AN ISOMORPHISM BETWEEN R2-PLANES

JANG-HWAN IM

Abstract. We define a vertical mapping between two standard R^2 -planes. Then we can show that a vertical mapping is an isomorphism between two standard R^2 -planes if and only if the induced product space of them has a plane which is neither vertical nor horizontal planes.

1. Introduction

A topological R^3 -space is an incidence structure $(\mathcal{P}^3, \mathcal{L})$ which satisfies the following three axioms:

- (1) The incidence structure $(\mathcal{P}^3, \mathcal{L})$ is a linear space, i.e., each pair p, q of distinct points is contained in a unique line $p \lor q \in \mathcal{L}$.
- (2) The point set \mathcal{P}^3 is a topological space homeomorphic to the real line R.
- (3) The mapping $\vee : \mathcal{P}^3 \times \mathcal{P}^3 \setminus \triangle \longrightarrow \mathcal{L}$ is continuous, where $\triangle := \{(p,p) : p \in \mathcal{P}^3\}$ denotes the diagonal and \mathcal{L} carries the topology of Hausdorff-convergence.

A plane in a R^3 -space $(\mathcal{P}^3,\mathcal{L})$ is a closed subset $E\subseteq\mathcal{P}^3$ which is homeomorphic to R^2 such that $p\vee q\subseteq E$ for each pair of distinct points $p,q\in E$. Obviously, (E,\mathcal{L}_E) is a R^2 -plane, where $\mathcal{L}_E:=\{l\in\mathcal{L}:l\subseteq E\}$. A R^3 -space is called *planar* if each triple $p,q,r\in\mathcal{P}^3$ of non-collinear points is contained in a (unique) plane. The theory of planar R^3 -spaces has been developed in the papers [1,2,3,4]. In particular, it is shown that each planar R^3 -spaces can be embedded in the ordinary 3-dimensional affine space over the real numbers as a convex subset, and that the group of all collineations is

Key words: topological geometry, space geometry. 1991 AMS Subject Classification: 51H10.

a Lie group. This implies that if we construct another type of \mathbb{R}^3 -spaces, planar property must be removed. In [3] Betten introduced new models in topological \mathbb{R}^3 -spaces.

Among them we are interested in the class of product spaces of two standard R^2 -planes. A R^2 -plan (R^2, \mathcal{L}) is called standard if all vertical lines $\{x\} \times R$ are in \mathcal{L} and the other lines $l \in \mathcal{L}$ can be written as the graph (f) of a continuous mapping $f: R \longrightarrow R$. Let $E_1 = (R^2, \mathcal{L})$ and $E_2 = (R^2, \mathcal{S})$ be two standard R^2 -planes. We identify E_1 with the horizontal plane z = 0 and E_2 with the vertical plane y = 0 in $R^3 = \{(x, y, z) : x, y, z \in R\}$, respectively. We define on R^3 the following curves as lines: $f \times g := \{(x, f(x), g(x)) : x \in R\}$, where f and g lines of E_1 and E_2 , respectively. Then it can be shown that for each two points (x_1, y_1, z_1) and (x_2, y_2, z_2) with $x_1 \neq x_2$ there exists a unique line $f \times g$ which contains the given two points. To be a R^3 -space, each vertical plane $\{x\} \times R^2$ with $x \in R$ must be a R^2 -plane. In [3] he asked some questions about the geometrical structures. One of them is "can we determine all planes of a given product space?". The already existed planes in a given product space are the planes over the lines on E_1 and over the lines on E_2 , respectively.

In [6, 7] R^2 -divisible R^3 -spaces are studied. A product space of two standard R^2 -planes is rather appropriate to a R^2 -divisible R^3 -space. If we regard these product spaces of two standard R^2 -planes as R^2 -divisible R^3 -spaces, then we prove that the following result which answers one of Betten's questions in [3]: in a product space of two standard R^2 -planes, two given planes are not isomorphic if and only if there exist no further planes. In the proof of this result we found a nice mapping, so-called a vertical mapping.

