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Abstract

The quasi-likelihood models which greatly widened the scope of generalized
linear models are widely used in data analysis where a likelihood is not available.
Since a quasi-likelihood may not appear to be an ordinary likelihood for any
known distribution in the natural exponential family, to fit the quasi-likelihood
models the standard statistical packages such as GLIM, GENSTAT, S-PLUS
and so on may not directly applied. SAS/IML is very useful for fitting of
such models. In this paper, we present simple SAS/IML(version 6.11) program
which helps to fit and analyze the quasi-likelihood models applied to the leaf-
blotch data introduced by Wedderburn(1974), and the problem with deviance
useful generally to model checking is pointed out, and then its solution method
is mention through the data analysis based on this quasi-likelihood models
checking.

Key Words and Phrases: deviance, deviance residual, generalized linear models,
Pearson residual, quasi- likelihood, variance function.

1. Introduction

The generalized linear models(GLMs) developed by Nelder and Wedderburn(19-
72) are a class of statistical models with distributions in natural exponential family
(or GLM family) that generalizes classical normal linear models to include many
other models which have been found useful in statistical data analysis. These other
models include log-linear Poisson models for counts data, logit and probit Binomial
models for proportions(or ratio of counts)data, and models for Gamma data with
constant coefficient of variation rather than constant variance.

Further, Wedderburn’s(1974) quasi-likelihood models(QLMs) which greatly wide
ned the scope of generalized linear models by replacing the assumption of GLM fam-
ily distribution by a much weaker assumption in which only the first two moments
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are defined are widely used in data analysis where a likelihood is not available. How-
ever to fit QLMs, differently from GLMs, the standard statistical packages such as
GLIM, GENSTAT, and S-PLUS etc. may not directly applied because the quasi-
likelihood(QL) may not appear to be an ordinary likelihood for any known distri-
bution in the GLM family. As an alternative, SAS/IML may be useful for fitting of
the QLMs.

In general the deviance residual rather than the Pearson residual, either unstan-
dardized or standardized, is used for model checking procedures since its distribu-
tional properties are closer to the residuals arising in linear regression models, see
Pierce and Schafer(1986), and McCullagh and Nelder(1989, pp.398). But the prob-
lem with the deviance in case that comes largely from the zero cell observations
also induces the large deviance residuals corresponding to them, though the resid-
uals may not be really large, while the Pearson statisic may.be insensitive to this
observations, and so may the Pearson residuals.

In this paper, to deal with the above-mentioned things, simple SAS /IML (version
6.11) program that helps to fit and analyze the QLMs applied to the leaf-blotch data
introduced by Wedderburn(1974) is presented, and the problem with the deviance
is pointed out, and then its solution method is mentioned through the data analysis
based on this models checking. In Section 2, we review the QLMs and describe the
fitting procedure which can be easily programed as SAS /IML, in Section 3 mention
the model checking methods, in Section 4 the data applied to QLMs are analyzed
through the model checking by using SAS/IML and the problem with the deviance
is pointed out and examined, and conclusion is given by Section 5, and then in
appendix the SAS/IML program is presented.

2. Quasi-likelihood and estimation procedure

Suppose that the i-th observation’s response variable Yi(i = 1,---,n) have
independent with the first two moments

E(Y)) = pi, Var(Yi) = ¢V (), (1)

where 4; is some known mean function of a set of unknown parameters 3, - - - » Bp,
¢ is unknown dispersion parameter, and V(-) is some known variance function.
Then Wedderburn(1974)’s QL, strictly the quasi-log-likelihood, g; for observation 4

is defined by
My —t
i Ui) = | St 2

or equivalently by
Oqi(ui; vi) /Oms = (ys — 1)/ OV (1s)- (3)
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Note that the QL will be a true likelihood if there is a distribution of GLM type
having Var(Y;) = ¢V ().

In typical applications y; is determined by known covariates, z;1, - - - , Tip say,
possibly through the following model equations

ni:g(ﬂi):mfﬂ (izlv"'7n)7 (4)

where 7); is the linear predictor, g(-) is some known link function, z! = (z;1, - - -, Tip)

is the 1 x p vector of the covariates for observation 4, and 8 = (B1,---,5,)¢ is the

p x 1 vector of the model parameters. Models of the general form given by (1) and
(4) are called by the name QLMs.

