광양만 저층에 서식하는 어류의 중조사 및 계절 변동

허 성 회·곽 석 남
부정대학교 해양과학 및 해양과학 공동연구소

광양만 저층에 서식하는 어류의 중조사 및 계절 변동을 조사하기 위해 1994년 1월부터 1994년 12월까지 소형 trawl을 이용하여 대도 주변 저층에서 어류를 매월 채집하였다.

조사기간 동안 어류는 총 57종이 채집되었다. 실고기(Syngnathus schlegeli), 배도라치(Pholis nobilisosa), 가시망둑(Pseudoblenius cottoides), 주등초(Leiognathus euchlasis), 볼락(Sebastes inermis), 날개망둑(Faunogobius gymnauchen) 등이 많이 채집되었는데, 이들은 채집된 총 개체수의 69.9%를 차지하였다. 그 다음으로는 줄갈대(Acentrogobius flausmani), 문질 망둑(Acanthogobius flavimanus), 복심(Takifugu niphobles), 고만고지커(Rudaris erodes), 농어(Lateolabrax japonicus), 붕어(Conger myriaster), 갑상돌(Acanthogobius schlegeli), 꼬치(Liparis tanakai), 났치(Stephanolepis cirrhifer), 실비늘치(Aulichthys japonicus), 쥐노래미(Hexagrammos otakii), 청보리말(Silago japonicus) 등의 순으로 채집되었다. 본 조사해역에서 채집된 어류는 대부분이 15cm 이하의 소형 어종이거나 대형 어종의 유어들로 구성되어 있었다.

저층어 어류군집은 뚜렷한 계절 변동을 보였는데, 채집 어종수는 가을에 채집 개체수 및 생체량은 높았으며, 겨울에는 어종수 및 개체수 모두 낮았다. 한편 중다양도지수는 가을철에 높았다. 어류군집의 계절 변동은 수온, 저층의 현존량 및 먹이생물의 양적 변동에 의하여 영향을 받고 있었다. 밤과 낮동안의 채집량을 비교한 결과, 야간에 채집된 어종수 및 개체수가 주간에 비하여 많았다.

서 론

해초(海草, seagrass)는 수중 현화식물의 한 종류로 12속 58종이 전 세계에 분포한다(Tomlinson, 1982; Kuo and McComb, 1989). 해초는 온대와 열대의 연안해역에 밀생하여 무성한 해초지(seagrass meadows)를 형성하고 있다. 해초지는 해양의 생태계 중 가장 생산성이 높은 해역 중의 하나로 최근에 많은 연구의 대상이 되고 있다(Thayer et al., 1975).

우리나라의 연안해역에는 해초(eelgrass, Zostera marina), 웅미장(Z. nana), 개바디나(Phylllospadix japonicus) 및 새우말(Phyllospadix) 등의 해초가 발달되어 있다.

연안해역에 해초가 분포하고 있는 다른 나라에서의 해초생태계를 구성하는 각 종 생물에 대한 연구가 활발히 행하여지고 있다. 어류군집의 중조사 및 계절 변동에 관한 연구는 일본 Tomioka Bay(Kikuchi, 1966), 미국 Chesapeake Bay(Orth and Heck, 1984), 호주 Botany Bay(Middleton et al., 1984), Port Hacking (Burchmore et al., 1984), Western Port(Robertson, 1984), French West Indies의 Guadeloupe(Baelde, 1990) 등에서 수행된 바 있으며, 어류의 식성생태에 관한 연구도 많이 보고되었다(Carr and Adams, 1973; Brook, 1977; Livingstone, 1982; Huh and Kitting, 1985; Ryre and Orth, 1987; Nojima, 1990).

연안해역에 해초가 잘 발달된 우리나라의 경우 저층생태계에 관한 연구로는 충무 한신희에

본 연구는 우리나라 남해안에 발생되어 있는 살피발 생태계에 대한 종합적인 연구의 일환으로 실시되었으며, 본 논문에서는 광양만 대도주변 살피발에서 최상위 소비자 역할을 담당하는 어류의 종 조성 및 계절 변동을 연구하고 그 변동 요인을 분석하였다.

재료 및 방법

본 연구의 시료는 광양만의 대도주변 살피발에서 1994년 1월부터 12월까지 매월 소형 trawl을 이용하여 채집하였다(Fig. 1).