We start with some basic definitions of R^2 -divisible R^3 -spaces. Let \mathcal{P}^n denote a topological space which is homeomorphic to R^n . A partition $\Lambda := \{S_i : i \in \mathcal{A}\}$ in \mathcal{P}^n $(n \geq 2)$ is divisible if each S_i is closed in \mathcal{P}^n and homeomorphic to \mathcal{P}^{n-1} . The topology of Hausdorff-convergence can be defined on the set \mathcal{U} of all non-empty closed subsets of \mathcal{P}^3 . It is defined by an explicit metric which is described in [5, Chap. 1.3].

- **0.1 Definition.** Let \mathcal{L} be a system of subsets of \mathcal{P}^3 , and let $\Lambda = \{S_i : i \in \mathcal{A}\}$ be a divisible partition in \mathcal{P}^3 . The elements of \mathcal{P}^3 are called points, and the elements of \mathcal{L} are called lines. We say that $(\mathcal{P}^3, \mathcal{L}, \Lambda)$ is a topological R^2 -divisible R^3 -space if the following axioms hold:
 - (1) Each line is closed in the topological space \mathcal{P}^3 and is homeomorphic to R.

- (2) For all $x \in S_i, y \in S_j$ with $i \neq j$ there is a unique line $l \in \mathcal{L}$ with $x, y \in l$. For i = j there are no lines $l \in \mathcal{L}$ with $x, y \in l$.
- (3) The mapping

$$\vee : \mathcal{P}^3 \times \mathcal{P}^3 \setminus \cup_{i \in \mathcal{A}} (S_i \times S_i) \longrightarrow \mathcal{L}$$

is continuous, where $\boldsymbol{\mathcal{L}}$ has the induced topology of Hausdorff-convergence.

The joining line in (2) is denoted by $l = x \vee y$. Let $\mathcal{P}_{S_i}^3 \times \mathcal{P}_{S_j}^3$ denote the set $\mathcal{P}^3 \times \mathcal{P}^3 \setminus \bigcup_{i \in \mathcal{A}} (S_i \times S_i)$. If $\Lambda = \{S_i : i \in \mathcal{A}\}$ is a divisible partition in \mathcal{P}^2 , then we can similarly define a R-divisible R^2 -plane $(\mathcal{P}^2, \mathcal{L}, \Lambda)$. Let $(\mathcal{P}^3, \mathcal{L}, \Lambda)$ be a R^2 -divisible R^3 -space. Then we will consider the following additional axiom:

(Exc) (Continuously existence condition for planes) Given three points $a, b, c \in \mathcal{P}^3$ with $(a, b) \in \mathcal{P}^3_{S_i} \times \mathcal{P}^3_{S_j}$, $c \in S_c$ and $c \notin a \vee b$, then there exists a continuous mapping $\varphi : J \longrightarrow \mathcal{E}$ such that $c \vee z \subseteq \varphi(z)$ for all $z \in J$, where J = [a, b] if $S_c \cap [a, b] = \emptyset$, $J = [a, b] \setminus \{w\}$ if $S_c \cap [a, b] = \{w\}$.

- **0.2 Definition.** Let $(\mathcal{P}^3, \mathcal{L}, \Lambda)$ be a R^2 -divisible R^3 -space. A subset $E \subseteq \mathcal{P}^3$ is called a plane of $(\mathcal{P}^3, \mathcal{L}, \Lambda)$ if the following conditions hold:
 - (1) E is closed in \mathcal{P}^3 and homeomorphic to \mathbb{R}^2 ,
 - (2) $(E, \mathcal{L}_E, \Lambda_E)$ is a R-divisible R^2 -plane, where $\mathcal{L}_E := \{l \in \mathcal{L} : l \subseteq E\}$ and $\Lambda_E = \{E \cap S_i : i \in \mathcal{A}\}$ is a divisible partition in E.
- **0.3 Definition.** Let $(\mathcal{P}^3, \mathcal{L}, \Lambda)$ be a topological R^2 -divisible R^3 -space. A subset $E \subseteq \mathcal{P}^3$ is called an *incidence plane* of $(\mathcal{P}^3, \mathcal{L}, \Lambda)$ if it satisfies the following properties:
 - (1) If $x, y \in E$ with $x \lor y \in \mathcal{L}$, then $x \lor y \subseteq E$.
 - (2) E is non-trivial, i.e., $E \neq \mathcal{P}^3$, and E is not contained in a line.

