Journal of Statistical
Theory & Methods
1997, Vol. 8, No. 2, pp. 111 ~ 118

Improving Noise Tolerance in Hopfield Networks !

Youngtae Kim ? and Jeong Hyun Park 3

Abstract

Adding a noise tolerance factor to the Relaxation learning algorithm in Hop-
field network improves noise tolerance without effecting storage capacity. The
new algorithm is called the Pseudo-Relaxation algorithm, and the convergence
of the algorithm has been proved. It is also shown that the noise tolerance
factor does not effect learning speed.

Key Words and Phrases: Hopfield network, Learning algorithm, Noise toler-
ance. .

1. Introduction

The Relaxation algorithm is an efficient learning algorithm which is derived ge-
ometrically from the Fixed increment algorithm by solving the linear inequality
system [1]. The Pseudo-Relaxation algorithm is an learning algorithm in which
the noise tolerance factor is introduced to the Relaxation algorithm. Tt is shown
that both algorithms have very similar learning speed in terms of weight changes.
Depending on the optimal values of the noise tolerance factor, however, the noise
tolerance is improved in the Pseudo-Relaxation algorithm. We applied these algo-
rithms for learning and pattern recognition of three different data set (10 digits, 26
upper-case alphabets and 26 lower-case alphabets) of IBM PC CGA character fon*
in a symmetric Hopfield network. The learning speed of two algorithms is compared
and the changes of noise tolerance using different values of the noise tolerance fac-
tor are described. The role of the noise tolerance factor in the Pseudo-Relaxation
algorithm is also analyzed-in the geometrical aspect.

12 =g 1996 B stm kA Y13t ATFHUAS -
Research Associate Department of Computer Science, Iowa State University, USA
3Associate Professor, Department of Computer Science and Statistics, Kwandong University

112 Improving Noise Tolerance in Hopfield Networks

2. Machine Learning: Relaxation Algorithm

The Relaxation algorithm is also called the Fractional correction algorithm. The
perceptron is trained by moving some weight vector W to the desired side of each
pattern hyperplane. Since the most direct path across the hyperplane H F(W-XI =
0) is along the normal to it, | WF+!. X7 — WF.X7 | is proportional to the Euclidian
distance between W and the hyperplane H; . The learning rate)\ is provided as a
parameter. The weights are changed in the following manner:

Wk . X7

k+1 _ xx7k i _
Wit =Wi+A(Y - 0)) X7 - X

X7, if Y] #0!

where Wf : Weight array of perceptron i after £ changes.
X7 : The jth input vector. :
Y? : Desired output of perceptron i for input X/.
O! : Actual output of perceptron i for input X7.
A A parameter in the range (0,2) which determines the degree of
correction.
The theoretical convergence proof is given in [2]. Figure 1 illustrates the con-
vergence of the algorithm geometrically. The shaded area shows the solution set of
weights, and each hyperplanes are from the input patterns. The initial weights are

randomly generated, and the following weights are decided by moving the weights
along the normal to the hyperplanes.

Figure 1: Changes of weight in Relaxation algorithm

Youngtae Kim and Jeong Hyun Park 113

3. Noise Tolerance Factor ¢

The noise tolerance factor £ is introduced to improve the noise tolerance in tne
Relaxation algorithm. The Relaxation algorithm with the noise tolerance factor &
is also called the Pseudo-Relaxation algofithm and proposed in reference 3. Tae
algorithm is gives by :

.) k.xi
WhH = WE L A(Y7 - 0F)| —1Vi X
X7 X0 — £X

2

X7, if Y # 04

where W;¥ : Weight array of perceptron ¢ after & changes.
X7 : The j® input vector.
Y7 : Desired output of perceptron i for input X/.
O7 : Actual output of perceptron i for input X/.
A : A parameter in the range (0,2) which determines the degree of
correction.

& : A noise tolerance factor.

Unlikely the Relaxation algorithm, the hyperplane H;, (W-X'7 = 0) is introduced
so that d(H, H;) = ¢, where d(H}, Hj) is the Fuclidian distance between H; and
H;. The weight changes in the Pseudo-Relaxation algorithm is illustrated in Figure
2. The solution set S¢ is depending on the value of . Note that S¢, > S, if §; < &;.

Figure 2: Changes of weight in Pseudo-Relaxation algorithm

114 Improving Noise Tolerance in Hopfield Networks

A larger value of ¢ increases the like-hood of finding a weight point which is
deeper in the convex set S, defined by the traning pattern hyperplanes. In other
words, the distance from the weight point to the nearest training pattern hyperplane
becomes larger. Adding noise to a training pattern has the effect of perturbing the
corresponding hyperplane in weight space. A pattern will be correctly recalled if the
weight point of the network still lies on the positive side of this perturbed hyperplane.
the further weighet point is from the orginal hyperplane, the more the hyperplanes
may be perturbed with the weight point remaining in the positive side. So a larger
value of £ should give the increased noise tolerance over a smaller value of £. Figure
3 illustrates the relationship between £ and the perturbed input pattern.

