will be applied
to the TTCN compiler in order to obtain the execut-
able test cases which are relevant to industrial appli-
cation.

The rest of the paper is organized as follows: sec-
tion 2 describes some key concepts in protocol con-
formance testing and defines the concept of UE se-
quence. Some issues on the signature and PUE se-
quence used to generate test sequences form LOTOS
specifications is then presented in section 3. A method
for the automatic generation of test sequences form
LOTOS specification is explained in section 4. The
verification of uniquencess of the UE sequences in the
implementation under testIUT) is presented in section
5. Section 6 presents the fault coverage estimation of
the test generation emthod and section 7 gives the
translation of the obtained test sequences into TTCN

notation. Finally, conclusions are given in section 8.
2. Preliminaries

In this section, we present some concepts and nota-
tions that we will use in the rest of this paper. Several
methods have used the concept of UIO(Unique input
Output) sequences [4], in roder to generate on or sev-
eral test cases, when the protocol to be tested is given
in the form of an Input/Output FSM. In fact, UIO
sequences are used to test the resulting state after any
transition of the can be formally described as T;
@UIO(s;), where T;; is the transition to be tested,
that takes the specification I/OFSM from state s; to
state s;, UIO(s;) is a UIO sequence for state s;, and
@ is the concatenation symbol. The UIO sequence is
used to verify that the state reached by the transition
to be tested is in fact s;.

We use a kind of FSMs that we can derive from
LOTOS specifications. In these FSMs, transitions are
labelled only by the LOTOS rendez-vous corres-

84 7IE 7iH0l st LoTos TRER HEtM A" 1823

ponding to that transition. This is classical Moore
machine studied in automata theory, that we will call
Event Finite State Machine(EvFSMX5].

Definition 1:Event Finite State Machine

An Event Finite State Machine(EvFSM) is a 3-tuple

Y =(S, E, 9), where:

~S={s;,....5,} is finite, non-empty set of states,
with a distinguished element s, representing the in-
itial state,

—E={e,...,e,} is a finite set of events, and

— 8. SxE— S is the state transition function.

Hence, ftransitions here are only labelled by an
event ¢ € E. This kind of FSMs is closer to the graphs
that we can generate from LOTOS specifications,
since transitions are labelled by some gate events
presented by LOTOS processes. We now introduce
the notions of Accepted Event sequences and Unique
Event secquences.

Definition 2: Accepted Event sequence

Let - =(S, E,) an EvFSM, and s; €S a given state
of Y An event ¢, € E is said to be accepted for state s
i iff there exists a state 5; €S such that the EVFSM
presents the following transition:s;—~e,—>s;. By exte-
nsion, a sequence ey €, - € of events is an accepted
event sequence for state s; iff there exists states s;; = Sj,
Si2++Si1, Si¢ +1 such that the EVFSM presents the follo-

wing transitions:
Sit —€r > Sip—Eay > Siz*+* €i1 — € > Si +1) 0)]

Definition 3: Unique Event sequence
Let X =(S, E, 9) an EvFSM, and s; €S a given state
of 3. A sequence ey, € --- ey of events is a Unique
Event sequence (UE sequence) for state s; iff it is an
accepted Event sequence for state s;, and for no other
state of the EVFSM.

Thus, we have adapted the concept of UIO se-
quences to the case of EvFSMs, which are generated

1824 SIRFBH2IHT =2 X H4D M 7S07.7)

in our approach from LOTOS specifications. In this
case, we will use UE sequences instead of UIO
sequences, in order to test the resulting state after any
transition of the EvFSM. Hence, each transition test
subsequence will this time be formally described as
T;; @UE(s;), where T;; is the transition to be tested,
that takes the specification EvFSM from state s; to
state s;, and UE(s;) is an UE sequence for state s;.
The test cases that we will generate should be checked
at asynchronous Points of Control and Observation
(PCOs). A test sequence will be composed of successive
gate events, and the corresponding rendez-vous

should be checked at the corresponding PCOs.

3. Signature and Partial Unique Event
(PUE) sequence

A limitation of using UE sequences for test se-
quence generation is that some EvFSMs do not pos-
sess UE sequences for every state as provoked in the
UIO approach. For a state s; in a FSM ¥ which does
not possess a UIO sequence, [4] defined a signature
which distinguishes s; from the remainin states one by
one. We can apply this concept to the state-transition
graphs obtained from LOTOS speci-
fications.

Let the set of states for the obtained EvFSM ¥ be
{S1, S1,ecs Sy}, where 2 is the number of states in Y.
Consider that state s; does not possess an UE se-
quence. For each state s;(where 7 # 7), there exists an
input event sequence 1E(Z, 7) (origination at the state
s;) with length less than »# which can distinguish S;.
The first part of the signature for s; is an inptu event
sequece [E(Z, 1) which distinguishes s; for s,. LEt Ti
(1) be a transfer sequence which brings the machine
from the resultant state of IE(Z, 1), denoted by s,
back to the state s;. This transfer sequence Ti(1) is the
shortes path from s; to s;. Then, we apply the input
event sequence 1E(7, 2) which distinguishes s; form s,,
and so on. A concatenation of sequence IE(s;, s;) @

Ti(7) for all states s; # s; can be used as a state signa-

ture of s;.

However, as explained in [4], a tight bound on the
length of a minimum length UE sequence is still an
open problem, a crude upper bound is (z—1)n? for a
FSM having z states. This upper bound is meaning in
practical applications. [4] demonstrates that if a state
s; has no UIO(UE) sequence of length less that 272,
its signature would be used instead of the UIO(UE)
sequence. ‘

For all FSMs we have obtained from LOTOS
specifications, the UE sequence for every state has
less than 5 input event sequences if it exists [4] also
remarked this point UIO sequence). We have also
experienced that state signature for the state s; having
no UE sequence is always not unique for state s;.
Moreover, there is some cases in which state signature
does not exist. For example, here is no UE sequence
for state 0 in Fig. 1.

(Fig. 1) EWSM 1

For obtaining state signature for state 0, we
calculated each input event sequence IE(0, j), 1 < ;
< 3 and corresponding transfer sequence TO(y) like as

follow:

b @ d @ a @ ¢ @cbd 2
IE(0, 1) TO(1) 1IE(0,2) TO(2) IE(0,3)

Note that we have an input event sequence 1E(0, 1)
which distinguishes state 0 from state 1(IE(0, 2) for
state 2 respectively). However, we have no IE(0, 3)
with less than n(n=4 or forever) which can disti-
nguish state 0 from state 3 (i.e., sequence “cbd” does
not distinguish state 0 from state 3).

