P Wave Velocity Anisotropy and Microcracks of the Pochon Granite Due to Cyclic Loadings

Yeonghwa Kim*, Bo-An Jang* and Byeung Kwan Moon**

ABSTRACT: P wave velocities of core samples from the Pochon granite were measured before and after applications of cyclic loading. Then, distribution of the pre-existing microcracks and microcracks developed due to the cyclic loading was investigated by analyzing P wave velocity anisotropies and microscopic observations from thin sections. Anisotropy constants were calculated with three different ways: (1) C1 between the maximum and the minimum velocities, (2) C1I between velocities measured along the axial direction and the average of six velocities measured in the planes perpendicular to the loading axis (rift plane) and (3) C1II between the maximum and the minimum velocities measured in the plane perpendicular to the loading axis. Among anisotropy constants, C1I was the most effective anisotropy constant to identify the rift plane whose orientation is parallel to the pre-existing microcracks as well as the distribution of stress induced microcracks. C1I decreased after cyclic loading and the relationship between C1I and number of cycles shows comparatively coherent negative trends, indicating that stress induced microcracks are aligned perpendicular to the orientation of pre-existing microcracks and that the amounts are proportional to the number of loading cycles. The difference of anisotropy constants before and after cyclic loading was effective in delineating the level of cracks and we called it Induced Crack Index. Velocity measurements and microscopic observations show that anisotropy was caused mainly due to microcracks aligned to a particular direction.

서 론

미세균열은 암석 내에 존재하는 작은 틈(opening)으로서 대체로 길이가 100 μm 이상이고 이 보다 더 짧은 다른 두면을 가지는 형태(Simmons, Richter, 1976). 또는 현 미경 상에서 발견될 수 있는 크기로서 Aspect ratio 가 0.05이하인 암석 속의 공극(Kranz, 1979)으로 정의되며 암석에 발달한 미세균열의 양 및 분포특성은 암석의 물리적, 학적 특성을 중요한 영향을 미친다(Walsh, 1965; Brace et al., 1965; O’Connell, Budiansky, 1974). 미세균열 열인 미세균열(open microcrack)과 기존의 열린 틈이 2차적으로 충전되어 있는 아문미세균열(healed microcrack)로 나누어지며, 특히 열린미세균열은 암석의 지진파속도에 큰 영향을 미쳐있다. 화강암과 같은 경 상절 암석에 있어서는 낮은 깃털공극(crack porosity) 에도 불구하고 속도 및 이방성에 큰 영향을 미치는 것으로(Nur, Simmons, 1969) 알려지고 있다.

이방성은 암석 내에서 입자의 배열이나 미세균열의 방향성 등에 의해 관찰되는 물리적인 특성으로서 일반적으로 화강암은 균열, 외직렬은 충리, 그리고 변성암은 입리나 관리 구조에 의해 크게 영향을 받고 있는 것으로 알려지고 있다. 이방성의 관찰은 포양 현미경이나 전자 현미경을 이용한 연구 방법이 가장 잘 알려져 있으나 관찰 범 위가 일부에 한정되고 있음이 단점으로 지적된다. 이와과 속도 측정법은 간편한 비파괴 측정법으로서 미세균열의 생성 전후 측정으로 동일시료에서도 비교 분석이 가능하다는 점과 암석 단위의 평균값 확득이 가능하고 정량적
인 결과 제공이 가능하다는 측면에서 암석의 미세구역 및 이방성 연구에 이점을 가지고 있다. 따라서 축포속도 이방성에 대하여 많은 연구결과가 있으며 특히 화강암은 석면 및 암석의 높은 관절구조물 및 밀도차 (Nur, Simmons, 1969)에 의하여 높은 이방성이 기대될 수 있으므로, 화강암을 대상으로 한 연구가 다수 보고되고 있다 (Plumb et al., 1984; Crampin et al., 1986; Nur, 1971).

김영화 등 (1997)은 포천화강암 석재시험에 대해 축 포로해중을 가한 후 포로해중에 따른 축포 속도의 변화, 하중틸치 및 하중상수에 따른 축포 속도의 변화 양상을 보고하였다. 포천 화강암 석재시험에서의 축포 P속도도의 분포는 축방향 (포로해중을 가한 방향과 평행한 방향)과 횡방향 (포로해중을 가한 방향에 수직인 방향)간에 현저한 속도차이를 보였으며 이러한 경향은 초기시료와 하중시료에서 각기 특성을 달리하며 특히 하중시료의 경우에 하중의 수준이 더욱 커질수록 증가하는 특이한 특징을 보였다. 이 논문에서는 김영화 등 (1997)에서와 동일한 시료를 이용하여 포로포로해중을 가한 포로포로해중 석재 시험의 축포속도 분포가 지시하는 이방성의 변화특성을 추적하고, 이를 결과를 현실적으로 관찰한 이배열성의 포로 특성과 연결시킴으로써 화강암 시험에서의 P속도 이방 성의 본질을 규명하고자 하였다. 포천 화강암의 축방향 P속도도 사용되었으며 3차원적으로 추정된 최대 (Vmax) 및 최소 (Vmin) 속도 사이에서 구한 일반적인 이방성계수 외에 축방향과 횡방향 사이에서 나타나는 이방성계수 및 횡방향 내에서의 이방성계수가 사용되었다.