4. Effect of £ on Weight Changes and Noise Tolerance

This experimental study was carried out with three different training samples.
The three training samples are as follows:

e 10 digits on 7 x 7 grid (49 units)
¢ 26 upper-case letters on 7 x 7 grid (49 units)

o 26 lower-case letters on 7 x 7 grid (49 units)

Perturbed H ;

Si

Figure 3: Perturbed pattern and £ in Pseudo-Relaxation algorithm

The training sets were chosen from IBM PC CGA character font. The network
is fully connected, and the units in the networks are bipolar with states 1 and -1.
We chose 1.8 for the value of the learning rate A for the learning algorithms since
the optimal learning speed was obtained experimentally using A = 1.8 .

Youngtae Kim and Jeong Hyun Park

4.1 Weight changes with different ¢ values

It is easily verified that the noise tolerance factor ¢ does not effect the weight
changes much. Figure 2 describes the effect of { on weight changes. A larger value
of £ increases the like-hood of finding a deeper weight point in the solution convex
set S¢. Since the solution convex set is open, the number of weight changes is not
effected by the value of €. ' ,

Figure 4 shows the weight changes using the £ value 0.0, 0.1, 1.0, 10.0, 100.0
and 1000.0. We can see that the number of weight changes is not changed much by
varying the £ value. In general, the larger size of the training samples, the more the
weight changes required as shown in Figure 4. Specially with the 10 digit training
sample, the number of changes is very stable for different &’s.

20 T 1 [| K
18 - ' 10 digits -e— -
16 26 upper letters e— |
26 lower letters »—
14 - 4
12 .
weight |
10 + .
changes
8 - 4
6 | V/n<7<>
»
4 I S
2 -
0 1 | 1 |
0 1 2 3 4 5

‘ noise tolerance factor (¢)
Figure 4: Weight changes using different £ values

4.2 Effect of £ on noise tolerance

In order to see the effect of £ on noise tolerance, we ran a series of experiments to
train Hopfield networks varying £ through a range of values between 0.0 to 1000.0.
The noise tolerance of the resulting network was tested by starting the network
at each training pattern with a fixed amount of the noise, and the percent of the
training patterns which were recalled correxctly was recorded. For each value of &,
100 networks were trained, and the mean value and standard deviation of the correct
recall percentage are calculated. This average correct recall percentage indicates high
noise tolerance.

Table' 1, 2, and 3 summarize the results obtained. The tables show the average
and standard deviation noise tolerance for 0%, 5%, 10%, 15% and 20%. We varied &
through five orders of magnitude. In case of £ = 0, the Pseudo-Relazation algorithm
is same as the Relazation algorithm. Note that the network always has perfect recall

125

116 Improving Noise Tolerance in Hopfield Networks

with 0% noise, i.e., the algorithm guarantees 100% storage.

In all cases, it is observed that an improvement in noise tolerance as ¢ is increased.
However, the noise tolerance does not continue to increase as use arbitrarily large
values of £ . In general, the noise tolerance is optimal when ¢ = 100.0 with 10 digits
training set and the 26 upper- case letters, and the noise tolerance is optimal when
§ = 10.0 with the 26 lower-case letters. This observation suggests that there is an
intrinsic limit on the best noise tolerance achievable depending on the given set of
patterns.

Figures 5, 6, and 7 show the average values of the noise tolerance from the tables.