Denote g;'(8) by > i~ 0¢;/98;. Then Wedderburn’s QL equations for 3 are given
by

n

i=1
where W; = {V(1;)[g'(115)]*} ! is the weight function, g "(pi) = 0g(u;)/Ous, and u; =
(yi — 1:)g'(ps). Since the equation (5) are non-linear functions of 3, solving (5) for
maximum quasi-likelihood(MQL) estimate B of B requires Fisher scoring approach.
In fact, (5) have the same estimating equations as GLMs. The p-dimensional quasi-
score function becomes

s(8) = (X'Wu)/¢, (6)
where X is the n X p model matrix composed of the elements z;;, W is the n x n
diagonal weight matrix with elements W; on the main diagonal, u is the n x 1 vector
with the elements u;. The p x p covariance matrix of s(3), which is also the negative
expected value of 0s(3)/08 (or the expected quasi-information matrix), is

1(B) = (X'WX)/¢. (7)

Starting with an initial estimate 5, sufficiently close to 3, Fisher scoring iterations
are given by

B = BE) 4 -1 (A0 5(3®) K =0,1,2,- - (8)

where I(3%)) and s(3%)) are I(3) and s(f) evaluated at 3 =ﬁ(k), respectively. Note
that the dispersion parameter ¢ cancels out in the term I(3*)s(3®). In fact, (8)
can be expressed by

A = (XWWX) T XWEH, k=0,1,2,-, (9)

where W) and #*) are W and the adjusted dependent vector z(=mn+u) evaluated
at B = B®) respectivley. Since (9) give iteratively weighted least squares(IWLS)

the MQL estimate 3 can be easily obtained from (9). A simple initial estimate Gy
consists of using the data themselves y = (y1,- -, y,)® as the initial estimate pu(® of

249



250 II-Do Ha

# = (p1,-, ). Thus the iterations (8) or (9) can begin with the following initial
estimate

BO = (XtwOX) -1 xtw©® 0 (10)

where W and 2 are W and z evaluated at b= #(0)(: y), respectively. At the
initial step, adjustment may be required to the data, for example, the initial value
9(y) of z when g is the log link may be adjusted to replacing y; = 0 by y; = 1076,
We then can easily program as SAS/IML for the following estimation procedure
to fit QLMs:
Step 0: Use (10) as an initial estimate 3 of [§
Step 1: Calculate fori =1,---,n

" = g7 (@B,

Step 2: Calculate W©® and 3© in (9). )
Step 3: Calculate the next estimate (1) to 3, as (9);

30 — (Xt x)-Lx ) 50)
AU = (XtWO x)-1xty

Step 4: Repeat from step 1 to step 3, replacing ,8(0 with
B, Continue repeating this until convergence is (hopefully)
achieved. One stop if B ©) and [3(1 is close to zero.
McCullagh(1983) showed that under regular conditions, the MQL estimator {3 is
consistent and asymptotically Normal with

Cov(f) = I (B) = y(X'WX) ™" (11)

Clearly the MQL estimator is not affected by the value of ¢, so that it can be
calculated as if ¢ was known to be 1. But, to obtain its standard error(SE) some
estimate of ¢ is required. Wedderburn suggested a moment estimate given by

n

— ) /V () = X2/ (n— p), (12)

where X? is the Pearson statistic. Thus the SE of ﬂ] (=1,---,p) is obtained from
(4,9)-th main diagonal elements of (11) with (12), i.e.

5 2 7 vy 1/2
E(fy) = {$(XWX)" )15, (13)
where W is W evaluated at B=24

3. Model Checking



Analysis of Quasi-Likelihood Models using SAS/IML 251

The measure of overall discrepancy or goodness of fit for QLMs, similarly in
GLMs, is the deviance, more strictly the quasi-deviance, D = St di, where d; is
the deviance component of the i-th observation, i.e.