시료 채집에 사용된 어구는 otter trawl을 변형시켜 살피발 어류 채집에 적합하도록 특별히 제작되었다(Fig. 2). 그물의 크기는 길이가 5m였으며, 망목은 네개고물에서 1.9cm, 글자루로 갈수록 점차 망목이 감소하여 글자루에서는 1cm였다. 1회 에인면적은 180m² 정도였으며, 4회 반복 채집하였다.

채집된 어류는 10% 중성 포르말린으로 고정한 후, 실험실에서 각 종별로 동정, 개수하였다. 어류

Fig. 1. Location of the study area (shaded) in Kwangyang Bay, Korea.

Fig. 2. Diagram of a trawl used for the collection of the fish samples in the eelgrass bed in Kwangyang Bay.
의 동정에는 Nakabo et al. (1993), Masuda et al. (1984)를 따랐다. 각 어체의 짱은 1mm까지, 체중은 0.1g까지 측정하였다.

여류 채집 당시에 수온, 영분, 장피의 현존량, 그리고 여류의 농이 생물인 동물렬단세포 및 저서 동물의 현존량을 함께 조사하였다. 수온은 분상은 도계를 이용하였으며, 영분은 Salinometer (Tsurumi Seiki Model)를 이용하여 측정하였다. 장피의 채집은 0.5 m x 0.5 m 크기의 방형구를 이용하였으며, 현존량은 방형구내의 장피를 현장 채취하여 단위 면적당 (m²) 건중량 (g)으로 나타내었다. 각 월별 여류의 증조성 자료를 이용하여 Shannon – Wiener의 종다양도지수 (H')를 구하였다 (Shannon and Weaver, 1949). 각 출현종에 대한 출현 시기의 유사도는 Pianka (1973)의 중복도 공식을 이용하여 구하였다.

\[A_D = \frac{\Sigma (P_i \times P_a)}{\sqrt{\Sigma P_i^2 \times \Sigma P_a^2}} \]

여기서 i, j : 비교하고자 하는 2개의 종
h : 각각의 달
P : 조사기간 동안 채집된 한 종의 총 개체수에 대한 어느 특정한 달에 채집된 개체수의 비율이다.

또한, 1년 중 출현빈도가 3회 이상인 종에 대한 출현 시기의 유사도를 구하여, 비가중 산술평균질합을 실시하여 cluster analysis를 수행하였다. 자료 분석은 SPSSPC+를 이용하였다 (Norusis, 1986). 주요요인에서 추출된 양을 비교하기 위해서 Wilcoxon 부호검정과 Mann – Whitney 검정을 실시하였다 (p<0.05).

결 과

1. 환경 특성

조사기간 동안 수온은 8.1~27.6℃의 범위였으며, 여름에 높고 겨울에 낮은 전형적인 온대 해역의 계절 변동 양상이었다 (Fig. 3 – A). 영분은 조사기간 동안 29.56~33.24%의 범위였으며, 30% 이하 값을 보인 8월을 제외하고는 영분의 변동폭은 31~33% 였다 (Fig. 3 – A).

본 조사해역은 장피가 연안을 따라 약 10~25m의 폭으로 밀생하고 있었으며, 저조시 주로 수심 약 1~5m 사이에 장피가 분포하였다.

장피의 현존량은 계절 변동 양상이 두드러졌다 (Fig. 3 – B). 1월에는 평균 113.6 g/m²였으나, 수온이 상승하는 3월부터는 현존량이 증가하여 여름인 7월에는 연중 가장 높은 평균 225.6 g/m²의 값을 보였다. 8월부터 현존량이 감소하여 가을철에는 아주 낮았으며 (평균 82.1~86.2 g/m²), 12월부터 다시 증가하였다.

2. 여류 군집의 증조성

조사기간 동안 총 57종, 18,072개체, 124,688.7g의 여류가 채집되었다 (Table 1).

