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Rearrangeability of Reverse Shuffle/Exchange Networks
Byoungsoo Park'

ABSTRACT

This paper proposes a new rearrangeable algorithm in multistage reverse shuffle/exchange network. The best
known lower bound of stages for rearrangeability in symmetric networks is 2logN —1 stages. However, it has
never been proved for nonsymmetric networks before. Currently, the best upper bound for the rearrangeability
of a shuffle/exchange network in nonsymmetric networks is 3logN —3 stages. We describe the rearrangeability of
reverse shuffle/exchange multistage interconnection network on every arbitrary permutation with N<16. This
rearrangeability can be established by setting one more stages in the middle stage of the network to allow the
reduced network to be topological equivalent to a class of rearrangeable networks. The results in this paper en-
able us to establish an upper bound, 2logN stages for rearrangeable reverse shuffle/exchange network with
N<16, and leads to the possibility of this bound when N> 16.

1. Introduction memories are the most important issue. A multistage
interconnection network is rearrangeable if its permut-

For any parallel computer systems which consist of ation states are able to perform any one-to-one con-
many processing elements and memories, the com- nection of input to output terminals. The Benes bi-
munication pathways among processing elements and nary network that is extracted from the three-stage

Clos networks[3] is a rearrangeable network which

t A 8 A AdGetz ARty 2R requires optimal hardware, as well as single-stage re-
EAH4:1996\9 29 8Y, AAMGE:1997d 59 269 circulating network such as the shuffle-exchange{15].



Most of research on the permutation networks has
been focused on the rearrangeability, and their routing
algorithms have been developed for the class of multi-
stage interconnection networks.[1, 5, 7, 14)

Since a single stage multiple pass recirculation te-
chnique, in (Fig. 1), requires less hardware complexity
to construct the connections to attain the capability
of realizing any arbitrary permutations, the universa-
lity of shuffle/exchange networks was studied by many
a researchers in order to reduce the stages that are re-
quired for any arbitrary permutations. By sorting the
arbitrary data sequence, Stone[12] has proposed an
algorithm with (logN)* passes from Batcher.[2] Siegel
{11] also presented an algorithm that realize any arbi-
trary permutations on a recirculation shuffle/exchange
network with 2(logN)? passes. Parker[8] described 3
logN passes are sufficient for rearrangeability.. Wu
and Feng[16] showed 3logN —1 passes are sufficient.
Furthermore, Huang and Tripathi[4] constructed the
best known shuffle/exchange network with passes.

[}@——cﬂ:—J
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(Fig. 1) A reverse shuffle/exchange network

In this paper, we suggest a new rearrangeable al-
gorithm with 2logN stages, for the reverse shuffle/
exchange interconnection network when N<16. This
network consists of three parts, which are the first
half stages (0, logN —2), the middle stage (logN—1),
and the last half stages (logN, 2logN —1). These are
controlled by their three different control algorithms.
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The switch setting in the first half stages are con-
trolled by an algorithm that recursively partitions in-
puts into groups according to the fixed bit in a sequ-
ence. In order to transform an arbitrary permutation
into the last half passable permutation and have the
equivalence to Benes network in topology, switching
elements in the middle stage between the first half
stages and the last half stages can be set as follows:
One stage is set with complement relationship to each
switching element, the other is always set with str-
aight connection. Thus, all switching elements in the
stage are redundant. In this way, we prove that a stage
in middle stage is sufficient for the rearrangeability of
2logN stages reverse shuffle/exchange networks when
N<16. The last half is controlled by the usual bit
composition method so that the order of fixed bit is
opposite to that in the first half stages. Through our
approach, we might have the possibility of establish-
ing a new upper bound when it can be extended into

the bigger number.
2. Permutation Routing

In this paper, without loss of generality, we begin to
describe conventional notations and definitions requ-
ired for multistage reverse shuffle/exchange networks.
Such NX N multistage networks consist of three par-
ameters, which are communication paths, stages, and
interconnection links[11}. The logN stages of 2Xx2
switching elements(SE’s), which have straight or cross
connection, are considered throughout this paper(note
that, for simplicity, log,N is denoted as logN in this
paper). Each stage consists of N/2 switching elements,
and the link’s patterns between stages depend upon
which sort of networks you have, for example the
data manipulator, omega network, baseline, regular
SW Banyan network(S = F=2), and so on. The stages
are labeled from 0 to logN —1. That is to say, 0 is for
the leftmost stage and logN—1 is for the rightmost
stage, sequentially. The levels of connectivity between

the stages of switching elements are labeled in a se-
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quence from O to logN—1. The SE’s are also labeled
from 0 to N/2—1, which 0 is for the top switching el-
ement and N/2—1 is for the bottom SE, sequentially.
The link connectivity of level / of the multistage inter-
connection network identify the permutation or the
fixed connection of reverse shuffle/exchange network

and is given by:

07 '(Ba-y by bive b)) = bibioy -+ bobp-y - bivr (1)

[ —

i+1 bits n—i—1 bits

where 0<i<logN.

The binary representation of a number, dy—1 - ;-
bo is used to describe the address of this number,
where bit b, is the most significant bit(msb) and bit
by is the least significant bit(/sh). For decomposition,
a function, denotes that one group is divided into two

groups:

Wiqe i} ={qe+1, 7} {Qe+1, 7 +2} ¥)]

where 0< 7<2*, 0<k<n—1.

The depth of decomposition is identified to &. The
group, g, ;, represents the jth group of decomposi-
tion in depth % and 2% * is the number of elements in

the group.

(Fig. 2) The partition in the first haif stages

2.1 The first half stages

The routing scheme for arbitrary permutations in
these stages of the reverse shuffle/exchange network
is based on the connection by the recursive decomposi-
tion of input data of each stage. However, there exist
so many methods for decomposition according to the
following definitions. Thus, we will select one to as-
sure no conflict in the rest of the stages, and also to
assure the sorted result that we want in the final des-
tination. The decomposition is realized by the follow-
ing definitions.

Definition 2.1:All 2* (0 through 2*') integers that
are represented in by_1 by -2+ b can be separated into
two different groups that have 2! elements.

Assume that bit position ¢ is fixed and the binary
representations of an element in one group are always
same as that of elements in the other group except
bit, b;. For example, let 2" integers be a group, go, 0.
Select an element from the group, go, 0. If we regard a
fixed bit as a dom’t care bit, the general binary re-

presentation of the all 2" integers is as follows:

2"=bp-1bp-2-biv1cbi-y o by &)

where b; is ¢ (don’t care bit).

When ¢ is 0 or 1 from (2) and (3), let two groups
be ¢, 0 and g;, . Then, it can be guaranteed that one
of both is listed on ¢, o, and the other on ¢;, . When-
ever the values of other bit positions except &; are
changed, each of the other pairs can be listed on the
different group with each other. Eventually, if we ap-
ply the same scheme for the rest of them, it is
guaranteed that every pair can be separated into
group ¢y o and ¢, 1 one by one, which has 2"~ size of
elements.

Procedure : SE’s setting at the first half stages
begin
While n—1>7>1 do
b;:=don’t care bit;

Upper output[]: = xy;



Lower output|}: = yo;
Link _start: =x;
//the initialization for link _start//
While 1<m<| N/2*'} do
/] is stage//
If Fm—1 = X & Ym—1 # Link _start)
//checking the link connection//
begin
Upper output|]: =X m;
Lower output[]: = Yp;
end;
Else begin
Upper output[]:=%;
Lower output|]: = ym;
Link _start: = Xpm;
//the newly initialization for link _start//
end;
endwhile;
endwhile;
end

Definition 2.2: All 2* (0 through 2"~') integers that
are represented into 8-y bx— -+ Bo can be decomposed
into 2"~! groups.

It is shown that there exist two groups ¢, and ¢y,
in Definition 2.1. Assume that the two different gr-
oups ¢, o and ¢, » are newly generated by group ¢, o,
and the rest of the groups ¢, 1 and g, 3 are also done
by qi, 1, respectively. From Definition 1, group qi o
can be divided into two different groups, ¢2,0 and ¢, 2
again. Similarly group ¢y, can also become two dif-
ferent groups, ¢» 1 and ¢, ;. Finally, the number of
groups generated by recursive method in (Fig. 2) are