Yy —t
di(Yi; ki) = 20105 (yi; i) — @alfis s :2/ TRy
(5 f1i) = 26{9i(vis vs) — @il i)} V@)

dt;, (14)
or the Pearson X? statistic defined by (12). These two statistics follow asymptotic
¢x? distribution with degrees of freedom(df) n — p under regular conditions, and so
the greater D or X? for df the poorer the fit, i.e. lack of fit may exist, and also the
estimation of ¢ based on the deviance may be possible, i.e. ¢ = D/(n — p).
Reasiduals can be used to explore the adequacy of fit of a model, in respect of
variance function, link function and terms in the linear predictor, etc. In general,
the reasidual used widely to checking of GLMs type, including QLMs, is deviance
74, or Pearson 1, defined by the signed square root of deviance component or the
square root of Pearson statistic component, for the i-th observation, respectively,
i.e.
ra, = sign{y; — fu)Vd; (13)

and

~

o= Ui — Mg
B V()

Also, standardized deviance and Pearson residual are given by

’ Td;
T = —m——— (17)
Vol — hi)

(18)

(18)

and
r ! — Tpi
i ~ ?
vV @(1 — hy;)
respectively, where h;; is the i-th diagonal element of n x n projection matrix H
defined by
H=wW"2x(XxwXx) ' xtw/2,

Usually, examining of the following residual plots may help the model checking
and indicate further model selection:

(¢) A link function or linear predictor can be checked as plot
of standardized deviance (or Pearson) residual against 7) or
against some function of fitted values.

(i) A variance function can be checked as plot of absolute
standardized deviance(or Pearson) residual against
some function of fitted values.

(¢i¢) A half-Normal or a full Normal plot makes normality
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of standardized deviance (or Pearson) residual a check.

Note that the null pattern of (i) and (i) shows no trend, in particular for (),
an ill-chosen variance function will result in a trend in the mean and smoothing
or Spearman rank correlation coefficient invariant under monotone transformations
may help to see the trend more clearly, and log may be used as the function of the
fitted values in (¢) and (4i) because it is usually helpful in spreading out the points
on the horizontal scale, and the null pattern of (7i7) shows approximately linear, and
that this two Normal plots provide the checking, in particular the half-Normal plot,
of whether extreme values would be outliers in a sample of a given size.

In case of no showing special departure in examination of the (i) — (ii1) for a
model, the model will be reasonable, for detail see McCullagh and Nelder(1989,
Chap.12).

4. Example

The data in Table 1, introduced and analyzed by Wedderburn(1974) and then
reanalyzed by McCullagh and Nelder(1989, sec. 9.2.4), concerns the incidence of
leaf-blotch on 10 different varieties of barley grown at 9 different sites in a variety
trial in 1965. The response Y;;, which is the percentage leaf area affected, can
be considered by a continuous proportion in the interval [0,1], for convenience of
analysis. Intuitively, the responses will follow Bernoulli distribution, but since the
column or row mean in Table 1 is increasing with the number of site or variety the
site or variety effect may affect the variance component, i.e. dispersion parameter ¢
of Y;;. Thus as a first step for this data analysis, they considered the following QL
model

Hij

Hij

)=m+oa; + B, Var(Yi;) = duii(l — wij)

Model 1:n;; = log(1

Table 1. Incidence of leaf-blotch on 10 varieties of barley grown at 9 sites: response is the percentage of leaf affected

Variety
Site 1 2 3 4 5 6 7 8 9 10 Mean
1 0.05 0.00 0.00 0.10 0.25 0.05 0.50 1.30 1.50 1.50 0.52
2 0.00 0.05 0.05 0.30 0.75 0.30 3.00 7.50 1.00 12.70 2.56
3 1.25 1.25 2.50 16.60  2.50 2.50 0.00 20.00 3750 26.25 11.03
4 2.50 0.50 0.01 3.00 2.50 0.01 25.00 55.00 5.00 40.00 13.35
5 5.50 1.00 6.00 1.10 2.50 8.00 16.50 2950 20.00 4350 13.36
6 1.00 5.00 5.00 5.00 5.00 5.00 10.00 500 50.00 75.00 16.60
7 5.00 0.10 5.00 5.00  50.00 10.00 50.00 25.00 50.00 75.00 27.51
8 5.00 10.00  5.00 5.00 25.00 75.00 50.00 75.00 75.00 75.00 40.00
9 1750 25.00 42.50 50.00 37.50 95.00 62.50 95.00 95.00 95.00 61.50
mean  4.20 4.77 7.34 957  14.00 21.76 24.17 34.81 37.22 49.33 20.72
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(i=1,---,9;5 = 1,---,10),
where p;; = E(Y};), a; is the site effect, 8, is the variety effect, and o) = 8 = 0.
Then the resulting QL and deviance for a single observation y, by (2) and (14), are
given by

