AN ISOMORPHISM BETWEEN R*PLANES

JaNG-Hwan IMm

Abstract. We define a vertical mapping between two standard R?-planes.
Then we can show that a vertical mapping is an isomorphism between two
standard R2-planes if and only if the induced product space of them has a
plane which is neither vertical nor horizontal planes.

1. Introduction

A topological R3-space is an incidence structure (P3, £) which satisfies
the following three axioms:

(1) The incidence structure (P2, L) is a linear space, i.e., each pair p, q of
distinct points is contained in a unique line pV ¢ € L.

(2) The point set P3 is a topological space homeomorphic to the real line
R.

(3) The mapping V : P3 x P3\ A — L is continuous, where A := {(p, p) :
p € P} denotes the diagonal and L carries the topology of Hausdorff-
convergence.

A plane in a R3-space (P3, L) is a closed subset E C P3 which is homeo-
morphic to R? such that pV g C E for each pair of distinct points p, q € E.
Obviously, (E, Lg) is a R%-plane, where Lg:={le€ L:IC E}. A R3-space
is called planar if each triple p, q,7 € P of non-collinear points is contained
in a (unique) plane. The theory of planar R3-spaces has been developed
in the papers [1, 2, 3, 4]. In particular, it is shown that each planar R®-
spaces can be embedded in the ordinary 3-dimensional affine space over the
real numbers as a convex subset, and that the group of all collineations is
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a Lie group. This implies that if we construct another type of R3-spaces,
planar property must be removed. In [3] Betten introduced new models in
topological R3-spaces.

Among them we are interested in the class of product spaces of two
standard R?-planes. A R?-plan (RZ, L) is called standard if all vertical lines
{z} X R are in £ and the other lines ! € £ can be written as the graph(f) of a
continuous mapping f : R — R. Let E1 = (R?, L) and E; = (R?,9) be two
standard R2-planes. We identify E; with the horizontal plane z = 0 and F»
with the vertical plane y = 0 in R® = {(z,y, 2) : z,y, 2 € R}, respectively.
We define on R3 the following curves as lines: f x g := {(z, f(z),9(z)) : z €
R}, where f and g lines of By and Ej, respectively. Then it can be shown
that for each two points (x1,%1,2 ) and (z2,ys, 22) With 1 # 72 there exists
a unigue line f x g which contains the given two points. To be a R3-space,-
each vertical plane {z} x R? with z € R must be a R%-plane. In [3] he asked
some questions about the geometrical structures. One of them is "can we
determine all planes of a given product space?”. The already existed planes
in a given product space are the planes over the lines on F; and over the
lines on Fj, respectively.

In [6, 7] R*-divisible R3-spaces are studied. A product space of two
standard R?-planes is rather appropriate to a R?-divisible R3-space. If we
regard these product spaces of two standard R2-planes as R?-divisible R3-
spaces, then we prove that the following result which answers one of Betten’s
questions in (3]: in a product space of two standard R2-planes, two given
planes are not isomorphic if and only if there exist no further planes. In the
proof of this result we found a nice mapping, so-called a vertical mapping .

‘We start with some basic definitions of R2-divisible R3-spaces. Let
P" denote a topological space which is homeomorphic to R”. A partition
A:={S;:1¢€ A} in P* (n > 2) is divisible if each S; is closed in P™ and
homeomorphic to P™~1. The topology of Hausdorff-convergence can be de-
fined on the set I/ of all non-empty closed subsets of P3, It is defined by an
explicit metric which is described in {5, Chap. 1.3].

0.1 Definition. Let £ be a system of subsets of P3, and let A = {S;:i €
A} be a divisible partition in P3. The elements of P? are called points, and
the elements of £ are called lines. We say that (P3,£, A) is a topological
R2_divisible R®-space if the following axioms hold:

(1) Each line is closed in the topological space P? and is homeomorphic
to R. ‘ ‘
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(2) For all z € S;,y € S; with ¢ # j there is a unique line | € £ with
z,y € l. For i = j there are no lines | € £ with z,y € l.

(3) The mapping
\/ZP3XP3\U1'GA(S,' XS,') — L

is continuous, where £ has the induced topology of Hausdorff-conver
-gence.