If $l, g \in \mathcal{L}$ are two lines with $l \cap g \neq \emptyset$, then their intersection is a point, which will be denoted by $l \wedge g$. Let $(\mathcal{P}^3, \mathcal{L}, \Lambda)$ be a R^2 -divisible R^3 -space. Since lines are homeomorphic to R, there is a natural notion of intervals in lines. If $l \in \mathcal{L}$ is a line and $p, q \in l$ are two (not necessarily distinct) points

on l, then we denote the *interval* which consists of all points on l between p and q by the symbol [p,q]. The *open interval* between p and q is defined as $(p,q):=[p,q]\setminus\{p,q\}$. A subset $K\subseteq\mathcal{P}^3$ is called *convex* if it contains with each pair $p,q\in K$ also the interval [p,q]. If $a,b,c\in\mathcal{P}^3$ are three non-collinear points, then the *triangle* with vertices a,b,c is the following set: $[c,[a,b]]:=\{x\in\mathcal{P}^3:\exists p\in[a,b] \text{ such that }x\in[c,p]\}$. In R^2 -planes we can consider the same definitions. A R^2 -plan (R^2,\mathcal{L}) is called *standard* if all the vertical lines $\{x\}\times R$ are in \mathcal{L} and the other lines $l\in\mathcal{L}$ can be written as the graph (f) of a continuous mapping $f:R\longrightarrow R$.

(Product spaces of two standard R^2 -planes) Let $E_1 = (R^2, \mathcal{L})$ and $E_2 = (R^2, \Im)$ be two standard R^2 -planes. We identify E_1 with the horizontal plane z = 0 and E_2 with the vertical plane y = 0 in $R^3 = \{(x, y, z) : x, y, z \in R\}$, respectively. We define on R^3 the following curves as lines: $f \times g := \{(x, f(x), g(x)) : x \in R\}$, where f and g lines of E_1 and E_2 , respectively. Then we can construct on R^3 a R^2 -divisible R^3 -space.

0.4 Definition. Let $E_1 = (R^2, \mathcal{L})$ and $E_2 = (R^2, \mathfrak{D})$ be standard R^2 -planes. Let $\mathcal{L} \times \mathfrak{D} = \{f \times g : f \in \mathcal{L}, g \in \mathfrak{D}\}$ and let $\Lambda = \{\{x\} \times R^2 : x \in R\}$. The incidence structure $(R^3, \mathcal{L} \times \mathfrak{D}, \Lambda)$ is called the product space of two standard R^2 -planes E_1 and E_2 and written by $(R^3, \mathcal{L} \times \mathfrak{D}, \Lambda)_{E_1 \times E_2}$. In a product space $(R^3, \mathcal{L} \times \mathfrak{D}, \Lambda)_{E_1 \times E_2}$ there exist always the planes on the lines of E_1 and the planes on the line of E_2 . A plane on a line of E_1 is called a vertical plane, and a plane on a line of E_2 is called a horizontal plane.

0.5 Lemma. Let $(R^3, \mathcal{L} \times \Im, \Lambda)_{E_1 \times E_2}$ be the product space of two standard R^2 -planes E_1 and E_2 . Then $(R^3, \mathcal{L} \times \Im, \Lambda)_{E_1 \times E_2}$ is a topological R^2 -divisible R^3 -space which satisfies the axiom (Exc).

0.6 Lemma. Let $(R^3, \mathcal{L} \times \Im, \Lambda)_{E_1 \times E_2}$ be the product space of two standard R^2 -planes E_1 and E_2 . Then each incidence plane $E \subseteq R^3$ is a plane of $(R^3, \mathcal{L}, \Lambda)$.