Fig. 3. Monthly variations of water temperature and salinity (A), and seagrass biomass (B) in the eelgrass bed in Kwangyang Bay in 1994.
Table 1. Total number of individuals and biomass of fish species collected in the eelgrass bed in Kwangyang Bay in 1994

<table>
<thead>
<tr>
<th>Species</th>
<th>Day</th>
<th>Night</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Syngnathus schlegelii</td>
<td>1,647</td>
<td>4,299</td>
<td>5,880.1</td>
</tr>
<tr>
<td>Pholis nebulosa</td>
<td>1,293</td>
<td>25,471</td>
<td>30,630.5</td>
</tr>
<tr>
<td>Pseudoblemnius cottoides</td>
<td>1,084</td>
<td>1,541</td>
<td>1,175.7</td>
</tr>
<tr>
<td>Leiognathus nuchalis</td>
<td>850*</td>
<td>1,074</td>
<td>1,830.5</td>
</tr>
<tr>
<td>Sebastes tenuis</td>
<td>564</td>
<td>2,030</td>
<td>1,841.7</td>
</tr>
<tr>
<td>Favonigobius gymmaica</td>
<td>161</td>
<td>123</td>
<td>539.9</td>
</tr>
<tr>
<td>Acanthogobius pfaunmi</td>
<td>175</td>
<td>216</td>
<td>549</td>
</tr>
<tr>
<td>Acanthogobius flavimanus</td>
<td>125</td>
<td>2,607</td>
<td>7,892.6</td>
</tr>
<tr>
<td>Takifugu niphobles</td>
<td>350</td>
<td>2,773</td>
<td>2,145.0</td>
</tr>
<tr>
<td>Rudaris erode</td>
<td>290</td>
<td>698</td>
<td>424.2</td>
</tr>
<tr>
<td>Lateolabrax japonicus</td>
<td>95</td>
<td>1,300</td>
<td>2,765</td>
</tr>
<tr>
<td>Conger myriaster</td>
<td>18</td>
<td>441</td>
<td>263</td>
</tr>
<tr>
<td>Anacanthogobius schlegeli</td>
<td>249</td>
<td>382</td>
<td>95.5</td>
</tr>
<tr>
<td>Liparis tanakai</td>
<td>11</td>
<td>25</td>
<td>243</td>
</tr>
<tr>
<td>Stephanolepis cirrhifer</td>
<td>129</td>
<td>1,192</td>
<td>247.5</td>
</tr>
<tr>
<td>Aulichthys japonicus</td>
<td>113</td>
<td>466.7</td>
<td>117</td>
</tr>
<tr>
<td>Hexagrammos otakii</td>
<td>79</td>
<td>1,514</td>
<td>119</td>
</tr>
<tr>
<td>Sigeo japonicus</td>
<td>42</td>
<td>86.3</td>
<td>143</td>
</tr>
<tr>
<td>Tridentiger trigonocephalus</td>
<td>129</td>
<td>87.4</td>
<td>20</td>
</tr>
<tr>
<td>Hippocampus japonica</td>
<td>95</td>
<td>49.6</td>
<td>52</td>
</tr>
<tr>
<td>Platycephalus indicus</td>
<td>54</td>
<td>159.6</td>
<td>91</td>
</tr>
<tr>
<td>Limanda yokohama</td>
<td>27</td>
<td>660.0</td>
<td>101</td>
</tr>
<tr>
<td>Petroscirtes breviceps</td>
<td>63</td>
<td>281.6</td>
<td>51</td>
</tr>
<tr>
<td>Chaenogobius heptacanthus</td>
<td>57</td>
<td>23.5</td>
<td>51</td>
</tr>
<tr>
<td>Ditrema temmincki</td>
<td>61</td>
<td>1,828</td>
<td>29</td>
</tr>
<tr>
<td>Repomucenus valencienni</td>