The joining line in (2) is denoted by | =z V y. Let 'Pg’vi X ng denote the set
P? x P3\ Uiea(Si x 8i). If A = {S; : i € A} is a divisible partition in P?,
then we can similarly define a R-divisible R2-plane (P2, L, A). Let (P3, L, A)
be a R2-divisible R3-space. Then we will consider the following additional
axiom:

(Exc) (Continuously existence condition for planes) Given three pointsa, b,c €
P? with (a,b) € 'ngi X'P3J,, c € S; and ¢ € aVb, then there exists a continuous

mapping ¢ : J — & such that ¢V z C ¢(z) for all z € J, where J = [a, b] if
S.N[a,bl =0, J =(a,b] \ {w} if Sc N [a,b] = {w}.

0.2 Definition.  Let (P3 £,A) be a R%divisible R3-space. A subset
E C P3is called a plane of (P3, £, A) if the following conditions hold:

(1) E is closed in P and homeomorphic to R?,

(2) (E,LEg,AEg) is a R-divisible R%-plane, where Lg :={l € L:1 C E}
and Ap = {ENS;:1 ¢ A} is a divisible partition in E.

0.3 Definition. Let (P3, L, A) be a topological RZ-divisible R3-space. A
subset E C P3 is called an incidence plane of (P3, L, A) if it satisfies the
following properties:

(1) fz,yc EwithzVye L, thenzVyC FE.
(2) E is non-trivial, i.e., E # P3, and E is not contained in a line.

If I, g € L are two lines with [ N g # 0, then their intersection is a point,
which will be denoted by I A g. Let (P3, £, A) be a R2-divisible R3-space.
Since lines are homeomorphic to R, there is a natural notion of intervals in
lines. If I € £ is a line and p, g € | are two (not necessarily distinct) points
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on [, then we denote the interval which consists of all points on ! between
p and g by the symbol [p, g]. The open interval between p and q is defined
as (p,q) := [p,q] \ {p,q}. A subset K C P? is called convez if it contains
with each pair p,q € K also the interval [p, q]. If a,b,c € P? are three non-
collinear points, then the triangle with vertices a, b, ¢ is the following set:
[c,[a,b]] := {x € P®: 3p € [a,b] such that = € [¢,p]}. In R%planes we can
consider the same definitions. A R2-plan (R?, £) is called standard if all the
vertical lines {z} x R are in £ and the other lines ! € £ can be written as
the graph(f) of a continuous mapping f : R — R.

(Product spaces of two standard R’-planes) Let E; = (R? £) and
E> = (R?,9) be two standard R%-planes. We identify E; with the horizontal
plane z = 0 and F, with the vertical plane y = 0 in R® = {(z,y,2) :
z,y,z € R}, respectively. We define on R3 the following curves as lines:
f x g := {(z, f(z),9(z)) : * € R}, where f and g lines of E; and Ej,
respectively. Then we can construct on R® a R?-divisible R3-space.

0.4 Definition. Let By = (R% L) and E; = (R% Q) be standard R2-
planes. Let Lx S ={f xg: fc L,g€ S} andlet A= {{z} x R?:z € R}.
The incidence structure (R3, £ x S, A) is called the product space of two
standard RZplanes E; and E; and written by (R3 L x S, A)g xg. In a
product space (R3, £ X S, A)g, xp, there exist always the planes on the lines
of E; and the planes on the line of F3. A plane on a line of F is called a
vertical plane, and a plane on a line of F; is called a horizontal plane.

0.5 Lemma. Let (R3, £ xS, A)g, xE, be the product space of two standard
R?-planes E; and E;. Then (R%, £ x S, A)g,xE, is a topological R%-divisible
R3-space which satisfies the aziom (FExc).

Proof. (6, Abschnitt 9] O
0.6 Lemma. Let (R3 L xS, A)g, xE, be the product space of two standard

R?-planes Ey and E;. Then each incidence plane E C R® is a plane of
(R3, L, A).

Proof. [7, Th. 4.17] O

0.7 Lemma. Let E C R? be a plane of (R3,£ x S, A)p,xp,. Then:
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(1) If E contains two vertical points, i.e., (z,y,21),(z,y,22) € E with
21 # z, then E is a vertical plane.

(2) If E contains two horizontal points, i.e., (z,y1,2), (z,y2, 2) € E with
Y1 # y2, then E is a horizontal plane.