시료 특성 요약

물성 및 암석학적 특성

연구시험은 울산 감천에서 씌밀 내지 씌밀로 유세류 운이 적은 비차질화강암으로 분류되었으며 모래중 석결이 QAP 삼각형에서는 화강암 영역에 속하는 것으로 나타났다. 현미경 관찰 결과 (Fig. 1) 주구성이 골편로는 석면, 사방석, 미사방석, 평방식, 흙으로가 나타나며 부구성이 골편으로 전기석, 백운모, 녹나석, 화석석, 천연모 등이 소량 관찰되었다. 석면은 흉태상 구조를 보이고 과도 표면을 나타내며 사방석은 알바이트 방성, 칼사브-알바이트 방성으로 이루어지고 내구층 밀도구조 (zonal structure)가 관찰되기도 한다. K-정밀은 미사방석, 칼사브, 마이크로카이스트와 일부 정밀석이 있으며 석면을 이루는 포도성 내에는 사방석, 석면, 흙으로가 혼히 포함되어 있다. 양 폭의 백계에서 특정한 형성성이 나타나지 않으며 괴물입

자 형태에 있어서도 이방성의 혼란은 보이지 않는다.

시료의 건조단위중량의 분포는 2.59~2.63 g/cm3 (평균 2.605)의 범위이며 괴물중은 0.86~1.09g (평균 1.03)의 값을 보이고 있다. 축방속도측정 시험과 동일한 측정 온도에서 구해진 암석의 구조적 성수는 일반화강암과 안장 강도가 각각 188와 6.44 MPa이며, 영동은 48 MPa, 포로응력은 0.24, 소의 강도는 65로 나타나고 있다. 전반적으로 실험에 사용된 시료가 통상의 영향이 적고 몰입적으로 비교적 균일한 상태로 있음을 보인다. 아울러 포로응력수준의 결정을 위하여 행해진 괴물속도 100 MPa/sec 상태에서의 동화강도시험에서는 동화강도 206 MPa, 동화강도수 52.59 MPa 및 동화강도로 0.153가 얻되었다.

P파 속도 분포

포천 화강암의 P와 속도의 분포 및 특성은 김영화 등 (1997)에 의하여 보고된 바와 같이 초기시료에서의 3개 6 m/sec~404 m/sec의 범위이며 포로중을 받은 시료에서는 204 m/sec~3620 m/sec의 범위를 보인다. 이를 축 방향과 횡방향으로 구분하여 실험에서 Table 1에서와 같이 요약된다. 무엇보다도 초기시료와 하중시험 공통적으

<p>| Table 1. The range of P wave velocities measured along the axial and the lateral directions. Velocities were measured before application of the cyclic loading and were measured again after application of the cyclic loading. |
|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>P wave velocity (m/sec)</th>
<th>Axial (Vc)</th>
<th>Lateral (Vq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before loading</td>
<td>Range</td>
<td>3244~3580</td>
</tr>
<tr>
<td>Mean</td>
<td>3402</td>
<td>3717</td>
</tr>
<tr>
<td>After loading</td>
<td>Range</td>
<td>3105~3338</td>
</tr>
<tr>
<td>Mean</td>
<td>3224</td>
<td>3130</td>
</tr>
</tbody>
</table>
Fig. 1. Photomicrograph of the Pochon granite.
로 축방향과 움직방향 간에 현저한 속도 차이가 있음이 주
목이다. 초기시료에서 축방향 속도에 비하여 움직방향 속
도가 상대적으로 높을 정도로 보이며, 축방향 시료에
서는 하중접수물 증가함에 따라 움직방향의 속도가 축방향
속도에 근접하거나 축방향 속도보다도 낮은 값을 보이기
사라진다. 이와 같은 속도 역전은 피로하중 시료에서의
축방향 속도가 움직방향에 비하여 현저히 감소했음을 기인
하고 있으며 하중 수준과 하중접수물 영향을 받고 있는
것으로 나타난다.