<td>47</td>
<td>37.1</td>
<td>27</td>
</tr>
<tr>
<td>Hypodytes rubripinnis</td>
<td>25</td>
<td>20.8</td>
<td>38</td>
</tr>
<tr>
<td>Oplegnathus fasciatus</td>
<td>46</td>
<td>181.7</td>
<td>5</td>
</tr>
<tr>
<td>Upeneus besansi</td>
<td>24</td>
<td>163.8</td>
<td>16</td>
</tr>
<tr>
<td>Hexagrammos agrammus</td>
<td>26</td>
<td>1,383</td>
<td>12</td>
</tr>
<tr>
<td>Inimicus japonicus</td>
<td>4</td>
<td>68.2</td>
<td>14</td>
</tr>
<tr>
<td>Cryptocentrus filifer</td>
<td>17</td>
<td>15.5</td>
<td>17</td>
</tr>
<tr>
<td>Sebastes schlegeri</td>
<td>9</td>
<td>50.5</td>
<td>9</td>
</tr>
<tr>
<td>Thrassa kammalensis</td>
<td>2</td>
<td>5.5</td>
<td>13</td>
</tr>
<tr>
<td>Sebastes oblongus</td>
<td>2</td>
<td>38.1</td>
<td>12</td>
</tr>
<tr>
<td>Thamacorus modestus</td>
<td>6</td>
<td>66.7</td>
<td>3</td>
</tr>
<tr>
<td>Chirolophis japonicus</td>
<td>1</td>
<td>12.1</td>
<td>6</td>
</tr>
<tr>
<td>Thryssa adaeae</td>
<td>6</td>
<td>13.7</td>
<td>6</td>
</tr>
<tr>
<td>Gasterosteus aculeatus</td>
<td>5</td>
<td>0.5</td>
<td>5</td>
</tr>
<tr>
<td>Pholis crassipinna</td>
<td>4</td>
<td>11.2</td>
<td>4</td>
</tr>
<tr>
<td>Engraulis japonicus</td>
<td>3</td>
<td>5.6</td>
<td>3</td>
</tr>
<tr>
<td>Evynnis japonica</td>
<td>1</td>
<td>8.2</td>
<td>1</td>
</tr>
<tr>
<td>Chasmichthys dolichognathus</td>
<td>2</td>
<td>4.2</td>
<td>2</td>
</tr>
<tr>
<td>Ernogomnus hexagrammus</td>
<td>2</td>
<td>30.5</td>
<td>2</td>
</tr>
<tr>
<td>Parapercis sexfasciata</td>
<td>2</td>
<td>64.8</td>
<td>2</td>
</tr>
<tr>
<td>Pleuronichthys cornutus</td>
<td>2</td>
<td>2.3</td>
<td>2</td>
</tr>
<tr>
<td>Pseudoblemnus percoidei</td>
<td>2</td>
<td>5.2</td>
<td>2</td>
</tr>
<tr>
<td>Siganus fuscescens</td>
<td>2</td>
<td>13.7</td>
<td>2</td>
</tr>
<tr>
<td>Trachinocephalus myops</td>
<td>1</td>
<td>17.9</td>
<td>1</td>
</tr>
<tr>
<td>Cynoglossus interruptus</td>
<td>1</td>
<td>2.8</td>
<td>1</td>
</tr>
<tr>
<td>Karieus bicoloratus</td>
<td>1</td>
<td>1.1</td>
<td>1</td>
</tr>
<tr>
<td>Ammodites personatus</td>
<td>1</td>
<td>4.2</td>
<td>1</td>
</tr>
<tr>
<td>Channaodon snyderi</td>
<td>1</td>
<td>39.1</td>
<td>1</td>
</tr>
<tr>
<td>Ctenopharyngodon microcephalus</td>
<td>1</td>
<td>8.1</td>
<td>1</td>
</tr>
<tr>
<td>Pholis fangi</td>
<td>1</td>
<td>74.9</td>
<td>1</td>
</tr>
<tr>
<td>Lactoria cornuta</td>
<td>1</td>
<td>12.4</td>
<td>1</td>
</tr>
<tr>
<td>Versasper variegatus</td>
<td>1</td>
<td>0.3</td>
<td>1</td>
</tr>
</tbody>
</table>