Proof. (1). Let p,q be two vertical points with p,q € E. By {7, lemma
2.2], the joining line ! := pV ¢ = {z} x {y} X R is contained in E. Let
a € E\ {z} x R?, and let V be a vertical plane with a € V and I C V. Then
aVpandaVqlie on E. Consequently, E = V is a vertical plane.

(2). The assertation can be proved as (1). a

(Vertical Mappings) Let (R?, £) and (R?, S) be two standard R2-planes.
Choose two distinct (not vertical) lines fi = {(z, fi(z)) : ¢ € R}, fo =
{(z, fo(z)) : z € R} € Loand g1 = {(z,01(2)) : € R}, 92 = {(x, 02(x)) :
T € R} € S, respectively, such that fi A fa,q1 A g2 € {c} x R for some
¢ € R. Then the pair of lines fi, fo and the pair of lines g;, g» determine four
convex open sets in RZ, respectively. We denote the four convex open sets
by' Ai, By, i = 1,2,3,4, respectively. Forpe A;let L2={f € L,: fAfi #
0, fANf2#0, flsnotvertlcal} and for p € B; letS‘ ~—{ge&‘s‘ aghgL #
D,gAg2 #0, gis not vertical }. Then it can be easﬂy shown that |£2] > 2
and |82| > 2. Let (z,y) € Ai,1 € {1,2,3,4}. Then we can choose two dlstmct
lines h1 = {(z,h1(z)) : ¢ € R} and hy = {(z, h2(z)) : ¢ € R} in E(I y)- Let
A fii=(z1,0), i A fo:= (z2,42), B2 A f1:= (23, 93), B2 A fa := (24, a).
Since non-vertical lines can be written as the graph(f) of a continuous
function. We have also following intersection points: {z;} x R A g; :=
(z1,21), {2} X RAg2:= (22, 22), {z3} Xx RA g1 := (23, 23), {4} X RA g2 :=
(4, z4). Hence there exist two lines ji,j2 € S with ji = (z1,21) V (2, 22)
and j2 = (x3,23) V (x4, z4). Since each triangle is convex in R2-planes, it is
clear that j; A 72(# 0) € Bi,i = 1,2,3,4,respectively. If the intersection
point j1 A ja is uniquely determined by choosing hy, hy independently, and if
Ji A J2, hy A hy lie on the same vertical line {d} x R, then we can consider a
mapping in the following manner:

¢ (R L) — (R, 9);

("L', fl(x)) - (:E, g1 ("E))a
(z, f2(z)) — (=, g2(z)),
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for (z,y) € Aii =1,2,3,4, and hy, hy € E%z’y)

(z,y) = hi Ahg — ji A jo.= (=, 2), 41, 52 € Stz

The above-defined mapping ¢ is called a vertical mapping between (R?, L)
and (R?,S). For a standard R*plane (R?, L) there exists always a vertical
mapping ¢ : (R?, L) — (R?, £) which is identity.

2. Main Results

The main result of this section is the following theorem.

0.8 Theorem. Let Ey = (R% L) and E; = (R?,9) be two standard R2-
planes, and let (R3,L x S, A)E,xg, be the product space of E; and E. If
there exists a plane which is neither vertical nor horizontal plane if and
only if there erists a vertical mapping ¢ : (R2, L) — (R% Q) whick is an
isomorphism.