2"~ groups such as
Qn-1,0, Gn-1.1, ***, and gu—1, 221 by @

The decomposition that is proper for a permutation
network is able to be obtained from Definition 2.1
and 2.2. They depend upon which bit position is fixed
sequentially. So, we define a decomposition method
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requested upon permutation network, which is a
backward-decomposition that bit position is fixed in a
sequence from bit b, to bit & . This has the pro-
perties of Definition 2.1 and 2.2

Now, we are ready to discuss the procedure for
SE’s setting at the first half stages shown above. As
stated before, the decomposition is realized after logV
stages. The bits b,-;, b2, ---, and b, are fixed
sequentially at every stage, for example bit b,-, in
stage O, bits b, and b,—; in stage 1, bits b,_, ba—?
and b,_; in stage 2 are fixed stage by stage. The first
SE is set straight in each block. After finding the link-
age of destination address from one of two inputs of
the first SE, it is capable of being connected to upper
or lower output. If the other is equal to one of the
destination addresses that is already decomposed, that
linkage ends. One more SE at the same stage will be
set straight again. Then, a new linkage begins again.
This method will be continued until all SE’s are set in
the stage.

2.2 The middle stages

Since the defined decomposition in the last section
is realized according to the fixed bits sequentially,
each group produced some properties. Thus, these pro-
perties will be used for eliminatic conflicts with the
next stages.

Property 2.1:Assume that T={e€q; jle mod 2*}
for all g, ;. A set T consists of 2¢~! different elements.

Property 2.2:After the decomposition is realized
completely, each group for k=n-2, and a=k +1 has

92, Da =1, 0<p<2'—1 @)
qr,®ql,=1, 0<p8<2—1 6]

where %; and /; mean the ith bit of upper and lower
connections, respectively.

From property 2.1 and 2.2, we can observe the fact
that an Isb in every group is always complemented
with the other Ish. Therefore, we have a definition for

the next theorem as follows:
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Definition 2.3:There exist two combinations be-

tween g4, g and ga g +> such that:

don't care group:q* , B gL ,=0, g% 5 1t DG, =0
no don’t care group :otherwise ©)

where 0< <27 1.
Theorem 2.1:The SE’s setting in the (logh —1)th
stage of reverse shuffle/exchange can guarantee the

conditions as follows:

4o, DA =40, DA =1

02z BD A 30 =00 4 D 42 gesrr =L

where k=n—2, a=k +1, and 05 £<1.

—» SEO qa‘ B
Uy
" link_b
link_a| SE1 qm pae? <
u
S q ” !
B2 fupa link_d
Uy
fink_c
SE3 qa_ 322

(Fig. 3) The complemented SE's loop for a =% +1, and
0< A<

Proof: For simplicity, we will only argue the result
for #=0. The proof for 8=1 is identical. We can con-
sider four cases that satisfy all conditions in (Fig. 3).

Case i:link _a and link _c are don’t care group.

It is obvious that link_a and link _c always hold (6)
from Definition 2.3. This means q2' , D q5 ;=1
and ¢, ., D g5 ,,, r+ = 1. Therefore, the connec-
tion of SE! and SE3 can be fixed independently such
that:

4es® a0 =1and @25 D g2y =1

Case ii: Only link _a is don’t care group.

It always says q.', @ g% 5 .- = 1. In order to satisfy
qe ;D g 54+ =1, the connection of SE1 can be de-
cided. According to this sequence, the connections of
SE3 and SE2 are also able to fixed to hold ¢7', = @D
gy prrrs=1 and ¢35 r+ D q2 5450 =1, rESPECHi-
vely. Since link _a satisfy don’t care group (6), it is not
necessary to change the connection of SE0.

Case iii : Only link _c is don’t care group.

If link _c is instead of link _a, the result is the same
as the situation of Case ii

Case iv:There is no don’t care group.

By property 2.1 and 2.2, we obtain:
qo D=0 v
Therefore, SE2 can be set to cross connection. It

means ¢ , D g2 ;.- =0. Next, assume that ¢’ , D

45 s+2+=1. Then, we also get:
Anssr®a s =1and 75D g =1

Lastly, in order to check the connection of SE3, let
7D a2l 45 be 1. Then, we have:

Qe s DA gy =1 ®
From (8), we also get:
Y g DAl g s =1
Four cases complete this proof.
Property 2.3 : For k=logN~2, a=k+1 and

0<p<2*"! after SE’s setting in the logNth stage, the
two Isb’s in the outputs of each SE’s consist of :

g2y, =100, 01, 10, 11}, and g=5,, ={00, 01, 10, 11}

The following procedure only illustrates for the first
stage in the middle stages and all SE’s of the second
stages are set to straight connections.