30° 간격으로 6방향으로 구성되는 움직방향 내에서의 속
도변화의 양상은 초기시료와 하중시료 모두 최대속도방
향과 최소속도방향이 약 90° 벌어져 나타나는 주된 180°
인 쌍인 곡선의 형태로 보인다. 즉, 하중에 의한 속도감쇠
는 주로 초기시료에서 시작하여 나타나는 편향으로
이어나갈음을 알 수 있으며, 이는 하중에 의한 균열의 생성
이 축방향에 행진 가능한 기존의 미세균열을 중심으로 발생하
었음을 시사하고 있다. 따라서 움직방향의 P속도는 피로하중
의 수준과 하중접수물에 크게 영향을 받고 있다.
즉, 피로하중의 수준 증가에 비례하여 감쇠의 폭이 커지
며, 70% 하중접수율에 비하여 80%의 경우가 더 민감하게
속도변화를 야기시키고 있음을 보인다. 이에 따라 축방
향에서의 시료은 약 하중접수율과 하중접수물의
상관이 거의 존재하지 않는다.

연구방법

이 연구는 (1) 압축파로 하중을 전부하여 시료에서 측정
된 속도는 초음파속도로부터 수동압도계를 이용하여 측정
하고 (2) 현미경 관찰을 통하여 미세균열의 분포특성을 확인하고
(3) 이로인한 초음파속도와 미세균열의 관계 및 미세균열
의 발생의 양적 특성, 특히 하중접수물과 횡가무 피로의 영
향을 증명적으로 추적하는 과정으로 구성된다.

비대칭계수 (anisotropy coefficient)는 견조P와 속도
로부터 구해졌으며 3가지 종류의 비대칭계수를 구해졌다.
일반적으로 비대칭계수는 3차원적으로 측정된 각 수동성
분으로부터 나타난 최대속도 (V_{max})과 최소속도 (V_{min})로
부터 1-(V_{max}/V_{min})의 형태로 표현된다 (한병구, 1995).
그러나 초음파속도측정 실험과정에서 에제로 주기적 (rift
plane)에 수직한 방향으로 하중의 축방향이 결정되어 반
복 하중이 가해졌으므로 (Fig. 2), 하중을 전후한 비대칭
을 비교하고 하중에 의한 미세균열의 발생 특성을 효과적
으로 표현하기 위해서는 비대칭의 방향과 범위를 고려한
비대칭계수의 개념이 필요하다. 따라서 본 연구에서는 최
대-최소속도로부터 얻어지는 일반적인 비대칭계수 (이하

\[C_{a} = 1 - (V_{max}/V_{min}) \times 100\% \]

\[C_{d} = 1 - (V_{a}/V_{c}) \times 100\% \]

\[C_{II} = 1 - (V_{II}/V_{i}) \times 100\% \]

미세균열의 분포특성 확인을 위한 현미경관찰을 위하여
10개 시료로부터 각각의 발견물이 있으며, 박판은 피로하중
을 가한 후 하중방향에 수직한 면을 따라 만들어졌다.
미세균열의 관찰은 열린미세균열 (open microcrack)과
아룬미세균열 (healed microcrack)을 함께 관찰하였으며
특히 열린미세균열의 분포특성 관찰에 주력하였다. 열린
미세균열과 아룬미세균열의 구별은 현미경의 적어럴
(closed nical)과 개방약 (open nical) 상태에서의 광학
적 특성 차 (박상옥, 1994)을 이용하여 행해졌다. 미세균
열의 측정 방법은 일반현미경에 mechanical stage를 설치
하여 박판에서 0방향을 북방향으로 임의로 고정하고 배
용 40배 상태에서 0.3mm 단위로 이동하여 횡단면 적으로
사진을 찍어 정량적인 자료 수집을 실시 하였다. 미세

Fig. 2. Sketch of sample preparation showing rift, grain
and hardway planes. The line intersecting between grain
and hardway planes coincides with loading axis. Dashed
lines represent directions of velocity measurement in
the plane perpendicular to the loading axis.
균열의 주방향 통계치는 아문미세균열의 경우 밑면백분율 (percent in number)로 표시되었으며 열린미세균열의 경우에는 길이 백분율 (percent in length)로 표시하였다. 각 방향에서 측정된 10개 시료는 180°방향에 대한 백분율로 환산하여 평균적인 360°방향에서 방향성 표현이 용이한 rose diagram에 도시하여 아문미세균열과 열린미세균열의 방향성을 도시하였다.

