Journal of Statistical Theory & Methods 1997, Vol. 8, No. 2, pp. 135 ~ 141

Note on the Transformed Geometric Poisson Processes¹

Jeong Hyun Park ²

Abstract

In this paper, it is investigated the properties of the transformed geometric Poisson process when the intensity function of the process is a distribution of the continuous random variable. If the intensity function of the transformed geometric Poisson process is a Pareto distribution then the transformed geometric Poisson process is a strongly P-process.

Key Words and Phrases: P-process, strongly P-process, transformed geometric Poisson process.

1. Introduction

Park(1997) introduced the P-process and the transformed geometric Poisson process such that the intensity function is $g_i(t) \neq g_j(t)$ for $i \neq j$. In general, the transformed geometric Poisson process is not a strongly P-process. In this paper, we will introduce the transformed geometric Poisson process which is a strongly P-process. Let $\{N(t)|t\geq 0\}$ be a counting process having jump magnitude 1. Then counting process $\{N(t)|t\geq 0\}$ satisfies

$$P\{N(t+h) - N(t) \ge 2\} = o(h). \tag{1}$$

Suppose $P\{N(t+h)-N(t)=1|N(t)=n\}=g_n(t,h)$ and $g_n(t,h)$ is a polynomial function with respect to h in which the constant term is zero. That is, we can express

$$g_n(t,h) = g_n(t)h + g_n(t)h^2 + \cdots = g_n(t)h + o(h).$$

¹This paper was supported by research fund, Kwangdong University, 1997

²Associate Professor, Department of Computer Science and Statistics, Kwandong University, Kangnung, 210-701

Then

$$P\{N(t+h) - N(t) = 1 | N(t) = n\} = g_n(t)h + o(h),$$
(2)

and

$$P\{N(t+h) - N(t) = 0 | N(t) = n\} = 1 - q_n(t)h + o(h).$$

Now $g_n(t)$ is called the *intensity function* of the counting process $\{N(t)|t\geq 0\}$. By equations (1) and (2),

$$\begin{split} P\{N(t+h) = n\} &= P\{N(t+h) - N(t) = 0 | N(t) = n\} P\{N(t) = n\} \\ &+ P\{N(t+h) - N(t) = 1 | N(t) = n-1\} P\{N(t) = n-1\} \\ &+ \sum_{i=2}^{\infty} P\{N(t+h) - N(t) = i | N(t) = n-i\} P\{N(t) = n-i\} \\ &= \{1 - g_n(t)h\} P\{N(t) = n\} + g_{n-1}(t)h P\{N(t) = n-1\} + o(h). \end{split}$$

Hence,

$$\frac{P\{N(t+h)=n\} - P\{N(t)=n\}}{h} = g_n(t)P\{N(t)=n\} + g_{n-1}(t)P\{N(t)=n-1\} + \frac{o(h)}{h}.$$

Letting $h \to 0$, we obtain differential equations

$$\frac{dP\{N(t)=n\}}{dt} = g_n(t)P\{N(t)=n\} + g_{n-1}(t)P\{N(t)=n-1\}.$$

The solution of above equations are

$$P\{N(t)=n\} = e^{-\int g_n(t)dt} \int g_{n-1}(t) P\{N(t)=n-1\} e^{\int g_n(t)dt} dt + k_n e^{-\int g_n(t)dt}.$$

If the counting process is a Poisson or nonhomogeneous Poisson, we know that $k_0 = 1$ and $k_n = 0 (n \ge 1)$. The constants $\{k_0, k_1, k_2, \dots\}$ are called to be *integral constants* of the counting process. Now we present some definition and theorems which will be required in the next section.

Let $\int_* f(t)dt = \int f(t)dt - C$, where C is an integral constant of f(t). The function f(t) is said to be a t-zero function if $\left[\int_* f(t)dt\right]_{t=0} = 0$.

Definition. The counting process $\{N(t)|t \geq 0\}$ is said to be a polynomial process (P-process) with intensity function $g_n(t)$ if

- (i) N(0) = 0,
- (ii) $P\{N(t+h) N(t) = 1 | N(t) = n\} = g_n(t)h + o(h)$ where $\infty < [\int_* g_n(t)dt]_t = 0 < \infty$,
- (iii) $P\{N(t+h) N(t) \ge 2|N(t) = n\} = o(h)$ for each $= 0, 1, 2, \dots$

Theorem 1. Let $\{N(t)|t \geq 0\}$ be a P-process with intensity function $g_n(t)$. Then

- (1) $g_0(t)$ is a t-zero function if and only if $k_0 = 1$,
- (2) $g_{n-1}(t)P_{n-1}(t)\exp(\int_* g_n(t)dt)(n \ge 1)$ is a t-zero function if and only if $k_n = 0$.