¢ q(u; y) =ylog(—lfﬁ)+log(1—u), O<p<l,0<y<) (19)

1

and

u yi} (20)

respectively. The analysis of the Model 1 for this data is p0551ble by using statistical
package GLIM, GENSTAT, S-PLUS and SAS genmode procedure, etc. But, we here
use SAS/IML(version 6.11) to fit and analyze the Model 1, through the estimating
procedure described in Section 2. The deviance results in 6.126 on df 72 and Pearson
statistic does in 6.392. Thus the estimate of ¢ is qg = 6.392/72 = 0.089. Since the
data do not involve counts there is no reason to expect ¢ to be near 1.0.

In fact, however, as is shown in Figure 1 which provides checking of the variance
function by using the standardized Pearson residual giving results similar to the
standardized deviance in the Model 1, since the variance function in the Model
1 is increasing with the mean and since the Figure 1 shows a positive trend (also,
Spearman rank correlation between the absolute standardized Pearson residuals and
log fitted values is p=0.52 with p-value=0.0001), the current chosen variance function
is not a satisfactory description of variability in this data. Therefore, the variance
function in following QL model suggested by Wedderburn may be a natural choice:

d(y; i) = 2{y Zog(—g) +(L=) log ]

Model 2 : n;; = log(1 " )=m+ao;+ B, Var(Yi) = i ( - ,Uij)2
i

(Zzlyagvj:L)lO))

where p;; = E(Y;;) and a; = 3; = 0. Then QL and deviance for a single observation
y in the Model 2, are given by

B y 1-y
pmy)=Q2y—1)log(—)—-=—-—=, 0<p<1,0<y<1 21
ali) = @y =) log(7—) = 1 =7 ( N

and

y(1-4) y—2yp+p
d(y; ) = 2{(2y - 1) log(1 b T A=) -2}, (y#0), (22)
respectively. The estimating procedure for Model 2 take a particularly simple form
because the weighting matrix is constant i.e. identity. However, the fitting of Model
2 would not directly applied by the statistical packages but require GLIM or GEN-
STAT macros, since the QL (21) does not appear to be an ordinary likelihood for
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any known distribution in the GLM family. We here fit and then analyze the Model
(2) by using SAS/IML for the estimation procedure mentioned in Section 2. To
do this, in initial step zero data in the Table 1 was replaced by 10~% and then the
convergence is achieved at 13-th iteration. The SAS/IML(version 6.11) program
associated with the Model 2 fitting is given in appendix, including several useful
calculations.

We now will check the Model (2) with methods based on residuals. Here, as
measure for overall goodness of fit will prefer Pearson rather than deviance because,
differently from (20) resulting in the Model 1, the deviance which is a total sum of
terms each of (22) can not be defined in the usual way for the zero data in Table
1, without any adjustment and because the Pearson statistic may be insensitive to
this zero data. We then will deal with this problems, with results calculated from
SAS/IML for the Model 2 applied to the given data in Table 1. The Model 2 seems
to be reasonable for given data in Tabel 1 since the Pearson statistic is 71.2 at df 72.
However, with any adjustment the deviance also may provide a measure for overall
goodness of fit. The deviance is approximate to infinite as the data. is close to zero,
but when zero data is replaced by 1076 the deviance is 133.18, and so the deviance
components which are corresponded to zero observations (variety 1, 2, 3, 7 at site 2,
1, 1, 3, respectively) give large values such as 8.86, 9.95, 12.56, 22.54, respectively.
Excepting these 4 components, the deviance becomes 79.3, which makes no much
difference Pearson statistic 71.2. Even when this zero data is replaced by 108
or 10719 it still becomes 79.3 except the corresponding components and also the
Pearson statistic gives very insensitive result for this adjustment. Thus, we here can
see facts that the problem with the deviance in case that comes largely from the
Y;; = 0 cell may be solved by considering the components of the deviance rather
than just the deviance alone and that in such case also the Pearson rather than the
deviance may prefer.