0.7 Lemma. Let $E \subseteq \mathbb{R}^3$ be a plane of $(\mathbb{R}^3, \mathcal{L} \times \Im, \Lambda)_{E_1 \times E_2}$. Then:

- (1) If E contains two vertical points, i.e., $(x, y, z_1), (x, y, z_2) \in E$ with $z_1 \neq z_2$, then E is a vertical plane.
- (2) If E contains two horizontal points, i.e., $(x, y_1, z), (x, y_2, z) \in E$ with $y_1 \neq y_2$, then E is a horizontal plane.

Proof. (1). Let p,q be two vertical points with $p,q \in E$. By [7, lemma 2.2], the joining line $l := p \lor q = \{x\} \times \{y\} \times R$ is contained in E. Let $a \in E \setminus \{x\} \times R^2$, and let V be a vertical plane with $a \in V$ and $l \subseteq V$. Then $a \lor p$ and $a \lor q$ lie on E. Consequently, E = V is a vertical plane. (2). The assertation can be proved as (1).

(Vertical Mappings) Let (R^2, \mathcal{L}) and (R^2, \Im) be two standard R^2 -planes. Choose two distinct (not vertical) lines $f_1 = \{(x, f_1(x)) : x \in R\}, f_2 =$ $\{(x, f_2(x)) : x \in R\} \in \mathcal{L} \text{ and } g_1 = \{(x, g_1(x)) : x \in R\}, g_2 = \{(x, g_2(x)) : x \in R\}, g_2 =$ $x \in R$ $\in \mathcal{S}$, respectively, such that $f_1 \wedge f_2, g_1 \wedge g_2 \in \{c\} \times R$ for some $c \in R$. Then the pair of lines f_1, f_2 and the pair of lines g_1, g_2 determine four convex open sets in \mathbb{R}^2 , respectively. We denote the four convex open sets by A_i , B_i , i=1,2,3,4, respectively. For $p \in A_i$ let $\mathcal{L}_p^2 = \{f \in \mathcal{L}_p : f \land f_1 \neq \emptyset, f \land f_2 \neq \emptyset, f \text{ is not vertical } \}$, and for $p \in B_i$ let $\Im_p^2 = \{g \in \Im_p : g \land g_1 \neq \emptyset, g \land g_2 \neq \emptyset, g \text{ is not vertical } \}$. Then it can be easily shown that $|\mathcal{L}_p^2| \geq 2$ and $|\Im_p^2| \geq 2$. Let $(x,y) \in A_i, i \in \{1,2,3,4\}$. Then we can choose two distinct lines $h_1 = \{(x, h_1(x)) : x \in R\}$ and $h_2 = \{(x, h_2(x)) : x \in R\}$ in $\mathcal{L}^2_{(x,y)}$. Let $h_1 \wedge f_1 := (x_1, y_1), h_1 \wedge f_2 := (x_2, y_2), h_2 \wedge f_1 := (x_3, y_3), h_2 \wedge f_2 := (x_4, y_4).$ Since non-vertical lines can be written as the graph(f) of a continuous function. We have also following intersection points: $\{x_1\} \times R \wedge g_1 :=$ $(x_1, z_1), \{x_2\} \times R \wedge g_2 := (x_2, z_2), \{x_3\} \times R \wedge g_1 := (x_3, z_3), \{x_4\} \times R \wedge g_2 :=$ (x_4, z_4) . Hence there exist two lines $j_1, j_2 \in \Im$ with $j_1 = (x_1, z_1) \vee (x_2, z_2)$ and $j_2 = (x_3, z_3) \vee (x_4, z_4)$. Since each triangle is convex in \mathbb{R}^2 -planes, it is clear that $j_1 \wedge j_2 (\neq \emptyset) \in B_i, i = 1, 2, 3, 4$, respectively. If the intersection point $j_1 \wedge j_2$ is uniquely determined by choosing h_1, h_2 independently, and if $j_1 \wedge j_2, h_1 \wedge h_2$ lie on the same vertical line $\{d\} \times R$, then we can consider a mapping in the following manner:

$$\varphi: (R^2, \mathcal{L}) \longrightarrow (R^2, \Im);$$

 $(x, f_1(x)) \longrightarrow (x, g_1(x)),$
 $(x, f_2(x)) \longrightarrow (x, g_2(x)),$

for
$$(x,y) \in A_i, i = 1, 2, 3, 4$$
, and $h_1, h_2 \in \mathcal{L}^2_{(x,y)}$
 $(x,y) = h_1 \wedge h_2 \longrightarrow j_1 \wedge j_2 = (x,z), j_1, j_2 \in \Im^2_{(x,z)}$

The above-defined mapping φ is called a *vertical mapping* between (R^2, \mathcal{L}) and (R^2, \mathfrak{P}) . For a standard R^2 -plane (R^2, \mathcal{L}) there exists always a vertical mapping $\varphi: (R^2, \mathcal{L}) \longrightarrow (R^2, \mathcal{L})$ which is identity.

2. Main Results

The main result of this section is the following theorem.

0.8 Theorem. Let $E_1 = (R^2, \mathcal{L})$ and $E_2 = (R^2, \Im)$ be two standard R^2 -planes, and let $(R^3, \mathcal{L} \times \Im, \Lambda)_{E_1 \times E_2}$ be the product space of E_1 and E_2 . If there exists a plane which is neither vertical nor horizontal plane if and only if there exists a vertical mapping $\varphi : (R^2, \mathcal{L}) \longrightarrow (R^2, \Im)$ which is an isomorphism.

Proof. Suppose that E is a plane which is neither vertical nor horizontal plane. Let $p \in E$, and let $l, h \in \mathcal{L}$ with $l, h \subseteq E$ and $l \wedge h = p$. Since E is neither vertical nor horizontal plane, we can denote two lines l, h in the following manner: $l = \{(x, f_1(x), g_1(x)) : x \in R\}, h = \{(x, f_2(x), g_2(x)) : x \in R\}$ $x \in R$ with $f_1 \neq f_2 \in \mathcal{L}, g_1 \neq g_2 \in \Im$ and $p = (x_0, y_0, z_0) = l \wedge h$. The two lines l and g determine in E four convex open sets K_1, K_2, K_3 and K_4 . By the projections on $\langle x, y \rangle$ and $\langle x, z \rangle$ -coordinate planes, we can consider the projections of two lines l and h in the plane E_1 and E_2 , respectively. Let $l_1 := \{(x, f_1(x)) : x \in R\}, h_1 := \{(x, f_2(x)) : x \in R\}$ in E_1 , and let $l_2 := \{(x, g_1(x)) : x \in R\}, h_2 := \{(x, g_2(x)) : x \in R\}$ in E_2 . Since $p=(x_0,y_0,z_0)\in l\wedge h$, it follows that $l_1\wedge h_1=(x_0,y_0)$ and $l_2 \wedge h_2 = (x_0, z_0)$. Through l_1 and h_1 (l_2 and h_2 , respectively) E_1 (E_2 , respectively) is divided into four convex open sets A_i (B_i , respectively), i=1,2,3,4. For $p\in A_i$ $(B_i,$ respectively), i=1,2,3,4, let $\mathcal{L}_p^2=\{f\in\mathcal{L}_p:$ $f \wedge l_1 \neq \emptyset, f \wedge h_1 \neq \emptyset, f$ is not vertical $\}$ and $\Im_p^2 = \{g \in \Im_p : g \wedge l_2 \neq \emptyset, g \wedge h_2 \neq \emptyset, g \wedge h_1 \neq \emptyset, g \wedge h_2 \neq \emptyset, g \wedge h_1 \neq \emptyset, g \wedge h_2 \neq \emptyset, g \wedge h_2$ \emptyset , g is not vertical \}. We consider the both R^2 -planes at the same time on $R^2 = \{(x,y) : x,y \in R\}$. Then it is clear that $l_1 \wedge h_1, l_2 \wedge h_2 \in \{y_0\} \times R$. Let $(x, y) \in A_i, i = 1, 2, 3, 4$, and choose $k_1, k_2 \in \mathcal{L}^2_{(x,y)}$ with $k_1 \neq k_2$. Let $k_1 \wedge l_1 = (x_1, y_1), \ k_1 \wedge h_1 = (x_2, y_2), \ k_2 \wedge l_1 = (x_3, y_3) \ \text{and} \ k_2 \wedge h_1 = (x_4, y_4).$ Let $\{x_1\} \times R \wedge l_2 := (x_1, z_1), \{x_2\} \times R \wedge h_2 = (x_2, z_2), \{x_3\} \times R \wedge l_2 := (x_3, z_3)$

