Journal of Statistical
Theory & Methods
1997, Vol. 8, No. 2, pp. 119 ~ 125

First-Passage Time Distribution of Discrete Time
Stochastic Process with 0-state !
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Abstract

We handle the stochastic processes of independent and identically distributed
random variables. But random variables are usually dependent among them-
selves in actual life. So in this paper, we find out a new process not satisfying
Markov property. We investigate the probability mass functions and study on
the probability of the first-passage time. Also we find out the average frequency
of continuous successes in from 0 to n time.
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1. Introduction

A Markov process is a process with the property that, given the value of X;; the
value of X, s > t, do not depend on the values of X, u < t ; that is, the probability
of any particular future behavior of the process, when its present state is known
exactly, 1s not altered by additional knowledge concerning its past behavior. A
Markov process having a finite or denumerable state space is called a Markoy chain.
A Markov process for which all realizations or sample functions {X;, ¢ € [0,00)}
are continuous functions is called a-diffusion process A discrete time Markov chain
{X4} is a Markov stochastic process whose state space is a countable or finite set,
and for which T = (0,1,2,---).. In general, we handle the stochastic processes of
independent and identically distributed random variables. But random variables are
usually dependent among themselves in actual life. So the objects of this paper are
to define a new process not satisfying Markov property and to find the probability
mass functions, the first-passage time distributions and the average frequency. of
continuous successes in from 0 to n time
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2. Formulation of Model and Definition

There are the following meanings in the defined model. Firstly, the concern is put
on the frequency of an event happening successively. Secondly, we can see that the
model returns to the original state (0 or the previously appointed state) unless the
desired success happens before reaching the previously limited successive frequency.
In other words, we consider a process comes to stay at O-state automatically till
N-time if continuous successes happen as much as the frequency of M. Here, the
probability staying at 0-state from time after arriving at M-state to next N-time is
1. We consider that i-state (0 <4 < M) is changed to (i + 1)-state with probability
p;. if succeeded and if not, it is changed to O-state with probability 1 — p;. Hence,
the given model can be defined as follows :

Definition 1. A stochastic process {X,,,n =0,1,2,---} witha state space {0, 1,2,
--+ MY} and a time space {0,1,2,---} is said to be a recurrence process with O-state
if '
(1) P{Xo=0} =1

(2) P{Xps1 =i+ 1|X, =1}

I

P{Xp=1+1X,=4,X,=2(q),0<¢<n—-1}
0, ifi=M

(3) P{Xnsk =0|X, =M} =1 fork=1,2,---,N

= 1-p; fori#M. '

That is, M is maximum value of the state space and N represents the time staying
at O-state after arriving at M-state. From the above definition, we can see that the
recurrence process with 0-state returns to 0-state with probability 1—p;(0 < i < M)
unless the successive events happen as much as the frequency of M . And it returns
to O-state with probability 1 if the successive events happen at M times. From the
condition (3), we know that the recurrence process with O-state does not satisfy
Markov property only in the case of N > 1. Throughout this chapter, we will
consider the caseof p; = p, 1 =0,1,--, M — 1 because of complexity of calculation.
We can find the above-defined model in real life. For instance, the following examples
belong to this model.

Example 2. If the stock prices of joint-stock corporations listed in stock com-
pany have upper price (or lower price) continually for six days,they are going to be
suspended in dealings for three days. Unless they have successive upper price, we
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calculate the frequency of upper price again from the original state. Accordingly we
become concerned with the successive frequency in this case.

Example 3. A man who passed the written test in an exam for car license should
pass another three kinds of course test. And then he also takes the long-distance
test. In these course tests, he has to pass successively without even one fail in it.
Unless he passes, he must take a course test again in a few days. So this case belongs
to the above model.

3. Probability Mass Functions

In this chapter, we will examine the mathematical results of a recurrence pro-
cess with O-state. We investigate each the probability mass functions when separate
larger time from smaller time on the standard of time M. After selecting several
times, we calculate the probability mass functions.

Theorem 4. Let {X,,n=0,1,2,---} be a recurrence process with O-state. Then
for0<n< M,

P{Xy=k}=pF k=0,1,--- M
P{Xy=k—-3j}=p"(1-p), k=34, ,M;5=1,2,---\ M
P{Xp=k—-j+M}=0,k=0,1,--,5;5=0,1,--- , M — 1.

Proof.
By definition, P{X, = 0} = 1.
Incaseof 1 <n< M,

[e.¢]
P{Xp=i} = Y P{X,=i|Xp1 = j}P{Xn_1 = j}
=0
{P{Xn=i|X c1=i—1}P{X,1=i-1}, i#0
XM P{X, =0\ X = j}P{Xp_1 =75}, i=0
pP{X _1=i—1}, 1 #0
- l1-p, i=0.

Using the given results, we can calculate E{X,}. As it is a successive average
frequence of successes from time 0 to n, the result of calculation can be applied as
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a numerical value forecasting the successful frequency from the present time to the
next period.