On the other hand, if a state has no UE sequence,
instead of using state signature, we can use Partial
Unique Event(PUE) sequences for the state. For a
given state s;, PUE sequences are a set of sequences
originating at the state such that the input event
behavior exhibited by this set of sequences in unique
to the state. For example, input event sequences: (¢, ac)
in Fig. 2 constitute a set of PUE sequences for state 4.

(Fig. 2) EWSM 2

No other state accepts both of these sequences.
This set of PUE sequences {c, ac} is unique for state
4 because two PUE sequences (PUE 1: “c” and PUE
2: “ac”) have disjoint exclusion sets {1, 2} and {0, 3}
respectively and all other states (except state 4) of the
given EvFSM are included in the exclusion sets. In
this case, for testing the transition (T24:5) arriving at
the state 4, we need two following test subsequences :

T24 @ PUEI1(c), 3)

T24 @ PUE2(ac)
By testing these two test subsequences, it could be
noted that this set of PUE sequences can be viewed as

SAL 71 710l 218 LOTOs ZRES NEM Al 1825

an UE sequence for state 4. However, in most practi-
cal situations, after generating the PUE seque-
nces with their exclusion sets, one problem is selecting
a minimal number of PUE sequences such that the
intersection of their exclusion sets is empty, in the
condition of all states of given EvFSM included in
such exclusion sets (i.e., the states in each exclusion
set have same input event behavior as corresponding
PUE sequence). The optimal solution for selecting
this minimal number of subsets of PUE sequences can
be considered equivalent to the set cover problem
that is known to be NP-complete [6]. Moreover, in
our experience, the EvFSMs obained from real
LOTOS specifications have many states and have no
disjoint exclusion sets in most cases not like the above
given example. For example, recall that the state 0 of
Fig. 1 has no UE sequence. The state 0 of Fig. 1 has
the following PUE sequences:

(Table 1) PUE sequences for state 0

PUE Exclusion set
1 {1,3}
2 b {2,3}
3 c {2,3}
4 ce {3}

When there are multiple PUE sequences with an
identical minimal exclusion set, the shortest sequence
is preferable as long as overall set is unique to its
state(e.g., sequence PUE 1: “a” is preferable over se-
quence “ac” with exclusion set {1, 3}). Above table
indicates that there are no disjoint exclusion sets for
state 0. Consequently, state 0 has no set of PUE
sequences which can be viewed as an UE sequence for
the state.

In such case, we can generate a CS for state 0 by
using existing PUE sequences. First of all, we must
choose the shortest PUE sequence with small exclusion
set among existing ones. It could be noted that se-
quence 4: “ce” is preferable over the sequence “a”

with exclusion set {1, 2} (i.e., sequence 1: “a” would

1826 SEHEM2IES =2 X M4F M 7397.7)

only distinguish state 0 from state 3. It cannot dis-
tinguish state 0 from any of the other states). Conse-
quently, we select a PUE “ce” with exclusion set {2}
as optimal becasuse it is the shortest and has the
smallest exclusion set elements.

for generating a CS for state 0, we need additional
sequences for distinguishing given state from those
states in the exclusion set. Considering the technique
for generating state signature, state 0 has a following
CS:

cc @ bd @ cbd
I — @

PUE TO(2) IE(, 3)

Note that the sequence IE(0, 2) “cbd” does not dis-
tinguish state 0 from state 3 in the Fig. 1(.e., there
does not exist an input event sequence IE(0, 3) with
less than n(n=4, or forever) which can distinguish
state 0 from state 3). Even so, we can use this CS for
test purposes. However, to attain high fault coverage
of the UIOv method [7], we cannot verify uniqueness
of this CS in the implementation under test becasuse
this sequence is not unique in the specification (the
reader should check that state 3 in Fig. 1 has the
same input event behavior). This problem is also
provoked in the case of state signature which in not
unique in the specification. But the CS obtained by
this approach is more short than state signature.

Recall that, in most practical situations in the
automated test sequence generation environment, it is
very difficult to find a set of PUE sequences which
can be viewed as an UE sequence for a given state.
We take another example for generating a CS a given
state as shown in the above example. The state 4 of
the Fig. 2 has a PUE “c” with exclusions set {1, 2} as
optimal one because it is shortest and has smallest ex-
clusion set (e.g., there exists some others PUE
sequences; “ac” with exclusion set {0, 3} and “abc”
with {0, 2, 3}). The state 4 has a following CS;

c@eab@ a @ b @ ac
...... S)
PUE T4(1) IE(4, 1) T4(2) 1E@4, 2)

In such cases, to attain high fault coverage of the
UIOv method, we also have the same problem for
verifying this CS in the implementation under test as
provoked in the above example. For the practical ap-
plication of UE(UIO) method for the EvFSMs which
do not possess UE(UIO) sequences for every state,
the following questions are of prime importance :

— Which do we choose for the role of UE(UIO)
sequences?
— What is the corresponding fault coverage?

As shown in the above examples, we can choose
three kinds of characterizing sequence for a state
having no UE sequence: a set of PUE sequences, state
signature and a CS obtained by using the optimal one
among existing PUE sequences for the state. In most
practical situations, it is very difficult to find a set of
PUE sequences which can be viewed as a UE se-
quence for the state because the EvFSMs we have
obtained from LOTOS specifications have many
states and have no disjoint exclusion sets in most
cases.

State signature is very long and moreover, there are
some cases in which state signature does not exist.
Therefore, we have chosen a CS obtained by using
the optimal one among existing PUE sequences for
the state. This sequence is more short than state sig-
nature and it is relatively easy to obtain this sequence
in the automated test sequence generation environ-
ment. However, when this sequence is not unique in a
given specification, we cannont verify the uniqueness
of this CS in the implementation under test to attain
high fault coverage of the UIOv method.

It is clear that, in general, if we have UE sequences
for each state in the given EvFSM, we can obtain
high fault coverage with small test sequence by the

verification of each UE sequence in the imple-
mentation under test. Next section is dedicated to the
verification of each UE sequence (a set of PUE
sequences) in the implementation under test to attain
high fault coverage as done in UIOv method [7].

4. Generation of an optimal test sequence

This section presents the generation of the reference
FSM from the LOTOS specifications and the gener-
ation of an optimal length test sequence from the
obtained reference EvFSM(deterministic, minimal,
and strongly connected). Thus, such a test sequence
will take minimal time for an external tester to check
the conformance between the observed behavior of
the implementation and the expected behavior of the
EvFSM specification.

4.1 Generation of the reference EWSM

We first obtain the state-transition graph of a
EvFSM from a LOTOS specification by means of
CAESAR tool. CAESAR belongs to the CESAR
family of verification tools for concurrent systems.
This tool translates a LOTOS specification into an
intermediate model, an extended Petri net, form
which a state-transition graph is generated by using
reachability analysis [8].