and $\{x_4\} \times R \wedge h_2 =: (x_4, z_4)$. Hence let $j_1, j_2 \in \Im$ with $j_1 = (x_1, z_1) \vee (x_2, z_2)$ and $j_2 = (x_3, z_3) \vee (x_4, z_4)$. Since each triangle in E_2 is convex, it is true that $j_1 \wedge j_2 \neq \emptyset \in B_i$, i = 1, 2, 3, 4. Let $m_1 := \{x, k_1(x), j_1(x)) : x \in R\}$ and $m_2 := \{(x, k_2(x), j_2(x)) : x \in R\}$. Since each triangle in E is convex, it follows that $m_1 \wedge m_2(\neq \emptyset) = (x, y, z) \in K_i$, i = 1, 2, 3, 4. Consequently we have $j_1 \wedge j_2 = (x, z)$. This shows that $k_1 \wedge k_2, j_1 \wedge j_2 \in \{y\} \times R$. We can define a mapping in the following manner:

$$arphi: (R^2,\mathcal{L}) \longrightarrow (R^2,\Im);$$
 $(x,f_1(x)) \longrightarrow (x,g_1(x)),$
 $(x,f_2(x)) \longrightarrow (x,g_2(x)),$
for $(x,y) \in A_i, i=1,2,3,4, \text{ and } h_1,h_2 \in \mathcal{L}^2_{(x,y)}$
 $(x,y) = h_1 \wedge h_2 \longrightarrow j_1 \wedge j_2 = (x,z), j_1, j_2 \in \Im^2_{(x,z)}$

We have to show that φ is well-defined, i.e., the mapping φ is independent of choosing of $k_1, k_2 \in \mathcal{L}^2_{(x,y)}$. Let $\bar{k}_1, \bar{k}_2 \in \mathcal{L}^2_{(x,y)}$ with $\bar{k}_1 \neq \bar{k}_2$, and let $\bar{k}_1 \wedge l_1 = (\bar{x}_1, \bar{y}_1), \bar{k}_1 \wedge h_1 = (\bar{x}_2, \bar{y}_2), \bar{k}_2 \wedge l_1 = (\bar{x}_3, \bar{y}_3)$ and $\bar{k}_2 \wedge h_1 = (\bar{x}_4, \bar{y}_4)$. Similarly, let $\bar{j}_1 := (\bar{x}_1, \bar{z}_1) \vee (\bar{x}_2, \bar{z}_2)$ and $\bar{j}_2 := (\bar{x}_3, \bar{z}_3) \vee (\bar{x}_4, \bar{z}_4)$ with $(\bar{x}_1, \bar{z}_1), (\bar{x}_3, \bar{z}_3) \in l_2$ and $(\bar{x}_2, \bar{z}_2), (\bar{x}_4, \bar{z}_4) \in h_2$. Then $\bar{m}_1 := \{(x, \bar{k}_1(x), \bar{j}_1(x)) : x \in R\}$ and $\bar{m}_2 := \{(x, \bar{k}_2(x), \bar{j}_2(x)) : x \in R\}$ lie on E. Since each triangle in E is convex, it follows that $\bar{m}_1 \wedge \bar{m}_2 = (x, y, \bar{z})$. By lemma 1.7, it follows that $z = \bar{z}$. φ is well-defined. Obviously φ is injective. By lemma 1.7, φ is surjective. By convexity in E, it follows that for $l \in \mathcal{L}$ $l^{\varphi} \in \mathfrak{F}$. Cnsequently, φ is an isomorphism.