Further, we will more concretely check the Model (2) by using residual plots
mentioned in the Section 3. We here will use the Pearson residual rather than the
deviance for convenience sake because of control problem of large deviance residuals
due to the zero data. From Figure 2, the variance function in the Model 2 is
somewhat insensitive with the mean and the Figure 2, compared with the Figure
1, seems to be appear no trend (also, the Spearman rank correlation is p = —0.06
with p-value=0.577), and so the new variance function may be suitable. The plot
of standardized Pearson residual against the fitted linear predictor # shows form
and trend similar to the Figure 2, see McCulluagh and Nelder(1989, pp.332). The
half-Normal plot of Figure 3 shows approximately linear, though 4 large positive
standardized Pearson residuals exist. These correspond, in decreasing order, to
variety 4 at site 3 (3.37), variety 2 at site 6 (2.30), variety 5 at site 7 (2.81), and
variety 6 at site 8 (2.51). we can see that there is no further evidence of systematic
departures from the Model 2.
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Table 2. the estimated variety effects and standard errors for the fitted Model 2 to the leaf-blotch data.
Variety
1 2 3 4 5 6 7 8 9 10
0.000 -0.467 0.079 0.954 1.353 1.329 2.340 3.263 3.135 3.887
(0.000) (0.471) (0471) (0.471) (0.471) (0.471) (0.471) (0.471) (0.471) (0.471)

Thus, we can make an analysis conclusion with fitted Model 2 for given data in
the Table 1. Tabel 2 gives the estimated variety effects and standard errors, fitted
for the Model 2. Clearly there are differences between varieties; varieties 1-3 are
most resistant to leaf-blotch and varieties 4-6 less so, while the remaining varieties
7-10 are much more susceptible. In other words, the proportion of leaf-blotch on 10
varieties increases with changing from variety 1 to variety 10.

5. Conclusion

We illustrated with an example that when a QL did not appear to be an
ordinary likelihood for any known distribution in GLM family, SAS/IML could be
usefully used to fit and analyze the QLMs, and also the associated SAS/IML (version
6.11) program was presented in appendix. In doing this models checking as the
deviance, when zero cell observations are exist it may be a good idea to consider
the components of the deviance rather than just the deviance alone, or the Pearson
rather than the deviance may prefer. These facts were examined through the real
data analysis based on the model checking in Section 4, but will be showed through
simulation study. In addition, SAS/IML may be used to fit a broder class of models,
such as not only QLMs for joint modelling of mean and dispersion introduced by
Pregibon(1984) but also hierarchical generalized linear models(HGLMs) delveloped
by Lee and Nelder(1996).
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Figure 1. standardized Pearson residuals (y) plotted against the log fitted
values (z) for the fitted Model 1 to the leaf-blotch data.
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Figure 3. half-Normal plot: ordered absolute standardized Pearson
residuals (y) plotted against the expected order statistics of
a Normal sample (z) for the fitted Model 2 to the leaf-blotch data.
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Appendix

proc iml workspace=2000;
reset spill nolog ;

/**%x Construction 6f y and model matrix X with comst, site, variety ¥k¥x/
y={0.05, 0.00, 0.00, 0.10, 0.25, 0.05, 0.50, 1.30, 1.50, 1.50,

0.00, 0.05, O.
1.25, 1.25, 2.
2.50, 0.50, O.
5.50, 1.00, 6.
1.00, 5.00, 5.
5.00, 0.10, 5.
5.00, 10.00, 5.

05, 0.30, 0.75, 0.30, 3.00, 7.50, 1.00, 12.70,
50, 16.60, 2.50, 2.50, 0.00, 20.00, 37.50, 26.25,
01, 3.00, 2.50, 0.01, 25.00, 55.00, 5.00, 40.00,
00, 1.10, 2.50, 8.00, 16.50, 29.50, 20.00, 43.50,
00, 5.00, 5.00, 5.00, 10.00, 5.00, 50.00, 75.00,
00, 5.00, 50.00, 10.00, 50.00, 25.00, 50.00, 75.00,
00, 5.00, 25.00, 75.00, 50.00, 75.00, 75.00, 75.00,