파속도의 이방성

조기시료와 하중시료에서 구해진 이방성계수의 분포는 Table 2, 3, 4에 제시되었다. Table 2에 제시된 바와 같이 이방성계수 Cₐ는 조기시료에서 6.4~18.2% (평균 12.6%)이며 하중시료에서는 6.0~18.9% (평균 11.9%)로서 전반적인 값의 분포만으로는 조기시료와 하중시료 간의 차이를 발견할 수 없다. 그러나 조기시료에서는 최소속도가 촉방향에 있지 않고 촉방향에 위치하고 최대속도가 하중방향 내에 분포하고 있음에 비하여 하중시료의 경우에는 이러한 경향이 사라지면서 하층활주의 증가에 따라 최대값 및 최소값이 거의 모두 하중방향 내로집중되는 특징을 보인다. 이와 같은 이방성의 변화 경향은 축-횡방향 이방성계수 (Cₓ,ᵧ)의 변화로 나타난다 (Table 3). 이는 9.5% 내외의 Cₓ 값을 보인 조기시료가 하중을 받으면서 하층활주의 증가에 따라 그 값이 점차 감소하여 올값으로 바뀌는 경향을 보이는 것으로 설명된다. 폐론 속의 값은 축방향속도 (Vₓ)와 하중방향 속도 (Vᵧ)보다는 저자는 것으로 나타난다. 6.0~18.9% (평균 11.4%) 범위로 나타난다 (Table 4). 조기시료에 비하여 하중시료의 Cₓ,ᵧ 이방성계수 증가 경향이 두려이며, 하중 활주의