Total: 7,958, 51,422.0, 10,114, 73,266.7, 18,072, 100, 124,688.7, 100

* less than 0.1%
N: number of individuals, B: biomass in grams.
광양만 칠갑면에서 많이 채집된 어종은 개체수의 경우, 설고기(Syngnathus schlegeli), 베도라치(Philis nebulosa), 가시방 독(Pseudobleniinus cottoidea), 주둥치(Leiognathus nuchalis), 불락(Sebastes inermis), 날개방독(Favonigobius gymnauchen) 순이었는데, 이들은 전체 개체수의 69.9%를 차지하였다. 그 다음으로 줄방 독(Acentrogobius pflaumii), 문질방독(Acanthogobius flavimanus), 복설투기(Takifugu niphobles), 그물코취리(Rudaris erodes), 농어(Lateolabrax japonicus), 붕장어(Conger myriaster), 감성 독(Acanthogobius schlegeli), 콧구리(Liparis tanaekai), 취리(Stephanolepis cirrhifer), 실비늘기(Aulichthys japonicus), 취노래미(Reagrammos otakii), 청보리멸(Silago japonicus) 등이었으며, 이들이 12 어종은 총 개체수의 23.1%를 차지하였다.

한편, 생체량의 경우, 베도라치, 문질방독, 설고기, 붕장어, 취리, 복설투기, 농어, 불락 순으로 채집되었는데, 이들은 전체 생체량의 80.2%를 차지하였다. 그밖에 나머지 어종은 소량씩 채집되었다.

채집된 어류는 대부분이 15cm 이하로 소형 어종이나, 대형 어종의 유어들이었다.
주요 어종의 월별 채집 분포는 허·박(1997a, b, c, 1998 a, b, c, d)에 기술되어 있다.

3. 어류 군집의 계절 변동
월별 채집 어종수는 1월에 16종으로 가장 적었으나, 2월부터 종수가 점차 증가하여 5월에 25종에 이르렀다(Fig. 4 - A). 6월과 7월에는 다소 감소하였으나, 8월부터 증가하여 9월과 10월에 조사기간 중 가장 많은 34종이 채집되었다. 11월 이후부터 서서히 감소하였다.

일별로 채집된 개체수 및 생체량의 변화를 보면(Appendix, Fig. 4 - B, C), 1월과 2월에는 조사기간 중 채집개체수와 생체량이 가장 적었다. 이 시기는 베도라치, 날개방독, 실비늘기 등이 우점하였다(Table 2).

3월에 접어들면서 개체수 및 생체량이 급격히 증가하기 시작한 생체량은 4월에서 5월에 최대치를 기록하였다. 이와 같이 북에 많은 개체수와 생체량을 보인 것은 수온이 증가하면서 겨울에 거의 채집되지 않았던 작은 세계의 설고기, 불락, 가시방독, 몽치와의 개체수가 증가하였으며, 또한 겨울부터 우점하였던 베도라치, 날개방독의 개체수도 증가한 결과이다. 이 시기에는 설고기, 베도라치, 가시방독 등이 우점으로 출현하였다(Table 2).
6월과 7월에는 북에 비하여 다소 개체수 및 생체량이 감소하였는데, 이는 북에 우점하였던 베도라치, 가시방독의 개체수가 급격히 감소하였으며, 이 시기에는 감성돔, 농어, 망상어(Ditremia temminii) 등이 유입되기 시작하였으나, 개체수가 적었기 때문이다. 한편, 8월에서는 분절에 산란, 부화된 어종의 유어들이 감싸받아 대체되어 개체수가 증가하였다. 이 시기에 북에 우점하였던 베도라치, 설고기, 가시방독, 목치, 날개방독, 불락의 채집량은 다소 줄어들었지만, 이전까지 거의 채집되지 않았던 주둥치, 취리, 감성돔, 그물코취리, 농어, 복설투기의 개체수가 증가하여 전체 개체수가 증가하였다. 특히 주둥치의 총생량이 크게 증가하

Fig. 4. Monthly variations in number of species(A), number of individuals(B), biomass(C) and species diversity index(D) of fishes in the cell grass bed in Kwangyang Bay in 1984.
여 살고기보다 더 많은 출현량을 보였다(Table 2). 따라서 이 시기를 전후하여 살비밭을 이용하는 여류들 의 종조성에 바뀌어가고 있음을 알 수 있다. 한편, 생체량은 개체수보다 증가 폭이 크지 않아 서서히 증가 하였다.

9월에 젊어들면서 개체수가 감소하기 시작하여 12월까지 계속 감소하였다. 이는 수온이 낮아지면서 따라 우점종인 살고기, 베도라치, 주동치, 농어, 취지의 개체수가 감소하였기 때문이다. 생체량은 9월에 일시적인 증가를 보였으나 그 이후에 다시 감소한 후, 12월부터 소량 증가하였다. 가을에는 주동치가 지속적으로 최우점 하였다(Table 2).

종다양도지수의 역병 변동 양상을 보면(Fig. 4 ~ D), 사사기간 동안 1.68 ~ 2.53의 범위로 보였다. 1월과 2월에는 낮았으며, 특히 2월에는 사사기간 중 가장 낮았는데, 이 시기에는 새끼 흙기도 다른 용에 비해 적었으 며, 베도라치, 난개방목, 꼼치의 새 어종이 총 개체수의 73.3%를 차지하였기 때문이다(Table 2). 종다양도지수 값은 봄 동안 지속적으로 낮았으나, 6월에는 봄부터 우점종의 종들과 이 시기에 유일한 주동치, 취지, 농어, 납상어 등의 어류가 다양하게 채집되어 종다양도지수 값이 증가하였다. 7월과 8월에 다소 감소하였는데, 주 동치, 살고기, 취지 및 복성 등의 소수 어종들이 우점해 있기 때문이다(Table 2). 한편, 9월부터는 수치가 크게 증가하여 11월과 12월에는 종다양도지수가 조 사기간 중 가장 높았다. 이 시기에는 새끼 종도 많 을 뿐 아니라, 대부분 어종들이 고르게 채집되었다.