17.50, 25.00, 42.50, 50.00, 37.50, 95.00, 62.50, 95.00, 95.00, 95.00};

const=J(90,1,1);
j0=3(10,8,0);

j1=3(10,1,1);j2=
j5=J(10,1,5); j6=

j=(31//32//331/j
de=DESIGN(j);
site=(jO//de);

J(10,1,2);33=3(10,1,3);j4=3(10,1,4);
J(10,1,6);j7=3(10,1,7);j8=J(10,1,8);
4//35//36//37//38);

v1=J(1,9,0);v2=I(9);

v3=(v1//v2);

variety=REPEAT(v3,9,1);

X=(const||sitel|

variety);

[rkrkrkrkkrkInitial step *kwkkskkikokkk /
n=NROW(X) ; p=NCOL(X) ;

y=y/100;
y0=J(n,1,0);
do i=1 to n;

if y[i,1]=0 then do;
y0[i,1]=0.000001;

end;

else do;
yoli,1]l=y[i,1]
end;

end;

z0=10g10(y0/(1~y0) ) ;WO=I(n);

beta_h=INV(X‘*W0*X)*X‘*W0*z0;

print, ’intial=iter0’ beta_h;

/***xsxxxx* [teration step ok /
START imp(X,y,beta_hO,beta_h);
n=NROW(X) ; p=NCOL(X) ;
xbh=X*beta_hO;mui=exp(xbh) ;mu=mui/{1+muil);
u=(y-mu)/ (mu# (1-mu) ) ; W=I(n);
/*dft=X‘#Wru;print,’q-like eqs’ dft; */

z=xbh+u;

beta_h=INV (X *WX)*X *Wtz;

FINISH;
iter=1;

do until (maxerr <= 0.001 |iter > 30); /** Stopping rule **/
RUN imp(x,y,beta_h,beta_hi);
/*print, iter beta_hi;*/

err=abs( (beta_

erri=err;
r=rank(err);

h-beta_hl)/beta_h );
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err(r,1])=erri;

maxerr=err[p,1];

beta_h=beta_hil;

iter=iter+1;

end;

/*xekkdrkk  Qutput of convergenced values ikkkkkkkikkiiokk/
print ’convergence is achived at’, iter;
xbh=X*beta_h1;mul=exp(xbh) ;mu=mui/(1+mul);
u=(y-mu)/ (mu#(1-mu) ) ;W=I(n);
dft=X‘*W*u;
print,’q-like egs’ dft;
dinv=INV(X‘*W*X);
se_beh=sqrt(vecdiag(dinv));t=beta_hl/se_beh;
print, iter beta_hl se_beh t;

/**x+% Calculation of quasi-deviance (component) and Pearson statistic *k#ssx/
j=J(n,1,1) ;h1=y0#(1-mu) ; h2=(1~y0) #mu;
cqdevil=(2%y0-1)#log(h1/h2);

cqdevi2= ( (y0-2+mu#y0 +mu )/(mu#(1-mu)) ) -2;
cqdevi=cqdevil+cqdevi2;

cqdevi=2*cqdevi;

qdevil=j ‘*( (2*y0-1)#log(h1/h2) );

qdevi2= j‘x( (yO-2*mu#y0 +mu )/(mu#(1-mu)) ) -2%n;
qdevi=qdevil+qdevi2;

qdevi=2*qdevi;

pearson=j ‘*( (y-mu)##2/(mu#(1-mu) ) ##2 );
df=n-p;pie=pearson/df ;piee=qdevi/df;
print,qdevi pearson df pie piee;

/**xxx  Calculation of deviance and Pearson residual ##kskx/
sign=y-mu;
do i=1 to n;

if sign[i,1] > 0.0 then sign[i,1]=1;

if sign(i,1] < 0.0 then sign[i,1}=-1;

if sign(i,1] = 0.0 then sign[i,1]1=0;
end;
dres=sign#sqrt(cqdevi) ; pres=(y-mu)/(mu#(1-mu)) ;
H=(W##0.5) *X*kdinv*X ‘* (W##0.5) ;hh=vecdiag(H) ;
spres=pres/sqrt (1-hh) ; sdres=dres/sqrt(1-hh);
eta=xbh;1lmu=log(mu) ;
print, yO mu lmu eta cqdevi spres sdres;

reset log;
quit;