Table 1 : Effect of £ on noise tolerance for 10 digits

£ 0% noise 5% noise | 10% noise | 15% noise | 20% noise
0.0 100.0 £ 0.0 | 57.8 + 24.8 | 35.9+ 23.9 | 23.3 £22.7 | 159 + 194
0.1 100.0 £ 0.0 | 62.4 £+ 21.9 | 40.0+ 25.5 | 23.9 £23.5 | 17.0 £18.6
1.0 100.0 & 0.0 | 82.4+ 12.7 | 67.9+ 21.0 | 51.4+22.2 | 38.1%+ 23.3
10.0 | 100.0 & 0.0 | 81.8+ 17.7 | 67.9+ 23.4 | 58.3 £25.2 | 45.2+ 26.1
100.0 | 100.0 £ 0.0 | 91.1+ 104 | 80.4+ 20.2 | 68.0 +:26.2 | 57.2 + 25.90
1000.0 | 100.0 + 0.0 | 87.1 £ 15.3 | 76.9+ 24.7 | 62.6 £31.5 | 52.3%+ 31.2
Table 2 : Effect of £ on noise tolerance for 26 upper letters
£ 0% noise 5% noise 10% noise | 15% noise | 20% noise
0.0 100.0 0.0 | 35.9 + 16.5 | 15.8 +14.7 | 7.8 £ 10.1 3.9 + 6.8
0.1 1000 £0.0 | 39.0 187 { 170+ 153 | 8.8 £ 11.0 42 £ 72
1.0 100.0 £ 0.0 | 55.3 + 189 | 324 £ 188 | 21.2 +18.9 | 10.3 + 11.7
10.0 {100.0+0.0 | 71.7 £ 14.9 { 51.3 £ 18.3 | 31.7 £ 179 | 18.5 + 13.1
100.0 | 100.0 £0.0 | 70.7 £ 17.1 { 51.6 + 18.9 | 34.8 £ 17.1 | 22.1 4+ 14.4
1000.0 | 100.0 £ 0.0 | 70.4 + 15.1 | 48.4 + 18.0 | 32.7 £ 16.0 | 20.1 + 14.1
Table 3 : Effect of £ on noise tolerance for 26 lower letters
3 0% noise 5% noise 10% noise | 15% noise | 20% noise
0.0 1000 £ 00 | 31.9 £ 15.7 | 123+ 11.6 | 57+ 7.9 244+£40
0.1 1000 £ 00 | 348 +176 1160+ 13.9| 7.2 %85 3.2+49
1.0 100.0 £ 0.0 | 52.9 + 16.8 | 28.3 £ 14.9 | 16.5 £ 10.7 | 7.5+ 6.5
100 | 100.0+0.0 | 64.5 +19.0 | 42.3 +20.4 | 25.3 +17.9 | 14.7 £+ 13.1
100.0 | 100.0 £ 0.0 | 59.5 £ 175 | 38.0 £21.9 | 22.2 +£19.1 | 13.5 + 15.2
1000.0 | 100.0 = 0.0 | 67.0 = 17.3 | 43.8 £ 19.1 | 26.5 + 17.5 | 15.0 £ 13.5

Youngtae Kim and Jeong Hyun Park

100¢ s @ A4 <@ <® 0 % noise ©—
L 5 % noise *—
>10 % noise o—
15 % noise »—
. (15 % noise *—
noise
tolerance i
(%)
0 i I 1 1 i]
0 1 2
. noise tolerance factor (£)
Figure 5: Effect of £ on noise tolerance for 10 digits
100 < g N4 < © 0 % noise ©—
4 5 % noise o—
80 410 % noise -e—
15 % noise >—
. 120 % noise *—
noise 60
tolerance
(%) 40
20
0
0 1 2 3
noise tolerance factor (¢)
Figure 6: Effect of £ on noise tolerance for 26 upper letters
100¢- @ <@ N4 < 0 % noise ©—
N 5 % noise -o—
80 10 % noise -e—
15 % noise >—
noise 60 20 % noise ~+—
tolerance
(%) 40
[
20 |
0
0 1
noise tolerance factor (£)
Figure 7: Effect of £ on noise tolerance for 26 lower letters

117

118 Improving Noise Tolerance in Hopfield Networks

5. Conclusion

After adding a noise tolerance factor to the Relazation learning algorithm in
Hopfield network, the noise tolerance is significantly improved. This algorithm with
the noise tolerance factor is called the Pseudo-Relaztion algorithm, and it has been
proved effectively. Unlikely unlearning techniques coupled with variations of Hebian
learning, the noise tolerance factor does not effect the storage capacity.

The effect of the noise tolerance factor to improve the noise tolerance is analyzed
geometrically, and serveral experiments are made to study the noise tolerance factor
in Hopfield network. Three character sets from IBM CGA font are used as training
samples. The experimental study also shows that the noise tolerance factor does not
effect the learning speed.

References

1. Motzkin, T. S. and Schoenberg, N. J. (1954). The Relaxation Method for
Linear Inequalities, Canadian J, Math, Vol. 6, No. 3, 355-357

2. Nilsson, N: J. (1990). The Mathematical Foundations of Learning Machines,
Morgan Kaufmann Publishers, San Mateo, Califormia.

3. Oh, H. and Kothari, 8. C. (1992). A Pseudo-Relaxation Learning Algorithm
for Bidirectional Associative Memory, IEEE Int. Joint Conf. on Neural Net-
works, Baltimore.

4. Wong, A. J. (1988). Reconginition of general patterns using neural networks,
Biological Cybernetics, 58, 361-372.