4. 출현양상에 따른 어종 구분

3회 이상 출현한 34종을 대상으로 출현 시기에 대한 종복도 지수를 구하여 집단분석을 시행한 결과, 크게 6개의 구분으로 나눌 수 있었다(Fig. 5).

Table 2. Monthly dominant fish species in the eelgrass bed in Kwangyang Bay from January 1994 to December 1994

<table>
<thead>
<tr>
<th>Month</th>
<th>Dominant species (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan.</td>
<td>Pholis nebulosa (44.9%), Favonogobius gymnauchen (19.7%), Aulichthys japonicus (13.6%)</td>
</tr>
<tr>
<td>Feb.</td>
<td>P. nebulosa (52.7%), F. gymnauchen (10.8%), Liparis tanakai (9.8%)</td>
</tr>
<tr>
<td>A. pflaumii (9.3%), A. japonicus (7.4%)</td>
<td></td>
</tr>
<tr>
<td>Mar.</td>
<td>P. nebulosa (43.7%), F. gymnauchen (15.7%), Pseudolemmius cottoides (13.9%), L. tanakai (9.9%)</td>
</tr>
<tr>
<td>Apr.</td>
<td>P. cottoides (27.0%), P. nebulosa (26.3%), Syngnathus schlegeli (19.0%), F. gymnauchen (11.7%), Sebastes inermis (6.3%)</td>
</tr>
<tr>
<td>May</td>
<td>S. schlegeli (36.1%), P. cottoides (25.7%), P. nebulosa (15.2%), S. inermis (13.2%)</td>
</tr>
<tr>
<td>Jun.</td>
<td>S. schlegeli (28.1%), P. nebulosa (17.8%), P. cottoides (12.9%), S. inermis (8.9%), F. gymnauchen (8.4%)</td>
</tr>
<tr>
<td>Jul.</td>
<td>S. schlegeli (50.0%), Acanthopogrus schlegeli (11.4%), S. inermis (7.6%), Latokabirix japonicus (5.9%), P. cottoides (5.3%)</td>
</tr>
<tr>
<td>Aug.</td>
<td>Leiosgnathus muchalis (30.2%), S. schlegeli (15.5%), Stephanolepis cirrhifer (7.0%), Takifugu niphobles (6.4%), A. schlegeli (5.4%)</td>
</tr>
<tr>
<td>Sep.</td>
<td>L. muchalis (39.5%), S. schlegeli (10.1%), Acanthogobius flavimanus (7.9%), Rudarius ercades (7.5%)</td>
</tr>
<tr>
<td>Oct.</td>
<td>L. muchalis (29.0%), Acentrogobius pflaumii (15.0%), R. ercades (9.2%), A. flavimanus (8.2%), T. niphobles (6.6%)</td>
</tr>
<tr>
<td>Nov.</td>
<td>L. muchalis (30.3%), A. pflaumii (9.3%), R. ercades (7.8%), A. flavimanus (6.9%), S. inermis (6.8%)</td>
</tr>
<tr>
<td>Dec.</td>
<td>T. niphobles (26.7%), P. nebulosa (16.6%), S. schlegeli (9.2%), A. flavimanus (7.5%), S. inermis (6.1%)</td>
</tr>
</tbody>
</table>
그룹 I : 연중 지속적으로 출현한 어종 그룹으로, 실고기, 베도라치, 납NgModule, 쥐노래미 등이 이에 속한다. 이들 어종은 작은 크기의 어어에서 먹이어까지 다양한 크기의 개체가 잘피발에 출현하였다. 특히 본 조사해역에서 우점하였던 실고기와 베도라치는 석메가 태평양 형과점으로 잘피발과 유사한 특성을 지니며 잘피발에서는 잘 보이지 않게 되기 때문에 먹이를 포식하거나 포식자로부터 보호받는다. 다른 어종에 비해 유리한 조건을 지닌 전형적인 잘피발 어종이다.