Definition. The P-process $\{N(t)|t\geq 0\}$ is called to be a strongly P-process if

$$k_0 = 1$$
 and $k_n = 0 (n \ge 1)$.

Let X be a geometric random variable. Then random variable Y=X-1 is called to be $transformed\ geometric$.

Definition. The P-process $\{N(t)|t\geq 0\}$ is said to be a transformed geometric Poisson process with intensity function f(t) if

- (i) f(0) = 0,
- (ii) $0 \le f(t) < 1$ for each $t \ge 0$,
- (iii) $g_n(t) = (n+1) \frac{df(t)/dt}{1-f(t)}$.

We know that the transformed geometric Poisson process has the intensity function $g_n(t)$ such that $g_i(t) \neq g_j(t)$ for $i \neq j$.

2. Main Result

Let X be a continuous random variable on $[0, \infty)$ and F be a distribution of X such that F(t) < 1 for each $t \in R^+$. And let f(t) is a probability density function of X.

Lemma 1. The failure rate function $\lambda(t)$ of X is a t-zero function.

Proof. Since $\lambda(t) = \frac{f(t)}{1 - F(t)}$,

$$\left[\int_{*} \lambda(t)dt\right]_{t=0} = \left[\int_{*} \frac{f(t)}{1 - F(t)}dt\right]_{t=0}$$

$$= \left[-\ln(1 - F(t)]_{t=0}\right]$$

$$= 0.$$

Therefore the failure rate function is t-zero.

Theorem 2. Let $\lambda(t)$ be a failure rate function of X. If the counting process $\{N(t)|t\geq 0\}$ satisfies:

- (1) N(0) = 0,
- (2) $P\{N(t+h) N(t) = 1 | N(t) = n\} = (n+1)\lambda(t) + o(h)$
- (3) $P\{N(t+h) N(t) \ge 2|N(t) = n\} = o(h)$ for each $n = 0, 1, 2, \dots$

Then $\{N(t)|t\geq 0\}$ is a transformed geometric Poisson process with intensity function F(t).

Proof. Let f(t) be a probability density function of X and $\lambda(t)$ be a failure rate function of X. Then

$$\lambda(t) = \frac{f(t)}{(1 - F(t))}$$

and the intensity function of the process is

$$g_n(t) = (n+1)\frac{f(t)}{1 - F(t)}.$$

We obtain

$$\left[\int_* (n+1) \frac{f(t)}{1-F(t)} dt\right]_{t=0} = -(n+1) [\ln(1-F(t))]_{t=0} = 0.$$

Thus $\{N(t)|t \geq 0\}$ is a P-process.

Since F(t) is distribution of X, F(0) = 0 and $0 \le F(t) < \infty$ by assumption. Therefore, $\{N(t)|t \ge 0\}$ is a transformed geometric Poisson process with intensity function F(t).

Definition 1. Let $\{N(t)|t \geq 0\}$ be a transformed geometric Poisson process with intensity function F(t). The P-process $\{N(t)|t \geq 0\}$ is said to be a transformed

geometric Poisson process with respect to random variable X if F(t) is a distribution of X such that F(0) = 0 and F(t) < 1 for each $t \in \mathbb{R}^+$.

Let X_1 denote the time of the first event. Further, for $n \ge 1$, let X_n denote the time byween the (n-1)st and n th events.

Theorem 3. Let $\{N(t)|t \geq 0\}$ be a transformed geometric Poisson process with respect to random variable X. Then F(t) is a distribution of X_1 (ie. $X = {}^d X_1$).

Proof. Let X_1 denote the time of the first event. Since

$$P\{N(t) = n\} = (1 - F(t))^n F(t),$$

$$P\{X_1 > t\} = P\{N(t) = 0\}$$

$$= 1 - F(t)$$

$$= P\{X > t\}.$$

Therefore, F(t) is a distribution of X_1 .

Proposition 4. Let $\{N(t)|t \geq 0\}$ be a transformed geometric Poisson process with intensity function F(t) with respect to random variable X and let $P_n(t) = P\{N(t) = n\}$. Then

- (1) $P_0(t)$ is decreasing,
- (2) $P_n(t)$ is decreasing on $\left[0, F^{-1}\left(\frac{1}{n+1}\right)\right)$ and increasing on $\left(F^{-1}\left(\frac{1}{n+1}\right), \infty\right)$.

Proof. (1) Since $\{N(t)|t \geq 0\}$ is a transformed geometric Poisson process with intensity function F(t) with respect to random variable X, $P_0(t) = 1 - F(t)$. $P_0(t) = 1 - F(t)$ is decreasing.

