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Abstract

This paper is proposed the parametric empirical Bayes(EB) confidence in-
tervals which corrects the deficiencies in the naive EB confidence intervals of
the scale parameter in the Weibull distribution under item-censoring scheme. In
this case, the bootstrap EB confidence intervals are obtained by the parametric
bootstrap introduced by Laird and Louis(1987). The comparisons among the
bootstrap and the naive EB confidence intervals through Monte Carlo study
are also presented.
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1. Introduction

When data are collected from many units that are somehow similar, such as sub-
jects, animals, cities et al, the statistcal problem is to combine the information from
the various units to understand better the phenomenon under study. Usually there
is substantial variability among units and a natural way to approach the problem
is to build a two-stage ‘hierarchical model’, empirical Bayes(EB) model and then
use it to make inference. Also EB methods effectively incorporate information from
past data(or other components in simultaneous estimation) by means of analyzing
the marginal density of all the data present and past given the prior parameters. We
consider the familiar exchangeable Bayesian model. That is, we are simultaneously
testing k populations. For the i-th population, i = 1,---,k, we test n; devices
until the number of failures are r;. At first stage, the independent lifetime t;; for
each device tested in the i-th population is assumed to be Weibull with known shape
parameter 8 and unknown scale parameter 6;, i.e.,
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Let t; = (ti1,ti2,- - -, tir,) denote the ordered lifetimes of the r; devices that
failed in the i-th population, where t;; < --- < t;,. Then

T, = (- iy, + Y15 (2)
i=1

is the sufficient statistic for 6; and has gamma distribution G(r;,6;) by Sukhatme
(1937), i.e.,
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At the second stage, the 0,’s are supposed independently and identically distributed
(#d) the inverse gamma distribution IG(u, 1/v) , i.e.,

1

1
w(0;) = WﬁeXp(_OTv)’ u>0, v>0, (4)

Then the posterior distribution of 8; given T; is IG(u+71i, (Tiv+1)/v), ie.,

1 (Tz'u + 1)u+r,-( 1 )u+n'+1 (5)

(u+ TZ') v 6;
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In the fully Bayesian setting, one chooses a value for the ‘hyperparameter’ § = (u,v)
based on subjective information or prior knowledge and then bases all inferences
about @ on f(0;|T;,6 = (u,v)). Therefore, the Bayes estimator for §; with respect to
the squared error loss| L(#, x) = >_?_,(#; — z;)?/k, where z; denotes an estimator
for 6; | is given by

f(gilﬂ,’u,’l)) = T

T;
(u+r;—1) +'u(u+ri-—1)

pp(i) = E(6:|T;) = , u>1 (6)

and the posterior variance for 6; is given by

(Tw +1)2
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Also, the marginal density of T; is given by

D(u+7;) Sy 1o
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h(Ti|u,v) =
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Thus the joint marginal density of T is given by

ﬁ D(u+r) T7 1t

i1 T@)L(r) (Tow + 1)wtrs? (9)

h(Tu,v) =
where T = (T1,T%,- -, Tg).

2. Marginal(Hyperparameter) estimators

Dey and Kuo(1991) proposed a different EB estimator when u is known. This
estimator expands the uaual estimator by a multiple of the geometric mean of the
component estimators. To construct the EB estimator, they assumed that u is
known and v is estimated from the joint marginal density A(T|u, v) as follows. From
the marginal density of T; in equation (8), it follows that T} ~ (r; Jvu)Foy, 2, Where
Fy;, 24 is the usual F' distribution with degrees of freedom 2r; and 2u. Thus by
equation (7.8.13) of Wilks (1962) it follows that

T(u—t)D(r+1) 1

BT =ty Ty o (10
Also
1/k i [(u~ %) k L(r; + k)
(HT )= I )
where t = 1/k. Therefore, an unbiasded estimator of 1/v is obtained as
(N _ [ D) (k57 T
) = le-p! Ol rmn"] (12)