Table 2. Anisotropy constants, Cₐ, calculated from the maximum and the minimum P wave velocities. Vₓ represents axial velocity and numbers in subscript represent the lateral directions.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Before cyclic loading</th>
<th>After cyclic loading</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vₓ (m/sec)</td>
<td>Vᵧ (m/sec)</td>
</tr>
<tr>
<td>70-2</td>
<td>3775(Vₓ)</td>
<td>3320(Vᵧ)</td>
</tr>
<tr>
<td>70-4</td>
<td>3839(Vₓ)</td>
<td>3380(Vᵧ)</td>
</tr>
<tr>
<td>70-8</td>
<td>3859(Vₓ)</td>
<td>3383(Vᵧ)</td>
</tr>
<tr>
<td>70-16</td>
<td>3921(Vₓ)</td>
<td>3435(Vᵧ)</td>
</tr>
<tr>
<td>70-32</td>
<td>3948(Vₓ)</td>
<td>3579(Vᵧ)</td>
</tr>
<tr>
<td>70-200</td>
<td>3951(Vₓ)</td>
<td>3555(Vᵧ)</td>
</tr>
<tr>
<td>70-400</td>
<td>3935(Vₓ)</td>
<td>3482(Vᵧ)</td>
</tr>
<tr>
<td>70-600</td>
<td>3935(Vₓ)</td>
<td>3473(Vᵧ)</td>
</tr>
<tr>
<td>70-800</td>
<td>3964(Vₓ)</td>
<td>3443(Vᵧ)</td>
</tr>
<tr>
<td>70-1000</td>
<td>3987(Vₓ)</td>
<td>3495(Vᵧ)</td>
</tr>
<tr>
<td>70-2520</td>
<td>3957(Vₓ)</td>
<td>3309(Vᵧ)</td>
</tr>
<tr>
<td>70-2930</td>
<td>3923(Vₓ)</td>
<td>3446(Vᵧ)</td>
</tr>
<tr>
<td>70-3116</td>
<td>3931(Vₓ)</td>
<td>3314(Vᵧ)</td>
</tr>
<tr>
<td>80-2</td>
<td>4014(Vₓ)</td>
<td>3284(Vᵧ)</td>
</tr>
<tr>
<td>80-4</td>
<td>3870(Vₓ)</td>
<td>3406(Vᵧ)</td>
</tr>
<tr>
<td>80-8</td>
<td>3718(Vₓ)</td>
<td>3273(Vᵧ)</td>
</tr>
<tr>
<td>80-16</td>
<td>3841(Vₓ)</td>
<td>3404(Vᵧ)</td>
</tr>
<tr>
<td>80-20</td>
<td>3890(Vₓ)</td>
<td>3484(Vᵧ)</td>
</tr>
<tr>
<td>80-32</td>
<td>3961(Vₓ)</td>
<td>3391(Vᵧ)</td>
</tr>
<tr>
<td>80-40</td>
<td>3477(Vₓ)</td>
<td>3006(Vᵧ)</td>
</tr>
<tr>
<td>80-80</td>
<td>3941(Vₓ)</td>
<td>3472(Vᵧ)</td>
</tr>
<tr>
<td>80-100</td>
<td>4001(Vₓ)</td>
<td>3580(Vᵧ)</td>
</tr>
<tr>
<td>80-110</td>
<td>3855(Vₓ)</td>
<td>3406(Vᵧ)</td>
</tr>
<tr>
<td>80-111</td>
<td>3833(Vₓ)</td>
<td>3328(Vᵧ)</td>
</tr>
<tr>
<td>80-121</td>
<td>3948(Vₓ)</td>
<td>3458(Vᵧ)</td>
</tr>
<tr>
<td>80-134</td>
<td>3940(Vₓ)</td>
<td>3318(Vᵧ)</td>
</tr>
<tr>
<td>Sample</td>
<td>Before cyclic loading</td>
<td>After cyclic loading</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td>Vv</td>
<td>Vr</td>
</tr>
<tr>
<td>70-2</td>
<td>3653</td>
<td>3322</td>
</tr>
<tr>
<td>70-4</td>
<td>3823</td>
<td>3482</td>
</tr>
<tr>
<td>70-8</td>
<td>3731</td>
<td>3383</td>
</tr>
<tr>
<td>70-16</td>
<td>3730</td>
<td>3435</td>
</tr>
<tr>
<td>70-32</td>
<td>3722</td>
<td>3379</td>
</tr>
<tr>
<td>70-200</td>
<td>3827</td>
<td>3555</td>
</tr>
<tr>
<td>70-400</td>
<td>3823</td>
<td>3482</td>
</tr>
<tr>
<td>70-600</td>
<td>3773</td>
<td>3473</td>
</tr>
<tr>
<td>70-800</td>
<td>3808</td>
<td>3343</td>
</tr>
<tr>
<td>70-1000</td>
<td>3755</td>
<td>3495</td>
</tr>
<tr>
<td>70-2520</td>
<td>3801</td>
<td>3309</td>
</tr>
<tr>
<td>70-2930</td>
<td>3754</td>
<td>3446</td>
</tr>
<tr>
<td>70-3116</td>
<td>3703</td>
<td>3314</td>
</tr>
<tr>
<td>80-2</td>
<td>3783</td>
<td>3284</td>
</tr>
<tr>
<td>80-4</td>
<td>3788</td>
<td>3406</td>
</tr>
<tr>
<td>80-8</td>
<td>3590</td>
<td>3273</td>
</tr>
<tr>
<td>80-16</td>
<td>3673</td>
<td>3404</td>
</tr>
<tr>
<td>80-20</td>
<td>3764</td>
<td>3464</td>
</tr>
<tr>
<td>80-32</td>
<td>3770</td>
<td>3391</td>
</tr>
<tr>
<td>80-40</td>
<td>3267</td>
<td>3244</td>
</tr>
<tr>
<td>80-80</td>
<td>3726</td>
<td>3472</td>
</tr>
<tr>
<td>80-100</td>
<td>3841</td>
<td>3580</td>
</tr>
<tr>
<td>80-110</td>
<td>3722</td>
<td>3406</td>
</tr>
<tr>
<td>80-111</td>
<td>3665</td>
<td>3228</td>
</tr>
<tr>
<td>80-121</td>
<td>3755</td>
<td>3458</td>
</tr>
<tr>
<td>80-134</td>
<td>3726</td>
<td>3318</td>
</tr>
</tbody>
</table>

환수에 따라 CII의 CIV과 비슷한 수준까지 증대되기도 한다.

따라서 세 종류의 이방성계수는 초기시료에서 CIV > CII > CIVI의 관계를 보이던 것이 하중시료에서는 CIV > CII > CIV의 순서로 변환한 것으로 나타난다. 정리에 의하여 언제나 가장 큰 값으로 나타나는 CIV는 제외한다.

이러한 변화는 학습이 가해지면 따라 CII가 증가함에 반하여 CIV이 원래의 강소값에 가까운 것으로 나타난다.

Fig. 3은 환수하중시료에서 이방성계수 CIV를 하중시료로 나타낸 것으로서 하중하중계수의 증가에 따라 CIV 값이 감소하는 경향을 보여주고 있다. 이방성계수와 하중하중계수의 관계는 하중수준별로 구분할 때 상관성이 더욱 증가하며, 하중시료에 비하여 80% 하중시료의 경우에도 하중하중계수를 이용한 이방성계수 감소율이 더욱 크게 나타나고 있다.

