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Abstract

In this paper, it is investigated the properties of the transformed geometric
Poisson process when the intensity function of the process is a distribution of
the continuous random variable. If the intensity function of the transformed ge-
ometric Poisson process is a Pareto distribution then the transformed geometric
Poisson process is a strongly P-process.
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1. Introduction

Park(1997) introduced the P-process and the transformed geometric Poisson
process such that the intensity function is g;(t) # g;(t) for ¢ # j. In general, the
transformed geometric Poisson process is not a strongly P-process. In this paper,
we will introduce the transformed geometric Poisson process which is a strongly
P-process. Let {/N(t)|t > 0} be a counting process having jump magnitude 1. Then
counting process { N (t)|t > 0} satisfies

P{N(t+h) - N(t) > 2} = o(h). (1)

Suppose P{N(t+h)—~N(t) = 1[N(t) = n} = g,(¢, k) and g,(¢, k) is a polynomial
function with respect to h in which the constant term is zero. That is, we can express

9n(t, 1) = gu(t)h + gn(t)h? + -+ - = gn(t)h + o(R).
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Then
P{N(t+h) - N(t) = 1|N(t) = n} = ga(t)h + o(h), L ©
and
P{N(t+h)— N(t) =0|N(t) =n} =1 - ga(t)h + o(h).
Now gn(?) is called the intensity function of the counting process {N(t)|t > 0}.
By equations (1) and (2),
P{N({t+h)=n} = P{N(t+h)— N(t) =0|N(t) = n}P{N(t) = n}
+P{N(t+h) - N(t) =1|N({t) =n—1}P{N(t) =n -1}
+Y P{N(t+h)— N(t) =i|N(t) = n — i}P{N(t) = n — i}

= (1R PAN() = 1} + gna(PRPIN(E) = n— 1} + ofh).

Hence,

P{N(t+h) =n}— P{N(t) =n}
h

= Ga(t)P{N(t) = n}
o(h)

+gn—1(t)P{N(t) =n— 1} + _h_

Letting h — 0, we obtain differential equations

dP{N(t) = n}

= = G (PN () =1} + gna (DPIN(D) =0 — 1},

The solution of above equations are
P{N(t) = n} = e~ J on(t)et / gn1()P{N(t) =n — 1}ef #Odtgy | g o= fom(t)dt

If the countig process is a Poisson or nonhomogeneous Poisson, we know that
ko = 1 and k, = O(n > 1). The constants {ko, k1, k2, ---} are called to be integral
constants of the counting process. Now we present some definition and theorems
which will be required in the next section.

Let [, f(t)dt = [ f(t)dt—C, where C is an integral constant of f(t). The function
f(t) is said to be a t-zero function if [f, f(t)dt],_, = 0.

Definition. The counting process {N(t)|t > 0} is said to be a polynomial process
(P-process) with intensity function g,(t) if
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(i) N(0) =0,

(if) P{N(t+h) — N(t) = 1N(t) = n} = ga(t)h + o(h)

where oo < [, gn(t)dt], = 0 < oo,

(i) P{N(t+h)— N(t) > 2[N(t) = n} = o(h) for each =0,1,2,---.

Theorem 1. Let {N(t)|t > 0} be a P-process with intensity function g,(t). Then
(1) go(t) is a t-zero function if and only if ky = 1,

(2) gn-1 (t)Pn_l(t)exp( N gn(t)dt) (n > 1) is a t-zero function if and only if k, = 0.

Definition. The P-process {N(t)|t > 0} is called to be a strongly P-process if
ko=1and k, =0(n > 1).

Let X be a geometric random variable. Then random variable Y = X — 1 is
called to be transformed geometric.

Definition. The P-process {N(t)|t > 0} is said to be a transformed geometric
Poisson process with intensity function f(t) if

(i) f(0) =0,
(i) 0 < f(t) <1 for each t >0,

(iii) gn(t) = (n+ 1)L,

We know that the transformed geometric Poisson process has the intensity func-

tion gn(t) such that g;(t) # g;(t) for i # j.

2. Main Result

Let X be a continuous random variable on [0, c0) and F be a distribution of X
such that F(t) <1 for each t € R*. And let f(¢) is a probability density function of
X.

Lemma 1. The failure rate function A(t) of X is a t-zero function.
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Proof. Since A\(t) = JF‘%ZS

[AA(t)dt] =0 / 1 —(Ft)(t)d t=0
= [~In(1 - F()]i=0

0.