Some restrictions on LOTOS specifications are nece-
ssary in order to obtain state-transition graphs:no re-
cursive process instantiation on the left side of
operations such as parallel operator, disable operator
and enable operator, and no recursive process
instantiation through a parallel operator is allowed.

Frin tgese cibstraubed LOTOS specifications, tra-
nslation process is accomplished by the following four

phases:

Data phase. Abstract data types definitions are first
analyzed and complied in order to create intermediate
tables, which will be used in the simulation phase for
the generation of a FSM.

oAl 71 710l o8t LOTOS Z2E 3 XBlal Al 1827

Analysis phase. This phase aims at building an
abstract tree from a LOTOS specification according
to the lexical and syntactical definition of LOTOS.
An obtained abstract syntax tree is then explored to
check the static semantics of the LOTOS specification.

Generation phase. In this phase, the LOTOS
abstract tree is expanded into a sub-LOTOS abstract
tree, which describes a finite and statically fixed set of
concurrent processes interacting through a fixed set of
communicating gates. The behavior of each process is
determined by sub-LOTOS algebraic terms and by
the values of a finite, fixed set of state variables. Ths
obtained sub-LOTOS abstract tree is hen translated
into an extended Petri net. This Petri net is reduced

by using a suitable set.of reduction rules.

Simulation phase. This phase exhaustively explores
all possible behaviors defined by the Petri net to pro-
duce a state-transition graph. It must be noted that in
state-transition graphs produced by CAESAR, all
data are taken into account in this phases, and
represented by the gate events labeling the transitions
of this EVFSM.

4.2 Generation of an optimal test sequence

From the obtained reference EvFSM, which is
deterministic, minimal and strongly connected, an op-
timal (minimum-cost) test sequence is desired for ef-
fective testing.

In order to obtain this optimal test sequence, UE
sequences, combined with an optimization technique
based on the Rural Chinese Postman Tour allow the
generation of a optimal test sequence [9]. The opti-
mization echnique focuse on how to connect the test
subsequence to minimize the length of overall test
sequences. The reset capabilities are not required.

A Chinese Postman Tour of a directed, strongly
connected graph G=(, E) is an optimal (minimum-
cost) tour which contains every edge of E at least
once. If G contains an Euler Tour, then this Euler

1828 SR FHEK{2ISD =Xl M43 M 7%(97.7)

Tour is also a Chinese Postman tour [10}.

For a subset E. of E, a Rural Chinese Postman
Tour is an optimal tour such that each edge in E is
traversed at least once. This is a generalization of the
Chinese Postman Tour, where E-=E. Computing
such a tour is known to be NP-complete in the most
general case. However, graphs modeling protocols
present some structural propoerties that allow us ob-
tain a polynomial-time algorithm for generating an
optimal test sequence. In the following, some relevant
points for the implementation of this technique are

discussed.

Generation of Unique Event sequences. We
have adapted a procedure given in [3] for Unique
Event sequences generation. In the case when a state
does not possess any UE sequence, this state is ident-

ified by partial UE sequences.

Test subsequence generation. We caluculated
TSSs using the formula 7;; @UE(s;) for each specified
edge (reset edge included) form vertex v; to vertex v;
labelled with ¢, where ¢ is a suitable event label
associated with the transition in the reference graph
G=(V, E).

The UE sequence for state o; is indicated y UE(y;),
and the last vertex of this UE sequence is denoted
TAIL(UE(¥;)). A new directed graph G'=(V", E) is
defined, such that ¥'=¥ and E'=EU E, where
E.={(v;, vp;e) @UE([W)):(v;, vj5¢) €EE and TAIL

(U,')) =V4).

Rural symmetric augmentation. The cost associated
with an edge ((v;, v;e) @UE(v,)) €E, is the sum of
the cost of the edge labelled e; and the costs of all
edges in UE(v;). In the following, we shall consider
that all edges have cost 1.

In G, traversing an edge ((v;, vp;e) @UE(v))) EE,
corresponds to realizing the procedure for testing
(v;, vp;e) in G. Therefore, the minimum-cost test se-

quence that contains all test subsequences such that

no two subsequences overlap corresponds to the mini-
mum-cost tour of G’, such that each edge in E, is
traversed at least once.

To find such a tour, we must replicate edges (v;, v4;€)
€E. This problem is reduced to that of finding a
symmetric augmentation of G’.

From the directed graph G'=(V’, E’), where E'=
EV E, a symmetric directed graph G"=(V", E") is
constructed as follows. Let ¥ =¥, Each edge in £ is
included in E” zero or more times and each edge in E,
is included in E” at least once, such that the total cost
of edges in E” is minimized. Graph G is called a rural
symmetric augmentation of G,

To determine the number of replications of some
edges (v;, v4;¢) €EE in G, we used a minimum-cost
augmentation [11}, in which each augmentation is
obtained by Dijkstra’s shortest path algorithm.

Optimal test sequence. From the graph G~ (rural
symmetric augmentation of G’), an optimal test se-
quence is an Euler tour (which starts from the
initial state and also ends in the initial state), such
that each edge in E is traversed at least once and the
edges (v;, vx;¢) EE, which have non-zero repiications,
are traversed the given number of times. We used the
algorithm of Edmonds that constructs such an Euler

Tour in a linear time complexity [10].

The tour shown in Table 2 is an optimal test se-
quence for the EVFSM specification (shown in Fig. 4)
which was obtained from the LOTOS specification of
the alternating bit protocol (shown in Fig. 3)

5. Verification of uniquencess of the UE
sequences in the IUT

If the number of states in the IUT is the same as
that in the specification, test sequences generated by
the UIO approach were claimed to detect all faults in
the IUTI4]. However, [7] showed that certain test
sequences generated by the UIO approach are not

HHA 7|8 710 Q1B LOTOS T2E S NTM AlE 1829

specification ALTERNATING_BIT_PROTOCOL {PUT, GET, SDT9, SDT},
RDTO, RDT1, RDTe, RACKO, RACKI, SACKO0, SACK1, SACKe] :noexit behaviour
(TRANSMITTER [PUT, SDTO, SDT1, SACKO, SACK1, SACKe]
|R|I!1CEIVER [GET, RDTO, RDT1, RDTe, RACKO, RACKI1]
|)[SDTO, SDTI1, RDTO, RDTI, RDTe, RACKO, RACKI, SACKO0, SACK1, SACKe] |

(
MEDIUMI [SDTO, SDT1, RDT0, RDT1, RDTe]