Suppose that there exists a vertical mapping $\varphi:(R^2,\mathcal{L})\longrightarrow (R^2,\Im)$ which is an isomorphism. Then there exist two distinct (not vertical) lines $f_1=\{(x,f_1(x)):x\in R\}, f_2=\{(x,f_2(x)):x\in R\}\in\mathcal{L} \text{ and } g_1=\{(x,g_1(x)):x\in R\}, g_2=\{(x,g_2(x)):x\in R\}\in\Im, \text{ respectively, such that } f_1\wedge f_2,g_1\wedge g_2\in\{c\}\times R \text{ for some } c\in R.$ Let $l:=\{(x,f_1(x),g_1(x)):x\in R\}$ and $h:=\{(x,f_2(x),g_2(x)):x\in R\}.$ Then $l,h\in\mathcal{L}$ and $l\wedge h\neq\emptyset.$ Let $E:=\{r\in R^3: \text{ there exist } p\in l,q\in h \text{ such that } r\in p\vee q\}.$ Since φ is an isomorphism between (R^2,\mathcal{L}) and (R^2,\Im) , it implies that for the pair of points $r_1,r_2\in E, r_1\vee r_2$ is contained in E. It is clear that $E\neq R^3$. Therefore, E is an incidence plane. By lemma 1.6, E is a plane of $(R^3,\mathcal{L}\times\Im,\Lambda)_{E_1\times E_2}$

0.9 Corollary. Let $E_1 = (R^2, \mathcal{L})$ and $E_2 = (R^2, \Im)$ be two standard R^2 -planes, and let $(R^3, \mathcal{L} \times \Im, \Lambda)_{E_1 \times E_2}$ be the product space of E_1 and E_2 . Then:

- (1) If there exists a plane which is neither vertical nor horizontal plane, then two $E_1 = (R^2, \mathcal{L})$ and $E_2 = (R^2, \Im)$ are isomorphic.
- (2) If $E_1 = E_2 = (R^2, \mathcal{L})$, then there exist planes which are non-vertical or horizontal.

References

- [1] Betten, D.: Topologische Geometrien auf 3-Mannigfaltigkeiten, Simon Stevin 55(1981), 221-235.
- [2] Betten, D.: Flexible Raumgeometrien, Atti. Sem. Mat. Fis. Modena 24(1985), 173-180.
- [3] Betten, D.: Einige Klassen topologischer 3-R ume, Resultate der Math. 12(1987), 37-61.
- [4] Betten, D, Horstmann, C.: Einbetting von topologischen Raumgeometrien auf \mathbb{R}^3 in den reellen affinen Raum, Resultate der Math. 6(1983), 27-35.
- [5] Busemann, H.: The geometry of geodesics, Academic press, New York 1965.
- [6] Im, J.-H.: R^2 -divisible R^3 -R \square ume, Dissertation, Univ. Kiel 1996.
- [7] Im, J.-H.: A class of topological space geometries (to appear).
- [8] Salzmann, H.: Topological planes, Adv. in Math. 2(1967), 1-60.
- [9] Salzmann, H., Betten, D., Grundh□fer, T., H□hl, H., L□wen, R., Stroppel, M.: Compact Projective Planes, De Gruyter. Berin. New York 1995.

DEPARTMENT OF MATHEMATICS IN FACULTY OF NATURAL SCIENCE, CHUNG-ANG UNIVERSITY, 221 HEUKSUK-DONG, DONGJAK-KU, SEOUL 156-756, KOREA.

e-mail: jhim@unitel.co.kr