Procedure: SE’s setting for the middle stages.
begin
While 0<8<2*""—1 do
//ui and I; are the ith bit in upper and lower input
of the same group q., s//
g, ®a.,=0& g%, D 4y =0)
qa, g=don’t care group ;
qa, g+~ =don’t care group;
endwhile
While 0<8<2*"'—1 do
Iflg%, & g 4 o =0 & no don’tcare group)

4 .
-t €> q.‘p+z-—l .

.
//exchange upper into lower input//
endwhile
While 0<£8<2*"2—1 do

If @2, ®qeysr2=0)
If (don't care group exist)
exchange in don’t care group SE;
Else begin

-xqu

» .
q-. B4+ a B+

% i .
Do g3 >4, gy3arts
end;
endwhile;

end

2.3 The last half stages

Once a valid position adjustment in the middle st-
ages is obtained, actual routing of the permutation on
the reverse shuffle/exchange network is performed in
these stages. Now, in order to accomplish the final
destination of arbitrary inputs we can take opposite
direction to the decomposition that is done in the first
half stages, which is called composition. Like the defi-
nition of decomposition, it is a forward-composition
that controls bit at each stage fixed in a sequence
from bit g to bit b,—;.

Definition 2.4: A connection can be defined accord-
ing to control bit as follows:

con_bit =0; upper output
®

con_bit =1;lower output
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Definition 2.4 is the result according to properties
of Definition 2.1 and 2.2. If two inputs of each swit-
ching element always consist of 0 and 1 in con_bit of
(9), it is possible to realize a permutation without con-
flict. We now prove that the above definition of rout-

ing scheme is correct with no conflicts in this network.

g YV
B AR 2
a:{‘(ﬁgi“?‘ ﬁ‘@@@%

Y

‘
o |
W 3

L L b))

AR T R X O AR XA R AR
avANGYANT aVANIYANTYANT

SN NSNS SN

(Fig. 4) The links between the middle stage and the last
half stages for no conflicts

Theorem 2.2:There are no conflicts at the last half
stages iff

e sDGe ir =, DA g =1

.y Ne — M # —_
Qupir P A g3 =0 i B g3 rr =1

where k=logN—2, a=k +1, and 0<8<1.

Proof :1t is extracted from the (Fig. 4). The inputs
of SEO (switching element 0) at stage 5 connected with
the upper outputs of SEO and SE2 at stage 3 accord-
ing to reverse shuffle/exchange link, (1). Because of
40D a2 =1 (a=3, 8=0) these bits are comple-
mented with each other. It means there is no conflict
SEO at stage 5. The other SE’s at stage 5 can consist
of inputs with conflict-free connections using to the
same choice for bits. Thus, it is possible to realize the
permutation with conflict free at stage 5. Next, the
upper outputs of SEO and SE4 at stage 3 are linked
to the inputs of SEQ at stage 6 according to link func-
tion (1). Because of g% , D ¢ 4, =1 (@=3, 8=0)
and property 3, one input is 0 in an SEO of stage 6,
the other is 1. It means there is no conflict SEO at
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stage 6. The other SE’s at stage 6 is able to be com-
posed of inputs with conflict free by assumption.
Thus, it is possible to realize the permutation with con-
flict free at stage 6 also. Therefore, no conflicts can
exist in any of the last half stages.

con_bit, con_bit;

T"o‘ t 1 i+] stage
N 4‘_1

|
o s.,]

Siﬂ

1 1 ‘o
0 1 1.__1 L

il

(Fig. 5) The cases of no conflict for next stage.