이러한 경향은 초기시료에서 x축을 하중시키고 동일하게 고정하여 CIV = 시료번호의 관계로 도시하여 작성된 Fig. 4와 비교함으로써 보다 명확하게 제공된다. 즉 Fig. 4에서의 이방성계수-하중하중계수의 관계는 특별한 관계가 없는 것으로 나타나, 하중시료에의 비교를 위하여 군이 fitting을 한다면 회귀곡선식이 Y (CIV) = 0.9으로 평균값에 해당되는 직선이 얻어진다. 이러한 결과는 Fig. 3에서의 CIV값의 감소가 반복하중에 따른 것임을 뒷받침하고 있다. Fig.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Before cyclic loading</th>
<th>After cyclic loading</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vn</td>
<td>Vr</td>
</tr>
<tr>
<td>70-2</td>
<td>3775(Vn)</td>
<td>3442(Vr)</td>
</tr>
<tr>
<td>70-4</td>
<td>3639(Vn)</td>
<td>3538(Vr)</td>
</tr>
<tr>
<td>70-8</td>
<td>3659(Vn)</td>
<td>3591(Vr)</td>
</tr>
<tr>
<td>70-16</td>
<td>3921(Vn)</td>
<td>3591(Vr)</td>
</tr>
<tr>
<td>70-32</td>
<td>3948(Vn)</td>
<td>3496(Vr)</td>
</tr>
<tr>
<td>70-200</td>
<td>3951(Vn)</td>
<td>3735(Vr)</td>
</tr>
<tr>
<td>70-400</td>
<td>3935(Vn)</td>
<td>3677(Vr)</td>
</tr>
<tr>
<td>70-600</td>
<td>3935(Vn)</td>
<td>3641(Vr)</td>
</tr>
<tr>
<td>70-800</td>
<td>3964(Vn)</td>
<td>3600(Vr)</td>
</tr>
<tr>
<td>70-1000</td>
<td>3987(Vn)</td>
<td>3570(Vr)</td>
</tr>
<tr>
<td>70-2520</td>
<td>3957(Vn)</td>
<td>3630(Vr)</td>
</tr>
<tr>
<td>70-2930</td>
<td>3923(Vn)</td>
<td>3626(Vr)</td>
</tr>
<tr>
<td>70-3116</td>
<td>3931(Vn)</td>
<td>3462(Vr)</td>
</tr>
<tr>
<td>80-2</td>
<td>3867(Vn)</td>
<td>3604(Vr)</td>
</tr>
<tr>
<td>80-4</td>
<td>3870(Vn)</td>
<td>3605(Vr)</td>
</tr>
<tr>
<td>80-8</td>
<td>3718(Vn)</td>
<td>3515(Vr)</td>
</tr>
<tr>
<td>80-16</td>
<td>3841(Vn)</td>
<td>3514(Vr)</td>
</tr>
</tbody>
</table>
Table 4. Continued.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Before cyclic loading</th>
<th>After cyclic loading</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V_{max} (m/sec)</td>
<td>V_{max} (m/sec)</td>
</tr>
<tr>
<td>80-20</td>
<td>3890V_{10}</td>
<td>3640V_{10}</td>
</tr>
<tr>
<td>80-32</td>
<td>3961V_{10}</td>
<td>3613V_{10}</td>
</tr>
<tr>
<td>80-40</td>
<td>3477V_{10}</td>
<td>3006V_{10}</td>
</tr>
<tr>
<td>80-80</td>
<td>3941V_{10}</td>
<td>3535V_{10}</td>
</tr>
<tr>
<td>80-100</td>
<td>4001V_{10}</td>
<td>3674V_{10}</td>
</tr>
<tr>
<td>80-110</td>
<td>3855V_{10}</td>
<td>3534V_{10}</td>
</tr>
<tr>
<td>80-111</td>
<td>3831V_{10}</td>
<td>3470V_{10}</td>
</tr>
<tr>
<td>80-121</td>
<td>3948V_{10}</td>
<td>3557V_{10}</td>
</tr>
<tr>
<td>80-134</td>
<td>3940V_{10}</td>
<td>3573V_{10}</td>
</tr>
</tbody>
</table>

Fig. 3. The relationship between anisotropy constants C_{I} and numbers of loading cycles in samples after applications of cyclic loading. 70% and 80% represent the loading levels of dynamic strength, respectively. Anisotropy constants are generally decreasing with increase of the number of loading cycles.

5와 Fig. 6은 하중방향에 수직한 면 내에서의 이방성 분포를 알 수 있으며 Fig. 3과 Fig. 4에서의 동일한 방법으로 C_{II}값을 도식화한 결과로서 하중수준과 횟수의 증가에 따라 C_{II}가 억지게 증가하는 경향을 보이게 되는 것으로, 그러나 Fig. 4에서의 C_{II}의 경우에 비하면 상관의 정도가 크게 떨어지고 있다.