The EB geometric mean estimator by Dey and Kuo(1991) is obtained from equation
(6) with ¥p;x = max(v, 0) , where ¥ is estimated from equation (12) with known
u. However, the assumption of known u is too restrictive in practice. Kuo and
Yiannoutsos(1993) proposed the modified EB marginal estimator which estimates
u by the moment method and estimates v as in Dey and Kuo(1991). That is, from
equation (2.19) and equation (2.20) of Choi(1996),
2

Em _ C) (13)

oh u—1+r
Then an estimator of u is obtained from equatlon (13) using fi,, = T} / k, 52, =
ATy — fim)? / (k—1) instead of y,, and a2,. It follows that the marginal estimates
of v and v are

P2,(1—7) — 2952 )
fir, —r52,

ﬁK/Y = max[
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and

UKy = Up/k-

3. Naive empirical Bayes confidence interval

Let § = ( @, v ) be the marginal estimator of § = (u,v) computed from the
marginal distribution of T;. Then the estimated posterior distribution of 8; given T}
is IG(U+1;, (S;U+ 1)/ ¥), that is,

)= 1 (Tz’17+ 1)E+Ti(1)a+n+lexp(_ T,0 + 1).

02' ,I;aA v ~ ~ . o
1T, %, 0 T@+r) v 0; 0;v

(14)

Now, we construct the equal-tailed 100(1 — 20))% EB naive confidence interval
for 8; based upon f(6;|T;,4, 7 ) as follows:

T3 + 1) 2(5:5 + 1)
(v/‘f{(um(l—a)’ Xllz (@) (15)

where X} denotes the cumulative distribution function (c.d.f.) of chi-square distri-
bution with k (not necessarily integer) degrees of freedom. This interval is called
“naive” because they ignore randomness in ¢ = (@, v ). Though relatively easy to
compute, they are often too short, inappropriately centered, or both, and hence fail
to attain the nominal coverage probability. The explanation for this problem from
a parametric EB point of view is that we are ignoring the variability in 5= (uw, v)
; from a Bayesian point of view, we are ignoring the posterior uncertainty about
d = (u,v). More precisely, we have

Var(6:|T) = Egr{Var(6:|T;, 6)} + Vargr{ E(6:|T;, 6)}, (16)
and so the variance estimate based on f(6;|T;,u, ¥ ), Var(6;|T;, 4, © ), will only
approximate the first term in equation (16). ‘

4. Bootstrapped empirical Bayes confidence intervals

We will suggest several bootstrap methods in order to correct the bias in the
naive confidence interval based on f(6;|T;,4, ¥ ) and show how they may be used
to compute confidence intervals.



Parametric Empirical Bayes Estimation

4.1 Marginal posterior method

Laird and Louis(1987) suggested approximating the marginal posterior of §; given
1; by type III parametric bootstrap. That is, given 5 = (@, v), drew 6} from
7(8| & ). Then drew t;; from f(¢;]07), and finally calculate 0* = (u*, U*) using
t;;- Repeating this process N times, they obtained 6} = (uj,v}), j = 1,---,N
dlstrlbuted as g(-| 5 ). By type III parametric bootstrap, we obtain the discrete
mixture distribution mimicking the hyperprior calculation given by

2(Tw; + 1) ) (17)

HT 9 IT) - Z X2(a +r,)< 0, ’U

As defined, H1(6;|T;) is at most an N-point mixture of f(6;|T;,u, v) distributions,
the mixing distribution having mass 1/N at 4} = (u},v}), j = 1,---, N and can be
used directly to produce equal-tailed confidence intervals for 6; by solving

a Cy, 0
5= ameiry = [ ampeir). (18)
2 —00 Cy

Therefore, the 100(1 — 2a)% marginal (Larid and Louis) EB confidence interval for
6; is given by (Cr, Cuy).