I
MEDIUM?2 [RACKO, RACK1, SACKO0, SACK]1, SACKe]

where

process MEDIUMI [SDTO, SDT1, RDT0, RDT1, RDTe] : noexit :=
SDTO;
(
RDTO;
MEDIUM]I [SDTO, SDT1, RDTQ, RDT{, RDTe}
[1
RDTe;
MEDIUM!1 [SDTO0, SDT1, RDTO, RDT1, RDTe]
)

(1
MEDIUMI [SDT1, SDTO, RDT1, RDT0, RDTe]

endproc

process MEDIUM2 [RACKO, RACK1, SACKG, SACK1, SACKe] : noexit :=

RACKO;
(
SACKO;
MEDIUM2 [RACKO, RACK1, SACKO, SACKI,
SACKe]
{1
SACKe;
MEDIUM2 [RACKO, RACK1, SACKO, SACK1,
SACKe]
)

(1

MEDIUM2 [RACK1, RACKO, SACK1, SACKO, SACKe]

endproc

1830 SIXFRANCIED =2 K| H4H M 7%(97.7)

process TRANSMITTER {PUT, SDT0, SDT1, SACKO, SACK1, SACKe] : noexit :=

PUT;
TRANSMIT (PUT, SDTO0, SDT1, SACKO, SACK1, SACKe}
where)
process TRANSMIT [PUT, SDTO, SDT1, SACKO0, SACK1, SACKe] :noexit :=
SDTO;
(
SACKO;
TRANSMIT [PUT, SDT1, SDT0, SACK1, SACKO,
SACKe]
(1
SACK];
TRANSMIT [PUT, SDTO, SDT1, SACKO0, SACK1,
SACKe]
(]
SACKe;
TRANSMIT [PUT, SDTO, SDT1, SACKO, SACK1,
SACKe]
)
endproc
endproc

process RECEIVER [GET, RDT0, RDT1, RDTe, RACKO, RACK]1] : noexit :=
RDTO;
GET;
RACKO;

RECEIVER [GET, RDT1, RDT0, RDTe, RACK1, RACKO0)
(]

RDTI;
RACKI;

RECEIVER [GET, RDT0, RDT1, RDTe, RACKO, RACK 1]
{1

RDTe;
RACKI1:

RECEIVER [GET, RDT0, RDT1, RDTe, RACKO, RACK 1]

endproc
endspec

(Fig. 3) LOTOS specification of the alternation bit protocol

N

shr

SACKE

DY)

A 7S 7100 013 LOTOS TR EE MEM AIE 1834

2 Uty

i,

roTE(17

(Fig. 4) The reference EvFSM obtained from the LOTOS specification of the alternating bit protocol

{Table 2) An optimal test sequence for the EVFSM shown in Fig.4
(read from left to right and “ri” represents a special reset transition)

ti PUT @ UE2 SACK! @ UE2 SACKE @ UE2 SACKE SDTO @ UE3
RACKO @ UES SDT! @ UE13 RACK! @ UE7 SDTO RDTE RACK1 @ UE1D
RDTO @ UE6 SACKE SDT0 @ UE14 SACKE @ UEI8 SACKO @ UE!2 RDTE
RACKO @ UE1l RDTE @ UE17 RDTI @ UE15 SACKE SDT! @ UE4 SACKE @ UEI19
SACK] @ UEO RDTE @ UEI6 RDTO GET @ UEI RDTO @ UE! RDTE @ UE1
RDTE RACKO SACKO PUT @ UVE9 SACKE @ UE9 SACKO0 @ UES
SACKE SDT1 RDT! GET @ UES RDTE @ UES RDT! @ UES
RDTE RACKI SACKI
States UE sequences 13 RDTI1 GET
0 PUT SDTO 14 RDTO0 RACKO
1 RACKO SACKE SDT0O 15 GET RACK1
2 SDTO RDTE RACKI 16 RACKI SACKE SDT0
3 RDTO GET 17 RACKO SACKE SDT1
4 RDT! RACK1 18 SDTO RDTE RACKO
5 RACKI1 SACKE SDT1 19 SDT! RDTE RACK!
6 GET RACKO
7 SACK! PUT (Fig. 5) UE sequences for the EVFSM shown in Fig. 4.
8 SACKO PUT
9 SDTI RDTE RACKO capable of detecting all faults under the above given
10 SACK! SDTO e . .
o SACKO SDT1 condition. Specifically, when UIOs and signatures are
2 PUT SDTI not unique in an TUT, they may not detect erroneous

final states in the IUT. We have also experienced

1832 SRR 2ISD| =2X M4H X 732(97.7)

such point in case of UE sequences. An optimal test
sequence generated by our approach checks the IUT
for all the transitions in the specification. However, if
the IUT is faulty and an UE sequence from the speci-
fication is produced by more than one state in the
IUT, then that UE sequence is not unique to the [UT
and it is unable to identify a state in such IUT. An
example EvFSM is shown in Fig. 6.

(Fig. 6) An EVFSM specification

We have generated the following test sequence and
UE sequences by our tool for the given specification:

Recall that state 2 in Fig. 6 has two UE sequences
“a” and “cb”. If the first UE sequence “aa” was chosen
for state 2, we have experienced that the test sequence
obtained using this UE sequence by our tool could
not pass the test with sucess in the fault IUT shown
in Fig. 7.

(Table 3) An optimal test sequence obtained for the
EVFSM shown in Fig.6(read from left right)

ri c@UE2 c a@ UEl
c ¢ @ UEOQ c@ UE2 a@ UE0
a b @ UEl a

(Table 4) UE sequences for the EVFSM shown in Fig.6

States UE sequences
0 b
1 ab
2 aa, cb

(Fig. 7) A faulty T

However, if we choose the second UE sequence
“cb”, the test sequence shown in Table 3(i.e., this se-
quence is obtained by using the UE sequence “cb”)
pass the test with success in the faulty IUT in Fig. 7.
It arises from the fact that the uniquencess of UE se-
quence “cb” does not exist in the faulty ITU in Fig.
7(i.e., state 0 of the fault IUT has same UE sequence
“cb™). IN fact, we use UE sequences on the assump-
tion that each UE sequence is uniuge in the IUT.
However, they may not be. When we choose UE se-
quence according to a specification, we do not know
whether they are actually unique in the IUT.