Theorem 5. If {X,,n=0,1,2,---} is a recurrence process with 0-state, then
forn< M +1,

p(L—p")

E{X,} = 1-p

Proof.
In case of n < M + 1,
E{X,} = E{E{X.|X..1}}
= ZE{anXn—l = i}P{Xn—l = Z}

1=0 :
n—-2 n
- ZZ.YP{XTL = len—l = Z}P{Xn—l = 7'}
=0 j=0
n-
+ 3 iP{Xn = j|Xn1 =0~ 1}P{Xp 1 =n—1}
J;O
+ 2 iP{Xn = j|Xa-1 = n}P{Xn = n}
3=0
n—2 n )
= > iP{Xy=j|Xn 1 =1i}p'(1 - p)
=0 j=0 ’
+nP{Xn =n|Xpo1 =n—-1}P{X,.1 =n—1}
n—1
= (1-p)>_kp*+np"
k=1
_ an—1
_ p(l1 _pp ) _(n- 1)p" + np
_ p(-p")
1-p

4. First-Passage Time Distributions

In this chapter, we study on the first-passage time distributions at maximum
value M in state space. As N is the time staying at O-state after reaching maximum
value M, we consider the first-passage time distributions when N = 1. After selecting
several times, we calculate the probability mass functions. Define the first-passage
time the process hits M by
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Ty =min{n: X, = M}.
That is,

Ty=1n & Xo=M, X, #M fork=01,---,n— 1.

In case of n < 2M, the first-passage time is n if and only if the state is M at
time n . Using p.m.f., we can obtain the following results :

P{Ty=n} = P{X,=M}

0, if n=0,1, -, M-1
pM(1~p), if n=M+1,M+2 - 2M.

Incaseof n > 2M + 1,

P{TM = 2M—|—1}
= P{Xoms1 = M} - P{Xy = M|Xo = 0} P{Xp41 = 0| Xy = M}
x P{Xom41 = M|Xpr41 =0}
pM(1—p+pMthy — pMpM
= pM(1-p)(1-pM). |

From the above contents, we investigate the p.m.f. of the first-passage time at
time 2M + 6 . Though the state at time n is M-state, the time n may not be the
first-passage time. The process reachés M-state before time n and then can arrive
again at M- state on the time n. In other words, there are two instances to be
M-state at time 2M + 6. First, it reaches M-state for the first time at time 2M + 6.
Second, it reaches again M-state at time 2M + 6 after once arriving at M-state
among the times of M, M +1,M +2,M +3,M + 4, and M +5 . So, to get the
probability applied to the first instance, we must substract the probability applied
to the second from the probability of staying at M- state at time 2M + 6. Hence,
P { reaching M-state for the first time at 2M + 6 } = P { M-state at time 2M + 6
} - P { reaching M- state at time 2M + 6 after once arriving at M-state among the
times of M, M + 1,M +2,M + 3, M +4,and M + 5}.

P{Ty = 2M +6}
—  P{Xoarvs = M} — P{Xs = M|Xo = 0} P{Xsr+1 = 0| Xas = M}
X P{Xr+6 = 0| Xp41 = 0}P{Xopm16 = M| Xni6 = 0}
_P{X; = 0|Xo = 0}P{Xsrs1 = M|X, = 0}
XP{Xpm+2 = 0| Xpr1 = MYP{ X6 = 0| Xps42 = 0}
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xP{Xopm+6 = M|Xp6 = 0}

—P{X; = 0|Xp = 0}P{Xp142 = M| X = 0}
XP{Xpm+3 = 0| Xpr12 = M}P{Xp116 = M|Xpr43 = 0}
X P{Xom 6 = M| Xpr46 = 0}

—P{X3 = 0|Xp = 0}P{Xys13 = M| X3 = 0}
XP{Xp14 = 0|Xp115 = MYP{Xpr46 = 0| Xps44 = 0}
XP{Xom+e = M| Xpr6 =0}

—P{Xs = 0|Xp = 0}P{Xy114 = M| Xy = 0}
XP{Xm+s5 = 0| Xn144 = M}P{Xpni6 = 0| Xpr15 = 0}
xP{Xomi6 = M|Xpr46 = 0}

—P{X5 = 0|Xo = 0} P{Xyr45 = M| X5 = 0}
XP{Xnm+6 = 0| Xp15 = M}P{Xop16 = M| Xpr46 = 0}

= pM(1—p)(1~ 6pM + 5pMHL 4 TpMH2 _ 1gpM+3 | g Mdy

Simillary, we can obtain the p.m.f. of the first-passage time in process according
to the change of the N.

5. Numerical Results

In this chapter, we now consider the probability of hitting the M within time
point. And consider the particular case when M =3, N =1 and p = 0. 1(0.1)0.5.
The result is shown Figure 1. Also, if we consider five particular cases when N =
1,2,3 and p = 0.1(0.1)0.9, the results are plotted in Figure 2-6 respectively.
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