4.2 Bias-corrected naive method

In the exchangeable case, Carlin and Gelfand(1991) developed a direct condi-
tional bias-corrected naive method as follows. Let ¢,(T;,d = (u,v)) is such that

Pr(0; < ¢a(T3,0) | 6 ~ F(6; | T1,6)) = o (19)
Define
r(8,6,Ti, @) = Pr(6; < qu(T},8) | 8; ~ £(6; | T;,96)) (20)
and
R(6,T;, ) = ng\m’g{r(& 5, T a)}’ (21)

where the expectation is taken over g(d)] IT;,0) which is a density with respect to
Lebesgue measure. Since equation (21) need not be close to a, let R(6,T;,d) = o
for /. To estimate expectations under the > sampling density of 5 9( 5 |T3,0), they
obtained ¢* from the distribution g(-|T;, 5 ) as follows. Drew 6},---, 0% 4d from

Gl 5 ), then drew ¢}, j = 1,---,n;, independently from f(t;|6}), i = 1,---,k,
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and constructed T usmg t;;» and finally computed ¢* from the pseudodata T} in
the same way that 8 was computed from the data T;. Concisely we have

b= {6} = {Tr} = 0" (22)
By unconditional EB correction method, we obtaine the type III parametric boot-

strap estimate of R(4,T;, ;) by scheme (22) given by

HSv+1)
A= NZ () (mxﬁ’im( (>)) =0 (23)

where we equate to o and solve for ajy). Then the 100(1 — 2a)% unconditional
bias-corrected(I) naive EB interval for 6; is given by
( 2(Tiz7+1) (Sz7+1) )
v Xz_( a1 = o)’ © X? oy ()

(24)

If we desire interval corrected only for unconditional EB coverage, the bootstrap
equation becomes

. v (T50+ 1) ,
A= ; F( E+n)( (:1;;1;] + 1)X2(u +r,-)("‘(2))) e (25)

where we equate to « and solve for 022)' Analogous to expression (24), we obtaine
the 100(1 — 2)% unconditional bias-corrected(II) naive EB intervals for 6; given by

2(T'17+ 1) 2T} + 1)
(FHia- ey 52y )

2(a+r;)
For correction conditional on T;, Carlin and Gelfand(1990) modified the Laird and
Louis(1987) procedure to draw observations from g¢* rather than g by changing
scheme (22) to

§— {6y, p#i} = {Ty, p#i} = 8 =8"(T;, {T}, p#1i}). (27)
Repeating this process N times, they obtained
6; ~ g*('lsiag)a j=1,---,N.

By EB bias-corrected method conditional on T; = t;, we obtain the type III para-
metric bootstrap estimate of R(d,T;, o’) by scheme (27) given by

bi(Sib +1)
A== X, ~ (ZZ——=X L (d))=0a 28
3 NJ; X a+7"i)(b (Eb; + 1) 2(a].+r,)( )) ( )
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where we equate to o and solve for o’. Therefore, the 100(1 — 2a)% conditional
bias-corrected naive EB interval for 6; is given by
( 2(T6+1) 2(Tio+1) )
0 X“ a —a)’ x-l (@)
2(u+r;)

(29)

4.3 Morris-delta bootstrap method

Morris(1983, 1987) used only the improved approximation of the estimated pos-
terior mean and variance to compute EB confidence intervals for Gaussian-Gaussian
setting under a flat prior. We obtain the bootstrap estimators of ur. and o% given
by,

and

2 1 (T} +1)°
o.Ti = _Z( 2% 2 * L )
N = \vf* (u) +ri — 1)2(uf + 1 — 2)

j
N 2
1 T 1 )
* N—IZ(((U;+ri-1)+v;(u;f+ri—1)) b1 )

where (uj, v}) is the bootstrap estimate of the hyperparameter (u,v) from the j-th
type III parametric bootstrap samples by scheme (22). Therefore, the 100(1 —2a)%
Morris-Delta type EB bootstrap interval for ; is approximated by

(u?n ~ 2a\[0F, BT+ 2a\/0F ),

where 2, denotes the upper 100c percentile of standard normal distribution.