The problem of the UE(UIO) approach is that the
uniqueness of the UI(UIQ) sequences may not hold in
a faulty TUT. This can be corrected by verifying UE
(UIO) sequences to ensure they are indeed unique in
an TUT prior to their use during testing [7). For
example, before applying the test sequence shown in
Table 3, we verify the uniqueness of each UE se-
quence in the faulty IUT of Fig. 7. In such case, we
can say that the IUT shown in Fig. 7 is faulty before
applying the test sequence. More formally, the unique-
ncess verification of each UE sequence is carried out
by checking the existence of the following sequences
in an IUT:

ri @Z”: UE(k), i=0)
e

UE"~ (si) ={ ©)

ri @SH(s,, s;) @3, UE(k), (B #1,{#0)
k=0

where 77 represents reset transition which brings the
machine to the start state s, and SH(s,, s;) is the
shortest path from s, to s;. Each state has to be
checked for the absence of (% —~1) Ues in UE™. This
requires a maximum(zn +(22%)(z—1) input event
sequences for each state [7]. The presence of its own
UEs is checked by our test sequence obtained by a
tool based on the concept of the UE sequences
combined with the concept of the Rural Chinese Post-
man Tour.

For the EvFSMs which do not possess UE
sequences for every state, when we have a set of PUE
sequences for the state having no UE sequences, we
can verify the uniquencess of such set in the IUT.
However, when state signature or a CS obtained
using the optimal one among existing PUE sequences
is not unique in the given specification, we have no
method for verifying the uniquencess of these segences
in the IUT. For example, take a faulty IUT in Fig. 8
for the EvFSM specification shown in Fig. 1

(Fig. 8) A fault IUT for the EVFSM shown in Fig. 1

For testing purposes, even if we use, for state 0,
cither state signature (“bdaccbd™ or a CS(“cebdacbd”)
obtained by using the optimal one among existing
PUE sequences, the faulty EVFSM given in figure 8

Al 7|2 7180 2Bt LOTos Z2EE HEA AlE 1833

pass with success the test sequence obtained by
approach. In such cases, we cannot verify the uniqueness
of these sequences in the given IUT because these
sequences are not unique in the specification.

In the automated test sequence generation, we have
chosen two strategies. One hand, for the EvFSMs(we
have generated from LOTOS specifications) which
have UE sequences for each state, we add the
uniqueness checking part UE™ to the sequence test
obtained by our tool to attain high fault coverage as
done UIOv method. On the other hand, for the FSMs
which have no UE sequences for each state, we use
only the test sequence generated by our tool for
testing purposes. In such case, we may not detect
erroneous final states in ITUT. Moreover, it could be
noted that DS sequences do not exist for the Mealy
machine FSM in this situation. Consequently, it is an
open problem.

6. Fault Coverage Estimation Experience

The ability of a test sequence to decide whether an
IUT conforms to its specification heavily relies upon
the range of faults or errors that it can detect. To
evaluate the fault coverage of a given test sequence, we
must generate the class of EVFSM’s which are not equi-
valent to the specification EvFSM but will accept the
test sequence. Ideally, fault coverage should be a ratio
of number of nonequivalence EvFSMs which pass the
test to the number of all possible EvFSMs which can
be generated from the specification EvFSM [12].

However, estimation of fault coverage of a test se-
quence is a difficult task because the number of
EvFSMs that must be examined is very large. For
example, a specification EvFSM with n states and m
inputs can have (n)™® possible implementations. It is
obviously impossible to examine all of these machines.
Instead, we sample the set of EVFSMs which are marg-
inally different from the specification EVFSM. These
EvFSMs are generated by changing the tail state of
one or more transitions of the specification EvFSM

1834 sinFEx2IRT =2X M 4B M7207.7)

or by adding one or more possible transitions to the
specificiation. We categorize these EvFSMs into the

following classes:

Class 1: The tail state of one random transition in the
specification EvFSM is changed to obtain this class
of EvFSMs. Its new value is taken from an indepen-

dent pseudo-random sequence to ensure fairness [3].

Class 2:The tail states of two random transitions in
the specification EVFSM is changed to obtain this class
of EvFSMs. Their new values are taken from inde-

pendent pseudo-random sequence to ensure fairness.

Class 3: Anew random transition is added in the spec-
ification EVFSM to obtain this class of EVFSMs. The
tail state, start and transition label are taken from an
independent pseudo-random sequence to ensure fair-

Nness.

Class 4: Two new random transitions are added in the
specification EVFSM to obtain this class of EvFSM
to obtain this class of EvFSMs. The tail state, start
state and transition label are taken from an indepen-

dent pseudorandom sequence to ensure fairness.

To determine whether the EVFSMs pass the test se-
quence test (i.e., accept the given test sequence with
success) actually conform to the specification EVFSM,
the algorithm given in [13] is employed for this pur-
pose.

We have taken two specification EvFSMs to esti-
mate fault coverage of the test sequence generated by
our approach, denoted UEop method, which combines
UE sequences with the concept of Rural Chinese
Postman Tour for obtaining an optimal test sequence.
The first EVFSM is obtained from the LOTOS speci-
fication of the bit alternating protocol shown in Fig.
3 and another one is the specification EVFSM shown
in Fig. 6 from which we can generate some faulty

EvFSMs having more than one state which produce

an UE sequence from the specification.
We have also defined two procedures of estimating

fault coverage;the one is to estimate fault coverage
without verification of the uniquencess of each UE se-

quence prior to the application of the test sequence
and the other one is with verification of the uniquen-
ess of each UE sequeﬁce in the TUT. First of all, we
give a procedure of fault coverage estimation without

UE verification as follow :

1) The specification EvFSM is read in.

2)The test sequence is generéted by our test sequ-
ence generation tool.

3)Random EvFSMs which are marginally different
from the specification EvFSM are generated as
described in the above 4 classes.

4)The test sequence is applied to each of the mach-
ines generated in step 3) to check if they accept
the given test sequence

5)EvFSMs that passed the test in step 4) are che-
cked if they actually conform to the specification
EvFSM.

For estimating the fault coverage of this sequence,
4 classes of random EvFSMs are constructed as de-
scribed previously. For each class, one million random
EvFSMs to examine are generated by our software
tool.

As an example, take the EvFSM shown in Fig. 4
and its test sequence given in Table 2. The results of
its fault coverage are given in Table 5. The entries 1
and 2 in Table 5 show that the test sequence gener-
ated by (UEop) method is able to detect one or more
faults in tail state of transitions in this kind of
EvFSM. Note that the EVFSM given in Fig. 4 is not
fully specified and it is strongly connected. The en-
tries 3 and 4 in Table 5 show that the given test se-
quence is able to use only for the weak conformance
test (i.c., we constructed these classes of EVFSMs by
adding one or two new transitions). In the following
we will use the notation:

:class of EvFSMs
‘number of generated EvFSMs
:number of EvFSMs that pass the test sequence

[- - A ¢

‘number of EvFSMs equivalent to the reference
EvFSM

(Table 5) Estimation of the faults coverage for the test
sequence given in Table 2

c n p e

1 1000000 50082 50082
2 1000000 3963 3963
3 1000000 1000000 0

4 1000000 - | 1000000 0

As another example, take the EvFSM shown in
Fig. 6 and its test sequence given in Table 3. By the
results of its fault coverage given in Table 6, the en-
tries 1 and 2 in this table show that the test sequence
generated by UEop method is not able to detect one
or more faults in tail state of transitions in this
EvFSM model. This arises from the fact that if an
UE sequence from the specification EvVFSM is pro-
duced by more than one state in the IUT, the test se-
quence obtained by UEop method can not detect one
or more fauits in tail state of trénsitions.