Therefore the failure rate function is t-zero.

Theorem 2. Let A(f) be a failure rate function of X. If the counting process
{N(t)|t > 0} satisfies :

(1) N(0) =0,
(2) P{N(t+h) — N(t) =1|N(t) = n} = (n+ 1)A(t) + o(h),
(3) P{N(t+h) — N(t) > 2|N(t) = n} = o(h) for each n =0,1,2,---.

Then {N(t)|t > 0} is a transformed geometric Poisson process with intensity func-
tion F(t).

Proof. Let f(t) be a probability density function of X and A(t) be a failure rate
function of X. Then .

- (1-F()

and the intensity function of the process is

gn(t) = (n+ 1)1 f(Ft')(t)

We obtain

M(n +1)g fit )( )dt] _, = ~(n+ Dln(1 = F())}e=0 = 0.

Thus {N(t)|t > 0} is a P-process.

Since F(t) is distribution of X, F'(0) = 0 and 0 < F(t) < co by assumption.
Therefore, {N(t)|t > 0} is a transformed geometric Poisson process with intensity
function F(t).

Definition 1. Let {N(t)|t > 0} be a transformed geometric Poisson process with
intensity function F(t). The P-process {N(t)|t > 0} is said to be a transformed
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geometric Poisson process with respect to random variable X if F(t) is a distribution
of X such that F(0) =0 and F(t) <1 for each t € R*.

Let X; denote the time of the first event. Further, for n > 1, let X,, denote the
time btween the (n — 1)st and n th events.

Theorem 3. Let {N(t)|t > 0} be a transformed geometric Poisson process with
respect to random variable X. Then F(t) is a distribution of X; (ie.X =% X).

Proof. Let X; denote the time of the first event. Since

P{N({#)=n} = (1-F()"F(),
P{X; >t} P{N(t) = 0}
= 1 - F(t)
= P{X >t}

i

Therefore, F(t) is a distribution of X;.

Proposition 4. Let {N(t)|t > 0} be a transformed geometric Poisson process with
intensity function F'(t) with respect to random variable X and let P,(t) = P{N(t) =
n}. Then

(1) Py(t) is decreasing,

(2) P,(?) is decreasing on [O, F‘l(nlﬁ)) and increasing on (F‘l(n—LH), oo).

Proof. (1) Since {N(t)|t > 0} is a transformed geometric Poisson process with
intensity function F'(t) with respect to random variable X, Py(t) = 1—F(t). Py(t) =
1 — F(t) is decreasing.

(2) Since P,(t) = (1 — F(t))"F(t)

ZPa(t) = 1l = FO)'(~F0)F(©) + (1 ~ F@)) 1)

Thus $P,(t) =0 at F(t) = -1;.

Example. Let X be a Pareto random variable. Then distribution of X is

1 — (5 z<k
F = T ’ -
x(@) { 0 , otherwise.
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where k£ > 0 and a > 0.
The density function of X is

ak®
fX(.’L’):W (.’E Z k> O)
The failure rate function A(t) is
_ fx(t) _a
Alt) = 1-Fx(t) ¢t

And we obtain that Py(t) = (%)a is decreasing.

ro=(5)" {1- ()}
PO = 4" - ()]

— _naknat—na—l +(na+a)kna+at—na—-a—l.

i _Jn+1 _17 1
Py(t)=0att={/~——k = Fx (n+1>.

Therefore P,(t) is decreasing on ( o/ 2l g oo).

Thus

Theorem 5. Let {N(t)|t > 0} be a transformed geometric Poisson process with
respect to Pareto random variable X. Then {N(¢)|t > 0} is a strongly P-process.

Proof. By Lemma 1, go(t) = A(t) is t-zero function. Thus kg = 1.
Since

exp[/‘gn(t)dt] = exp[z(n—tmdt]

= exp[(n + 1)a Int] = t"**,
Then

gn—l(t)Pn_l(t)exp(Lgn(t)dt) = (ﬁ)[(ﬁ)(n_l)a(l - (E)a)]t(n+l)a

t t t
= nak("Dag2a-1 _ popng
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Hence,

t==0

[/*gn_l(t)Pn_l(t)exp(/kgn(t)dt)dtL = [/*(nak("‘l)"tza_1 - nak"t)dt]

=0
= 0.

Thus gn-1(t) Po-1(t)exp(/, gn(t)dt] is t-zero function. By Theorem 2 in reference 5,
kn = 0. Therefore {N(t)|t > 0} is a strongly P-process.
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