It is shown in (Fig. 4) that the SE’s setting in the
middle stages can guarantee no conflicts on the per-
mutation in the fast half stages. An example is shown
in (Fig. 5). For the assumption of no conflicts at
stage 7, there are two cases without conflict, such as
{(00, 11), (10,01)}, {(00, 01), (10, I1}}. As stated out
in the earlier literature[6][7][15], the bit control can be
easily obtained by simple bit operations. Since it can
identify all permutations with no conflicts, such simi-
lar algorithms have been used in multistage inter-
connection networks. The routing permutation pro-
cedure at the last half stage is as follows:

Procedure : SE’s setting at the last stages
begin
While 0<i<n do
If con_bit; ==
goto upper output ;
Else
goto lower output ;
endwhile;
end

3. Example for Permutation

In order to demonstrate the result of the routing al-
gorithm in the last section, an exampie is shown in
the next three steps. Let’s take the arbitrary permuta-
tion p:

(0123456789 101112131415
6351811212914 7 130 1015 4"

(Table 1) The SE's setting in the first half stages for N =16

lower 3,c011 1,c001 8,¢000 12,100

9,c001 T,elll 0,c000 4,c100
lower 14,c110 13,¢101 10,c010 | 15,cl11
stg.0 0 0 0 1

lower 5,0c01 2,cc10 7,ccll 4,0c00

stg.1 0 0 0 0

upper 3,ccll 8,cc00 13,ec01 10,cc10

lower 1,ec01 12,e¢00 14,cc10 15,ccll

stg.1 0 0 i 1 0

e

upper 6,ccc0 9,ccel 3,cccl 10,ccc0

lower 11,cecl 0,cecO 8,cec0 13,cccl

1

upper 5,cccl 4,cec0 1,cccl 14,ccc0
lower 2,cec0 7,cccl 12,ece0 lS,cccﬂ
stg.2 0 1 0 D

*c is don't care bit



Step 1:1In the first half stages.

Assume there are arbitrary inputs at the first stage
like above. The (Table 1) shows an example of a de-
composition for SE’s setting at the first half stages
and their linkages according to arbitrary inputs at each
stage. For stage 0, the switches can be set such that
both upper and lower outputs are composed of (¢000,
c001, ¢010, c011, ¢100, 101, ¢110, and cl11) except
bit b3, where ¢ is don’t care bit. For stage 1, each block
can be decomposed independently. Similarly they also
consist of (cc00, cc01, ec10, and ccl1) except bits b,
and b,. At last, for stage 2, there are eight subblocks
such as (cecO and cecl) except bits b3, b; and b,. At
each stage of (Table 1), 0 and 1 mean straight and
cross connection, respectively

Step 2:In the middle stages.

From the proved Theorem 1 and procedure, the
SE’s setting at stage 3 is shown in (Table 2).

{Table 2) The SE's setting in the middle stages for N=16

6,cc10 3,ccll 5,ec01 1,ec01
9,cc01 10,cc10 4,cc00 14,cc10
0 1 0 0

upper 11,ecll 8,cc00 2,ccl0 12,cc00
lower 0,cc00 13,c¢01 7,ccll 15,ccl1
sig.2 i 0 1 1

*d is don’t care group

Step 3:In the last half stages.

Once all permutations from the middle stage are
ready for no conflict, the control bit position can be
fixed from bit b, of stage 5 to bit &; of stage 8 sequ-
entially. In (Table 3), the connection can be shown
by con-bit (0 is upper output, and 1 is lower output).

Eventually, the nine stages reverse shuffle/exchange
networks in (Fig. 6) for N=16 shows the routing of
the example arbitrary permutation p that is obtained
from the result of (Table 1), 2 and 3.
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(Table 3) The SE's setting in the last half stages for N =16

stg.4 0 0 1 1
stg.5 0 0 0 1
stg.6 1 0 1 1
stg.7 0 0 0 0

4. Conclusions

This paper presents a new routing permutation for
rearrangeability on the reverse shuffle/exchange multi-
stage interconnection network. It is the same upper
bound as 3logN —3 stages|5] for N =16. However, the
algorithm for arbitrary permutations on the network
is totally different. In order to satisfy the symmetric
structure of theoretical the lower bound for the rear-
rangeability it is necessary to emulate it through the
middle stages. Thus, a simple method to understand
the rearrangeability with 2logN stages on reverse shuf-
fle/exchange network (N<16) can be realized. This
result gives us the fact that we arc capable of estab-
lishing the possibility of new upper bound for N>16.
We are currently studying the problem of proving

that eleven stages are sufficient for the rearrangeabi-
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(Fig. 6) The example of routing permutation
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lity of a reverse shuffle/exchange network. This work
will improve the upper bound for N> 16 if it is proven.
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