(Table 6) Estimation of the fauits coverage for the test
sequence given in Table 3

c n p e
1 1000000 490014 374364
2 1000000 298113 230123
3 1000000 1000000 0
4 1000000 1000000 0

We have already noted that this problem can be
corrected by verifying UE sequences to ensure they
are indeed unique in an IUT prior to their use during
test. The following fault coverage estimation proce-
dure is the same as presented above except UE™ veri-
fication prior to the application of the test sequence.

SA 7% 710l oS LOTOS ZRES MM Al 1835

1) The specification EVFSM is read in.

2) The test sequence is generated by our test sequ-
ence generation tool.

3)Random EvFSMs which are marginally different
from the specification EvFSM are generated as
described in the above 4 calsses.

4) The uniqueness of each UE sequence is checked
in each of the EvFSMs generated in step 3). If
each UE sequence is unique, we do step 5).

5)The test sequence is applied to each of the ma-
chines passed UE™ verification in step 4) to check
if they accept the given test sequence

6)EVFSMs that passed the test in step 5) are che-
cked if they actually conform ot the specification
EvFSM.

By this procedure, for the EVFSM shown in Fig. 6,
the test sequence obtained by UEop method can
datect perfectly one or more faults in tail state of
transitions by UE™ verification(i.e., the entries 1 and

2 in Table 7 demonstrate this point).

{Table 7) Another estimation of the faults coverage for
the test sequence given in Table 3

c n P e
1 1000000 1 374364 374364
2 1000000 230123 230123
3 1000000 755024 0
4 1000000 575432 0

Based on the results in the tables above, we can
conclude that the fault detection capabilities of test
sequences for UEop method with UE™ verification
can perfectly detect one or more faults in tail state of
transitions in an IUT. Also, this sequence is able to
be used only for the weak conformance test. How-
ever, if we use state signature or a CS obtained by
using the optimal one among existing PUE sequence
instead of UE sequence, we can not guarantee this
fault coverage.

In conclusion, many test selection methods have

1836 BIZHEKX2(ED| =X M4 M 7%(97.7)

been developed for the case of the specification of the
protocol being tested is given in the form of a FSM
[14}[7]{1]. The test sequences derived by each of the
above methods will detect any output error of the
IUT. However, transfer errors (i.e., errors in the next
state reached by a transition) will not always be
found. The nature of the different test methods
implies certain relations between the length of the
resulting test sequence as shown in Fig. 9.

The figure also shows the relation for the theoret-
ical fault coverage based on a model of output and
transfer faults in the assumption of a limited number
of states in the IUT.

By test sequence length and coverage relation be-
tween various methods, we analyze the results of each
test sequence generation method as follows:

State-tour(ST) method : this method covers all states.

However, it does not even check all transitions.

Coverage
UIOop(UEop)
+UIO"(UE") Wp,UIOV,DS
W,SW
UIOop(UEop) UIO(UE),
TT
TST
Length

(Fig. 9) Relation between la length of the test sequences
and its faults coverage

Transition-tour(TT) method :this method executes
all transitions of the specification at least once, but
does not make any effort to identify the target states.

UE(UIO) method:this method applies the UE
(UIO) sequence to the target state of each transition;
however, there is no guarantee that the UE(UIO)
sequences have the identification power in the case of

a faulty IUT which has more than one state having a

same UE(UIO) sequence from specification.

UIOop(UEop) method [9]: by combining UIO(UE)
sequences with the concept of the rural Chinese po-
stman tour, it optimizes the resulting test sequence as
against UE(UIO) method. However, this method has
same problem in tail states identification as shown in
UE(UIO) method.

UIOop(UEop) +UIO™(UE™) method:the test se-
quence obtained by this method pe;fectly detect one
or more faults in tail state of transitions in an IUT.
Its length is more short than the sequence obtained
by UIOv method because the transition checking part
is optimized as-against UIOv method.

Wp, UIOv and DS methods: This method guaran-
tees the same fault coverage as done in the UIOop
(UEop) +UIO™(UE"). However, in the case of UIO
sequence absence, if state signature or a CS obtained
by PUE sequences is not unique in the IUT, we can
not guarantee complete coverage in tail states errors.
In such case, DS sequence does not exist.

W and SW methods: guarantees complete coverage
even for the case where the number of states of IUT
may be larger than that of the specification by fixed
bound [14]. However, it has some difficulties for
automated test sequence generation. In the case where
the IUT would have a nondeterministic, it is imposs-
ible to have any guarantee for error detection.

7. TTCN translation

In this section, we present the methodology under-
lying the integration of the TTCN notation into the
Test-Gen-LOTOS. Throughout this section, we will
use a simple example to illustrate both the application
of the tool TestGen-LOTOS and the work accompli-
shed on the translation of the sequences into TTCN.

7.1 Test architecture
The IUT is modeled by an EvFSM whose transit-
ions are labeled by LOTOS rendez-vous. It communi-

cates with the environment in an asynchronous way.

In our example, this IUT should accept all the rendez-
vous that compose the given test environment. The
EvFSM that models the IUT changes from state to
state, along with the establishment of the various
rendez-vous, using the tested transitions at each
rendez-vous. If the behaviour of the IUT is in con-
formance with its specification, then all the transitions
of the EvFSM that model its behaviour can be ac-
cepted in ‘the order specified by the given test se-
quence. We will now indicate the test entity that is
used to communicate with the IUT.

The tester does communicate directly with the IUT.
The tester’s request for the acceptance of the gate
event, one after the other one according to the given
test sequence, will be transmitted to the communi-
cation points composed of an input queue and an
output queue. If the gate event is accepted before ex-
piration of given time-out, it indicates to the tester
the acceptance of given gate event;otherwise, it not-

ifies the failure of the acceptance.

1.2 Translation
Given the LOTOS specification of a protocol, the
application of our conformance test generation techn-

ique results in:

e a set of test cases, one for each transition of the
EvFSM representing the specification, or equivalen-

tly, an optimal test sequence which is the minimum

Al 1= 7100 0|9 LOTOS E2E S XA AJ3t 1837

cost combination of these test cases:and also
* UE sequences (if they exist, otherwise PUE sequen-
ces) to identify the states of the reference EvFSM.