미세균열 판찰 결과

미세균열의 발달 방향은 Fig. 7에서 나타난 바와 같이 현미경상에서 대체로 일정한 방향성을 잘 보이고 있다. 아톤 미세균열은 주로 큰 입자의 쪽면에 입자내 균열의 형태로 나타나고 있는 반면에 열진미세균열은 입자 경계를 가로지르는 입자간동균열(transgranular crack)의 형태 또는 입자의 경계를 따르는 균열(grain boundary crack)의

Fig. 4. Anisotropy constants C_{I} calculated from samples before applications of cyclic loading. Numbers in an abscissa indicate the numbers of loading cycles which will be applied to samples later.

Fig. 5. The relationship between anisotropy constants C_{II} and the numbers of loading cycles in samples after applications of cyclic loading. Anisotropy constants are generally increasing with increase of the number of loading cycles. However, the correlation coefficients are much lower than those in Fig. 3.
Fig. 6. Anisotropy constants C_1, C_2 calculated from samples before applications of cyclic loading. Numbers in an abscissa indicate the numbers of loading cycles which will be applied to the samples later.

Fig. 7. Photomicrograph showing open microcracks (oc) and healed microcracks (hc). The rose diagram shows the preferred orientations of healed microcracks (open) and open microcracks (solid) in this sample.

Fig. 8. Rose diagrams for preferred orientations of microcracks. Orientations of both the healed microcracks (open) and the open microcracks (solid) have well defined peaks in each sample.
Fig. 7. Photomicrograph showing open microcracks (oc) and healed microcracks (hc). The rose diagram shows the preferred orientations of healed microcracks (open) and open microcracks (solid) in this sample.
속도이방성과 미세균열

측-환경방향 이방성계수 (C_{ij})와 환경방향 내 이방성계수 (C_{ij})의 변화특성은 초기시료에서 이방성계수의 값이 C_{ij}가 C_{ij}의 상태이던 것이 환경시료에서는 총합계수의 증가에 따라 C_{ij}가 C_{ij}의 상태로 변화하는 것으로 보임된다. 초기시료에서 높은 C_{ij}값이 없어진 것은 총합방향이 식재 기술자가 판단한 주점에 수직한 방향으로 설정되었음에 기인한다. 퍼로하중에 의한 C_{ij}와 C_{ij} 값의 영향은 총합방향으로 가해진 하중의 횟수가 증가하여 총합계수 C_{ij}의 현저하게 감소한 반면에 C_{ij}는 약간의 하중만 증가하는 경향을 보였음에도 그 원인을 찾을 수 있다. 그 중에서도 특히 퍼로하중에 C_{ij} 이방성의 양상을 크게 변화시키고 있음은 하중시료 중에 총합방향에 평행한 방향으로 발생한 미세균열이 많이 존재함을 강하게 시사하고 있다. 이러한 관점에서 10개의 하중시료로부터 미세 균열의 방향을 관찰하고 이를 총합방향의 P 풍속도문로와 비교하였으며 Fig. 10에서의 5개의 서식체와 같이 압 밀미세균열의 주방향과 최대속도방향이 거의 일치되는 결과를 얻었다. 서식 70-3116에서 총합방향이 분산되는 현상이 나타나지만 대부분 하나의 주 방향을 가지고 있으며 속도변화 평균의 형태 또한 최대값과 최소값이 90° 벽치에서 나타나는 평행균열의 특징 (Crampin et al., 1980)을 보여 P 풍속도 이방성에 미세균열의 분포에 기인하고 있을음을 보였다.

Fig. 11과 Fig. 12는 토착하중에 의한 영향을 보다 효과적으로 나타내기 위하여 각 시료별로 하중을 전후한 이방성계수의 차를 구하고 이를 하중 횟수에 따라 도시한 것이다.

Fig. 9. The composite rose diagram for preferred orientations of the open microcracks (solid) and healed microcracks (open). When orientations of healed microcracks were aligned to north, open microcracks, most of which were produced due to cyclic loading, show almost the same direction.