Proof. Suppose that E is a plane which is neither vertical nor horizontal
plane. Let p € F, and let [,h € £ with [,h C E and [ Ah = p. Since F
is neither. vertical nor horizontal plane, we can denote two lines [, & in the
following manner: ! = {(z, fi(z), 91(2)) : # € R}, h = {(z, f2(x), g2()) :
x € R} with fi # fa € £, g1 # 92 € S and p = (zo,y0,20) = I A k.
The two lines | and g determine in F four convex open sets Ki, K, K3 and
K4. By the projections on < z,y.>- and < z,z >-coordinate planes, we
can consider the projections of two lines [ and h in the plane Ej and Fj,
respectively. Let l; := {(z, fi(z)) : ¢ € R}, h1 := {(=, fo(z)) : = € R}
in Fy, and let Iy := {(z,91(z)) : ¢ € R}, hy := {(z,92(x)) : © € R} in
F,. Since p = (zo,%0,2) € ! Ah, it follows that {j A by = (zo,y0) and
la A ha = (xo, ). Through l; and hy ( l2 and hg, respectively) Ey ( Ej,
respectively) is divided into four convex open sets A; ( Bi, respectively),
1 =1,2,3,4. For p € A; (B, respectively) , 1 = 1,2,3,4, let Cf, ={fel,:
FAlL #0, fAhy # 0, f is not vertical } and 8‘12, = {g € Qp: gAla #0,gNhs #
B, g is not vertical }. We consider the both R2-planes at the same time on
R? = {(z,y) : ,y € R}. Then it is clear that Ij A by, l2 A hy € {%0} X R.
Let (z,y) € Ai,i = 1,2,3,4, and choose ki, k; € [,%z’y) with ki # k. Let
ki Al = (21, 1), ki Ahy = (x2,52), k2 Al = (x3,3) and ko A hy = (24, 14)-
Let {&1} X RAly := (21, 21), {z2} X RAhy = (z2, 22), {z3} X RAlp := (3, 23)
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and {z4} X RAhy =: (x4, z4). Hence let j;, jo € S with j; = (1, 21) V (2, 22)
and jo = (z3,23) V (x4, 24). Since each triangle in F, is convex, it is true
that s Ajo #0 € By, i = 1,2,3,4. Let my := {z, ki(z), 1(z)) : ¢ € R}
and my := {(z, k2(x), j2(z)) : £ € R}. Since each triangle in F is convex, it
follows that my A mo(# 0) = (z,y,2) € Ki, i = 1,2, 3,4. Consequently we
have j; A j2 = (z, z). This shows that k; A k2, 51 A j2 € {y} x R. We can
define a mapping in the following manner:

¢ (R L) — (R%9);

(.’I?, fl(x)) - (l‘, (4} (.’B)),
("1:1 f2((11)) - (;17, gz(.t)),

for (x,y) € 4;,1=1,2,3,4, and hy, hy € AC?x,y)

(@) =h1ANhg — 1 A j2 = (T, 2), 51, 2 € %%x‘z)

We have to show that.¢ is well-defined, i.e., the mapping ¢ is independent of
choosing of ki, ks € [’%ny)‘ Let ki, kp € [,%z.y) with k1 # ko, and let by Al =
(@1, 51 ki AR = (2, 2), ke Al = (£3,13) and k2 ARy = (£3, ¥a). Similarly,
let 1 := (&1, £1)V(T2, £2) and jp = (3, B)V(Ty, £2) With (5, &), (£3, ) € b2
and (&2, 23), (€4, Z4) € ho. Then my = {(z,ki(z), i(z)) : z € R} and
ma = {(z, k2(z), j2(z)) : € R} lie on E. Since each triangle in F is
convex, it follows that m; Ama = (x,y, Z). By lemma 1.7, it follows that
z = Z. ¢ is well-defined. Obviously ¢ is injective. By lemma 1.7, ¢ is sur-
jective. By convexity in E, it follows that for I € £ I¥ € &. Cnsequently, ¢
is an isomorphism.

Suppose that there exists a vertical mapping ¢ : (R?, £) — (R?, <) which
is an isomorphism. Then there exist two distinct (not vertical) lines fi =
{(z, (@) : ¢ € R}, fa = {(#, f2(@)) : z € R} € £ and g1 = {(z, () :
z € R},g2 = {(z,92(x)) : ¢ € R} € $, respectively, such that f; A
fo,g1 A g2 € {c} X R for some ¢ € R. Let | := {(z, fi(x),g1(x)) : z € R}
and h := {(z, fo(z),g2(z)) : ¢ € R}. Then l,h € L and I Ah # 0. Let
E :={r € R®: thereexist p € l,q € h such that r € pV q}. Since ¢ is
an isomorphism between (R2, £) and (R?,S), it implies that for the pair of
points r1,72 € E, r1Vry is contained in E. It is clear that E # R3. Therefore,
E is an incidence plane. By lemma 1.6, F is a plane of (R3, LXS, A)g, xE, O

0.9 Corollary. Let Ey = (R?, L) and E; = (R%,%) be two standard R2-
planes, and let (R3, L xS, A) g, xE, be the product space of Ey and E,. Then:
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(1) If there ezists a plane which is neither vertical nor horizontal plane,

then two Ey = (R% L) and Ey = (R%,Q) are isomorphic.

(2) If Ey = Ey = (R? L), then there exist planes which are non-vertical
or horizontal.
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