5. Comparisons and conclusions

The EB confidence intervals are approximated by Monte Carlo method. We
consider the censoring rate (CR) defined by 100(1 — r/n)% of 0%(=complete
case), 30%, 50%. For given independent random samples a EB confidence intervals
are computed by each methods with bootstrap replications B = 400 times. And
the Monte Carlo samplings are repeated 400 times. Let Cy denotes the coverage
probability for #. We define Ly by
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where R is the number of Monte Carlo simulation replication. First, the comparisons
of the naive and the bootstrap intervals against the estimator proposed by Kuo and
Yiannoutsos(1993) when the hyperparameters u, v are unknown are presented in
Table 1. We can observe the following results:

1. The Cq’s of bootstrap intervals obtained using given marginal estimator are
better than that of the naive interval except for the Morris-Delta interval.

2. The Lg’s of bootstrap intervals obtained using given marginal estimator are
longer than that of the naive interval.

3. Bias-corrected naive(BCN) bootstrap intervals obtained using the marginal
estimator have more accurate than those of the other bootstrap intervals in
the desired nominal coverage.

4. The Cp’s of all the intervals are linearly down as CR increases.

Secondly, the comparisons of the naive and the bootstrap intervals against the es-
timator proposed by Dey and Kuo(1991) when the hyperparameter v is fixed are
presented in Table 2. We can observe the following results:

1. As a whole, the Cy’s and the Lg’s of the naive and all bootstrap intervals are
obtained using given marginal estimator are nearly same.

2. The Cp’s and the Ly’s of all intervals are insensitive as the CR’s changes

3. From Table 2.1(n=10), we have to similar results as Table 2.2(n=20).

Table 1. Comparison of Interval Methods When u, v are Unknown.

1.1 Sample size: n =10, a =0.05, p =2

Interval method 0% (CR) 30 % (CR) 50 % (CR)
Coverage Length | Coverage Length | Coverage Length

Naive 0.719 0.492 0.645 0.540 0.628 0.553
Cond-BCN 0.828 0.666 0.700 0.817 0.700 0.874
Unc-BCN(I) 0.755 1.019 0.653 1.140 0.665 1.175
Unc-BCN(II) 0.788 0.965 0.685 1.363 0.680 1.374

Laird & Louis 0.703 0.595 0.728 0.718 0.743 0.761
Morris-Delta 0.655 0.610 0.658 0.722 0.685 0.779
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1.2 Sample size: n =20, a =0.05, p =2

Interval method 0% (CR) 30 % (CR) 50 % (CR)
Coverage Length | Coverage Length | Coverage Length
Naive 0.860 0.422 0.745 0.446 0.725 0.493
Cond-BCN 0.938 0.466 0.908 0.600 0.848 0.674
Unc-BCN(I) 0.935 0.640 0.853 1.040 0.835 1.075
Unc-BCN(II) 0.828 0.445 0.705 0.563 0.540 0.614
Laird & Louis 0.793 0.495 0.658 0.558 0.653 0.619
Morris-Delta 0.655 0.610 0.658 0.722 0.685 0.779
Table 2. Comparison of Interval Methods When u is Known.
2.1 Sample size: n =10, o =0.05, p =2
Interval method 0 % (CR) 30 % (CR) 50 % (CR)
Coverage Length | Coverage Length | Coverage Length
Naive | 0.779 0.492 0.745 0.540 0.688 0.553
Cond-BCN 0.778 0.496 0.750 0.547 0.709 0.554
Unc-BCN(I) 0.775 0.499 0.753 0.550 0.720 0.575
Unc-BCN(II) 0.798 0.515 0.785 0.583 0.750 0.604
Laird & Louis 0.783 0.495 0.758 0.558 0.713 0.561
Morris-Delta 0.745 0.510 0.718 0.582 0.685 0.609
2.2 Sample size: n =20, o =0.05, p =2
Interval method 0% (CR) 30 % (CR) 50 % (CR)
Coverage Length | Coverage Length | Coverage Length
Naive 0.859 0.412 0.825 0.480 0.828 0.513
Cond-BCN 0.858 0.426 0.820 0.477 0.830 0.524
Unc-BCN(I) 0.855 0.419 0.846 0.480 0.835 0.529
Unc-BCN(II) 0.868 0.425 0.855 0.493 0.850 0.537
Laird & Louis 0.856 0.415 0.836 0.486 0.823 0.521
Morris-Delta 0.845 0.420 0.798 0.492 0.825 0.539
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