The global test suite is composed of a set of test
cases, each of them corresponding to the test of a
single transition in the EVFSM. These test cases will
in turn be decomposed into intended to bring the im-
plementation into the object state necessary to test the
given EVFSM transition. The body, test phase contains
the rendez-vous that the tester wants the IUT to ac-
cept. Finally, the state identification phase contains
the UE sequence that is needed to verify the final
state of the tested transition.

Each transition in the reference EvFSM, labeled by
a LOTOS rendez-vous expression will correspond to
one test case in TTCN. The Preamble, made up of a
sequence of LOTOS rendez-vous, will be specified by
a succession of attached test steps and with as many
steps as rendez-vous in the Preamble subsequence.
The Body phase of a test case is also composed of
test steps. Finally, the State Identification phase, cor-
responding to a UE sequence, will also be a succession
of test steps.

Semantic incompatibility between TTCN and
LOTOS has lead us to adopt the following descrip-
tion to specify a test of a LOTOS rendez-vous in
TTCN:a test step is parameterized by means of the

gate where the rendez-vous occurs and by a list of

Test Step Dynamic Behavior

Test Step Name : Test_accepted_Input (a_gate : input)

Group-

Objective : Test whether an input is accepted or not

Default :

Comments:
Nr Behaviour Constrains reference Verdict
1 a_gate! test_input
2 a_gate? input_accepted input_accepted pass
3 a_gate? input_rejected input_rejected fail

1838 SIRFYEXZIST =X H4H M 75(97.7)

data exchanged during the rendez-vous. The structure
of this test step is fixed, which means that it is inde-
pendent from any input test sequence. It has follow-

ing form:

Line 1:To test the acceptance of a LOTOS input
through the gate a_gate, the tester sends through a
PCO, which has the same name as the gate, a mess-
age test_input to indicate the beginning of the test of
the input.

Line 2:If the tester receives an answer (indicating no
time-out) from the IUT indicating the acceptance of
the input proposed in line 1, the test ends successfully
(PASS), which means that the input taken.

Line 3:0n the contrary, if the tester receives an
answer from the IUT indicating the refusal of the ac-
ceptance (indicating time-out), this means that the in-
put proposed did not be accepted during the imparted
time interval. The test then ends in failure(FAIL).

This test step will be called through an attachment
mechanism, allowing a compact description of the test
tree. Note that it is not necessary to continue the ex-
ecution of a given test after any FAIL terminal
branch. If such a test branch is executed, it means
that the test ends in failure, so that it becomes useless
to attach the next test step to it.

The variable TTCN tables are composed of a set of
tests specific to each sequence fo be translated, they
are the followings:

¢ Test Case Dynamic Behaviour tabels

o Test Step Dynamic Behaviour tables, which de-
scribe the Preamble (the Postamble) and Identi-
fication phases.

The following table gives an example of a trans-
lation.
Note that, for the sake of simplicity, we decided

LOTOS sequence TTCN Test Case Preamble & Postamble Test Step
Test_casel:
PUT @ UE2 +Test_accepted_input(put)
+Check_UE2
Test_case2:
SACK! @ UE2 +Test_accepted_input(SACK1)
+Check_UE2
Test_case3:
SACKE @ UE2 +Test_accepted_input(SACKE)
+Check_UE2
Test_cased:
SACKE +Preamble_1 Preamble_1:
SDT0 @ UE3 +Test_accepted_input(SDTO0) +Test_accepted_input(SDTO0)
+Check_UE3)
RDT1 @ UES Test_case_28: Postamble_1:
RDT2 RACKI1 +Test_accepted_input(RDT1) +Test_accepted_input(RDTE)
SACK1 +Check_UES5 Postamble_2:
+Postamble_1 +Test_accepted_input(RACK1)
+Postamble_2 Postamble_3:
+Postamble_3 +Test_accepted_input(SACK1)

not to give the TTCN translation of the subsequences
corresponding to the “reset” transitions in the im-
plementation. The given test sequence (first column)
is meant to test an IUT that implements the Alternat-
ing Bit Protocol, given as an example in Table 4 of
Section 5. The column TTCN test case shows only
the Behaviour Description part of the Test Case Dy-
namic Behaviour table. The names of the test cases
are prefixed with test_case followed by the number of
the current case generated. The names of the test
steps used as Preamble(Postamble) are prefixed with
Preamble_(Postamble_) followed by the number of
the test case concerned.

The test steps called Check_UE (state_number)
are generated separately by our tool. The following
table presents the UE sequences for identification of
the twenty states of the EVFSM modelling the Alter-
nating Bit Protocol.

LOTOS
UE name TTCN Test Step
Sequence
Check_UEQ:
UEO PUT SDTO +Test_accepted_input(PUT)
+Test_accepted_input(SDTO0)
Check_UE:
RACKO
+Test_accepted_input{RAC KO0)
UE1 SACKE
+Test_accepted_input(SACKE)
SDTO
+Test_accepted_input(SDTO)
Check_UEI18:
SDTO +Test_accepted_input(SDTO0)
UELS RDTE +Test_accepted_input(RDTE)
RACKO +Test_accepted_input(RACKO
)
Check_UE19:
SDT1
+Test_accepted_input(SDT1)
UEI9 RDTE
+Test_accepted_input(RDT0)
RACK1
+Test_accepted_input(RACK1)

8. Conclusions

In this paper, we have presented an automated
method for generating an optimal test sequence from

A 7S 7|H0I QS LOTOS IR EE ME 4 Al 1839

a LOTOS specification. We have introduced the con-
cept of Unique Event sequence, which is well suited
to the FSM obtained from a LOTOS specfiication.
This concept is then combined with optimization
echnique (without reset) based on the Rural Chinese
Postman tour in order to obtain an optimal test se-
quence.

For the practical application of the UE method for
the EvFSMs which do not possess UE sequences for
every state, in the automated test sequence generation
environment, we proposed and analyzed three kinds
of characterizing sequence:a set of PUE sequences,
state signature and a CS obtained by using the opti-
mal one among existing PUE sequences for the state.
It is experienced that, if we have UE sequences for
each state in the given EvFSM, we can obtain high
fault coverage with small test sequence by the verifi-
cation of each UE sequence in the impleme-
ntation under test.

We have also estimated the fault coverage for the
test sequence obtained by our software tool, based on

certains assumptions:

e For the detection of transfer errors, it is assumed
that the number of states of the implementation is
equal to the number of states of the specification;

* We have assumed that the implementation under
test are deterministic machines. In the case where
the implementation is nodeterministic, it is imposs-

ible to have any guarantee for error detection.

By the estimation results obtained, the test sequence
obtained by the method “UEop +UE™" perfectly detect
on or more faults in tail state of transitions in an
IUT. Its length is more short than the sequence
obtained by UIOv method because the transition
checking part is optimized as against UIOv method.