(2) Since $P_n(t) = (1 - F(t))^n F(t)$

$$\frac{d}{dt}P_n(t) = n(1 - F(t))^n(-f(t))F(t) + (1 - F(t))^n f(t)$$

Thus $\frac{d}{dt}P_n(t) = 0$ at $F(t) = \frac{1}{n+1}$.

Example. Let X be a Pareto random variable. Then distribution of X is

$$F_X(x) = \left\{egin{array}{ll} 1 & - & \left(rac{k}{x}
ight)^a & , & x \leq k. \ 0 & , & ext{otherwise.} \end{array}
ight.$$

where k > 0 and a > 0.

The density function of X is

$$f_X(x) = \frac{ak^a}{x^{a+1}}$$
 $(x \ge k > 0).$

The failure rate function $\lambda(t)$ is

$$\lambda(t) = \frac{f_X(t)}{1 - F_X(t)} = \frac{a}{t}.$$

And we obtain that $P_0(t) = \left(\frac{k}{t}\right)^a$ is decreasing.

$$P_n(t) = \left(\frac{k}{t}\right)^{na} \left\{1 - \left(\frac{k}{t}\right)^a\right\}$$

$$P'_n(t) = \frac{d}{dt} \left[\left(\frac{k}{t} \right)^{na} \left\{ 1 - \left(\frac{k}{t} \right)^a \right\} \right]$$
$$= -nak^{na}t^{-na-1} + (na+a)k^{na+a}t^{-na-a-1}.$$

Thus

$$P_n'(t) = 0 ext{ at } t = \sqrt[q]{rac{n+1}{n}} k = F_X^{-1} \Big(rac{1}{n+1}\Big).$$

Therefore $P_n(t)$ is decreasing on $\left(\sqrt[a]{\frac{n+1}{n}}k, \infty\right)$.

Theorem 5. Let $\{N(t)|t \geq 0\}$ be a transformed geometric Poisson process with respect to Pareto random variable X. Then $\{N(t)|t \geq 0\}$ is a strongly P-process.

Proof. By Lemma 1, $g_0(t) = \lambda(t)$ is t-zero function. Thus $k_0 = 1$. Since

$$\exp\left[\int_{*} g_{n}(t)dt\right] = \exp\left[\int_{*} \frac{(n+1)a}{t}dt\right]$$
$$= \exp[(n+1)a \ln t] = t^{na+a}.$$

Then

$$g_{n-1}(t)P_{n-1}(t)\exp\left(\int_{*}g_{n}(t)dt\right) = \left(\frac{na}{t}\right)\left[\left(\frac{k}{t}\right)^{(n-1)a}\left(1-\left(\frac{k}{t}\right)^{a}\right)\right]t^{(n+1)a}$$
$$= nak^{(n-1)a}t^{2a-1} - nak^{n}t.$$

Hence,

$$\left[\int_{*} g_{n-1}(t) P_{n-1}(t) \exp\left(\int_{*} g_{n}(t) dt \right) dt \right]_{t=0} = \left[\int_{*} (nak^{(n-1)a} t^{2a-1} - nak^{n} t) dt \right]_{t=0} = 0.$$

Thus $g_{n-1}(t)P_{n-1}(t)\exp[\int_* g_n(t)dt]$ is t-zero function. By Theorem 2 in reference 5, $k_n=0$. Therefore $\{N(t)|t\geq 0\}$ is a strongly P-process.

References

- 1. Chon, A. C. (1960). Estimating the parameters of modified Poisson distribution, *Journal of the American Statistical Association*, Vol. 55,139-143.
- 2. Johnson, N. L., S. Kotz and Balakrishnan, N. (1994). Continuous Univariate dist-ribution-s. Vol. 1, Second. Edition. John Wiley & Sons, New York.
- 3. Concul, P. C. (1989). Generalized Poisson Distributions Properties and Application. Marcel Dekker, Inc. New York.
- 4. Concul, P. C. and Shoukri, M. M. (1988). Some chance mechanisms generating the generalized Poisson Probability models, *Amer. J. Math. Management Sci.*, 8(1).
- Park, J. H. (1997). The counting Process of Which the Intensity Function Depend on States, The Korean Communications in Statistics, Vol. 4, No. 1, 281-292.
- 6. Rao, C. R. and Rubin, H. (1964). On a characterization of the Poisson distribution, Sankhya, Series A, Vol. 26, 295-298.
- 7. Ross, S. D. (1993). *Introduction to probability Models*, Fifth Edition, Academic Press, Inc.