Fig. 10. Relation between the preferred orientations of microcracks measured by optical observations (upper) and P wave velocity distributions (lower). Solid and open arrows represent the preferred orientations of open and healed microcracks, respectively. The directions of the maximum velocity are almost identical with the those of open microcracks.
토의 및 결론

이번 연구를 통하여 하중시료에서의 속도이방성 변화 특성이 미세균열의 발생에 기인하고 있음을 비교적 명백하게 제시하였으며 석재기적자가 관련되는 견의 존재 또한 주로 미세균열에 의한 것으로 판단되었다. 하중유무가 증가함에 따라 속도방향에 대한 속도이방성의 값 (CII)이 일률적으로 감소하여 공극적으로 이방성계수가 역방향으로 중대되는 현상은 속방향에 평행하게 발생되는 미세균열의 존재로 설명될 수 있었다. 현장 관찰 결과 나타난 미세균열의 발달 방향이 초응파속도 측정에서의 최대 수평속도방향과 일치하는 현상 (Fig. 10) 또한 하중 시료에서의 속도이방성의 원인이 전적으로 미세 균열의 존재와 연관되어 있음을 명확하게 보여준 것으로 판단된다.

단지 석재기적자가 관련하는 견의 존재에 있어서 미세 균열 외의 다른 영향이 어느 정도 포함되어 있는지 결론을 내리기에는 미흡하지만 초응파속도 측정에 사용된 대상 시료의 용량 및 현미경관찰 결과로서 서로 조성 및 입자의 형태와 연관된 안정적인 이방성의 존재가 입증되지 않았으며 석재의 C축과 연관된 이방성 효과와 연관시킬 수 있는 배경도 없었다. 보고된 피로대극성 측정이 나타난 이방성은 주로 미세균열의 존재에 기인한 것으로 판단된다. 이 결과는 최대응력응력 방향에 생성된 균열의 방향 그리고 P파속도의 이방성이 모두 일치하는 결과를 보고 한 Plumb et al. (1984)의 연구결과와도 일치하고 있다. 균열의 속도측정 결과에서 초응파속도에서 전체적으로 높 은 값을 보인 태평방향 속도성분이 형성하는 경유가 주로 해당하고, 측정방향성 분산 중에서 최대속도방향 측 현미경관찰에 의한 미세균열의 주 방향방향이 제3계 (grain)에 해당되는 것으로 판단되었다. 초응파속도 분포에서 제3계 (hardway)의 존재는 찾아 수가 없으나 매체
로, 멀리미세균열과 직교하는 아문미세균열의 방향이 제3결의 방향이 가능성이 크다.

한편, 하중시료와 초기시료와 이방성계수의 차이 (\(C_{11}-C_{12}\) 및 \(C_{44}-C_{41}\))을 이용하여 반복하중의 영향을 보다 효과적으로 나타낼 수 있었음이 추측된다. (Fig. 11과 Fig. 12). P파속도의 변화가 반복하중에 의해 발생한 미세균열 양을 나타내다고 할 수 있으며, 이러한 환경에서 이방성계수의 차이 균열발생지수
Induced Crack Index라고 할 수 있다. 축측압력 상태에서는 특히 이방성계수 \(C_{11}\)을 이용한 균열발생지수
\((IC_{1})\) 가 균열발생의 정도를 효과적으로 표현하는 것으로 나타난다. 아울러 초기시료에서의 15%에 달하는 높은 이방성계수의 존재는 초음파속도 측정에 있어서 화강암과 같은 결정질 암석의 경우에도 방향을 고려한 측정이 필요함을 강하게 시사하고 있다.

이상의 연구결과는 다음과 같이 요약된다. (1) 포천화강암은 10% 내외의 늘은 속도 이방성을 보이고 있으며 가장 두터운 이방성은 석재의 주변면의 존재와 일치한다.
(2) 미세균열은 큰 시료의 이방성은 하중하우에 따라 현저히 변화하고 있으며, 그 변화량은 하중의 측에 평행한 방향으로 미세균열이 발생하였음을 지시하고 있다. (3) 하중의 전과 후에 발생한 이방성계수의 차이는 균열발생의 정도를 더욱 효과적으로 나타내고 있으며 이를 균열발생지수 (Induced Crack Index)로 명명하였다.
(4) P파속도 이방성은 현정미관 할과 나타난 열
이세균열의 발생성과 같은 임차를 보여 화강암에서의 초음파속도 변화 특성이 이세균열의 존재에 기인함을 확인하였다.

사 사

이 연구는 한국현저변연구소부설 현저변환장자센터가 자원한 "방향성 폐기물 저장허용의 Fracture System
변화의 예측모델 개발을 위한 연구"과제의 일부로서 지원에 고마움을 표하며 자료 제공자를 도와 줄 강원대학교 장승석 학자와 박창민 군에게도 감사한다.

참고문헌

박상욱 (1994) 경상북도 남동부의 화강암체내에 발생한 미세
균열에 대한 연구, 강원대학교 지질학과 대학원 석사학위 논문, 37p.

1997년 7월 10일 원고접수