Finally, we presented the methodology underlyign
the integration of the TTCN notation into the
TestGen-LOTOS tool. We used simple exaple to illus-
trate both the application of the tool TestGen-

1840 StnHEME S =F X M4 M 75(97.7)

LOTOS and the work accomplished on the translation
of the test sequences obtained into TTCN.

These techniques have been implemented in a tool
called TestGen-LOTOS. Thus, an optimal test sequence
of minimum cost can be automatically generated from
LOTOS specifications. These techniques have been
applied to the several protocols and services [15-16].
And also, it is started to try to apply these techniques,
for conformance testing, on the protocols related to
IN, PCS, and ATM by several R&D organizations
such as AT&T Bell Lab.,, CNET(FRANCE),and etc.

The formal method on conformance testing described
in this paper can be applied to all kinds of protocols
related to IN, PCS, and ATM for the purpose of
verifying the correctness of implementation with re-
spect to the given specification.

In practice, test sequence is manually generated by
extracting test cases from natural language speci-
fication. These are largely based on the experience of
tests who are often able to uncover bugs in the im-
plementation. This paper described a research result
on automatic generation of abstract test cases from a
reference EVFSM which represents communication
protocol behaviors. With the merits of test case gener-
ation from specifications based on Formal Descrip-
tion Techniques, the abstract test cases generated in
TTCN language will be applied to the TTCN com-
piler in order to obtain the executable test cases
which are relevant to the industrial application.
Further stdy topics related to the generation of test
sequences from FDT are the following areas:

¢ Test sequences generation from nondeterministic
EvFSM

* Resolution of minimization problems resulting from
the state space explosion of EvVFSM

* Application of the proposed approach to the gener-
ation of ETS in a real environment of conformance

testing

REFERENCES

[1] M.S.Chen, Y.Choi, A.Kershenhaum, Approaches
Utilizing Segment Overlab to Minimize Test Se-
quence, 10th International Symposium on Proto-
col Specification, Testing and Verification,
Ottawa Canada, June 1990.

[2] ISO-LOTOS-A Formal Description Technique
Based on the Temporal Ordering of Observa-
tional Behaviour, International Stand 8807, Inter-
national Organization for Standardization Infor-
mation Processing Systems-Open Systems
Interconnection, Geneva, September 1988.

[3] A.Dahbura and K.Sabnani, An Experience in
Estimating Fault Coverage of a Protocol Test, in
Proc. IEEE INFOCOM'88, pp.71-79, 1988.

[4] K.Sabnani and A. Dahbura, A Protocol Test
Generation Procoedure, Computer Networks and
ISDN Systems, Vol. 15, No 4, pp.285-297, 1988.

[5S] Z.Kohavi, Switching and Finite Automata The-
ory, New York, Mc Graw-Hill, 1978.

[6] W.Chun and P.D.Amer, Improvements on UIO
Sequence Generation and Partial UIO Sequences,
12th International Symposium on Protocol Speci-
fication, Testing and Verification, Lake Buena,
Florida, USA, 1992.

[7] W.Y.L.Chan, S.T.Yuong, and M.R.Ito, An
Improved Protocol test Generation Procedure
based on UlOs, SIGCOM’89 Symposium:Co-
mmunication Architecture and Protocols in Com-
puter Comm. Review 19(4), pp.283-294, September,
1989.

[8] H.Garavel and J.Sifakis, Compliation and Verifi-
cation of LOTOS Specifications, in L.Logrippo,
R.L.Probert and H.Ural, Editors, Proceedings of
the 10th Intefnational Symposium on Protocol
Specification, Testing,and Verification,
IFIP, North Holland, Amsterdam, 1990.

[9] A.V.Aho, A.Dahbura, D.Lee and M.U.Uyar, An
Optimization Technique for Protocol Conform-
ance Test Generation Based on UIO Sequences
and Rural Chinese Postman Tours, in S.A.
ggarwal Editor, 8th International Symposium on

Protocol Specification, Testing and Venfication,
pp.75-86, North Holland, Amsterdam, 1988.

[10] J.Edmons and E.L.Johnson, Matching, Euler
Tours and the Chinese Postman’s Tour, Math-
ematical Programming, vol.5, pp.88-124, 1973.

[11] R.E.Tarjan, Data structures and Network
Algorithms, Philadelphia, PA, Society for Indus-
trial and Applied Mathematics, 1983.

{12} D.Sidhu and T.Leung, Fault Coverage of a Pro-
tocol Test Methods, in Proc. IEEE INFO-
COM’88, pp.80-85, 1988.

[13] A.V.Aho, J.E.Hopcroft, and J.D.Ullman, The
Desigh and Analysis of Computer Algorithmes,
Addison-Wesley, Reading, Mass. 1974.

[14] S.Fujiwara, G.Bochmann, F.Khendek, M.
Amalou, and A.Ghedamsi, Test Selection Based
on Finite State Models, IEEE Trans. on Soft.
Eng., Vol.17, No.6, pp 591-602, June 1991.

[15] A.R.Cavalli, S.U.Kim, and P.Maigron, Automated
Protocol Conformance Test Generation Based on
Formal Methods for LOTOS Specifications, Pro-
tocol Test Systems V(C-11), G.V.Bochmann, R.
Dssouli and A.Das editors, Elsevier Science
Publishers, North Holland, Amsterdam, 1992.

[16] A.R.Cavalli, S.UKim, and P.Maigron, Improving
Conformance Testing for LOTOS, FROTE’93,
Boston, USA, pp.381-384, October 1993.

&:

14 7= 71H0I 218t LoTos Z2E 2 Mt Alg 1841

0

[=]
o4 2

19763 Mgt gadiet A
71 & 838

1983 Aguiste Faojst 3
FE1F T AD

19961 #=#red A
FHEHAE)

19803 ~H A SAFHAAZANAF

4HAYA Y, 4

FHEZREE AY, AFE VEYA, ZZEE
Ax Yoy
H4 4 2

19824 A8ty Axgera
(F34h

1990 =g~ Sysie] 7 ojg
X ARFEIHF D

19939 =P Fgale] 7 9ig}
I R BFEHF A}

19823~198531 FFHAEANA

P4 delHEANA T A(A 1Y)

198613 ~1995d @454 AFAGHEIA T,

47
19904 ~1993\d =g 2 Ay A ed 72 (24
T4 .

19959 ~8A FAWSE JREANFGIHE

FAEZR2EZ dAYolg, dio]H T4l A=
ZEZANY, FFEHUENA
F 4 =5

1977 AR JEHRENT
& 2HF- & AH

19779 AR distd
EAF I AL A A)