그룹 II : 3월부터 개체수가 증가하여 4월과 5월에 최대 출현량을 보인 그룹으로, 봉락, 가시망목, 봉락가자미, 노래미 등이 속한다.

그룹 III : 6월 이전에는 전혀 출현하지 않거나, 혹은 소량 출현하였으나, 수온이 높은 7월과 8월에 출현량이 크게 증가한 그룹으로, 봉락, 망상어, 해마, 까 rekl등, 노랑촉수(Upeneus bensasi) 등이 이에 속한다.

그룹 IV : 8월부터 개체수가 서서히 증가하여 9월에서 11월까지 주로 출현하였으나, 12월 이후로는 소량의 출현한 그룹으로 주동지, 복심, 위치, 실양대(Reponumexus valencienni) 등이 속한다.

그룹 V : 수온이 낮은 1월과 2월에 주로 출현한 그룹으로, 실비늘치, 풀치, 양대(Platycephalus indicus) 등이 속한다.

그룹 VI : 채집 시기에 관계없이 일시적으로 소량의 출현한 그룹으로, 청열(Thryssa kammalensis), 황철목(Sebastes oblengus), 풀반등이(Thryssa adelae) 등이 속한다.

5. 채집량의 주요 비고

조사기간 동안 박과 납NgModule에 채집된 어종수는 박에 54종, 납NgModule에 채집된 어종수가 더 많았다(Table 1). 박과 납NgModule에 공통적으로 채집된 어종은 총 채집된 종수의 67.2%를 차지하였다.

월별로 보면(Appendix, Fig. 6, Table 3), 1월과 2월에는 개체수 및 생체량이 박보다 납NgModule에 월정히 많았다(p<0.05). 이는 이 시기에 우점하였던 실비늘치, 베도라치, 실고기, 납NgModule 등이 납NgModule에 월정히 많았기 때문이다. 3월에는 봉락의 유미, 납NgModule 등이 박에 월정히 채집되었다. 5월에는 박과 납NgModule에 채집 종수는 거의 비슷하였으나, 여전히 개체수와 생체량은 박에 월정히 많았다.

6월과 7월에는 개체수 및 생체량이 박과 납NgModule에 큰 차이를 보이지 않았지만, 8월에는 개체수와 생체량이 박보다 납NgModule에 월정히 많았다(p<0.05). 이 시기에 는 실고기, 주동지, 복심, 위치 등이 박보다 납NgModule에 월정히 많았다. 9월에는 8월과는 달리 개체수와 생체량이 박과 납NgModule에 비슷하였으나, 생체량은 박에 월정히 많았다(p<0.05). 이 시기에는 우점종인 주동지, 실고기, 쥐노래미 등이 개체수가 거의 비슷하였으나, 채집 종수는 납NgModule에서 높은 편이었다. 11월에 들어들면서 개체수, 생체량 및 채집 종수는 박과 납NgModule에 차이가 크게 없었다.
Table 3. Comparisons of fish samples collected by a trawl in terms of number of individuals and biomass for each sampling period in the eelgrass bed. “Difference” column indicates whether day samples were significantly(S) or not significantly(NS) different from night samples based on paired percentage values for each species (P < 0.05)

<table>
<thead>
<tr>
<th>Sampling period</th>
<th>Number of individuals</th>
<th>Biomass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night</td>
</tr>
<tr>
<td>Jan.</td>
<td>95</td>
<td>266</td>
</tr>
<tr>
<td>Feb.</td>
<td>239</td>
<td>943</td>
</tr>
<tr>
<td>Mar.</td>
<td>427</td>
<td>912</td>
</tr>
<tr>
<td>Apr.</td>
<td>1,167</td>
<td>1,545</td>
</tr>
<tr>
<td>May</td>
<td>1,451</td>
<td>1,966</td>
</tr>
<tr>
<td>Jun.</td>
<td>636</td>
<td>898</td>
</tr>
<tr>
<td>Jul.</td>
<td>617</td>
<td>440</td>
</tr>
<tr>
<td>Aug.</td>
<td>1,540</td>
<td>817</td>
</tr>
<tr>
<td>Sep.</td>
<td>696</td>
<td>882</td>
</tr>
<tr>
<td>Oct.</td>
<td>480</td>
<td>799</td>
</tr>
<tr>
<td>Nov.</td>
<td>329</td>
<td>437</td>
</tr>
<tr>
<td>Dec.</td>
<td>209</td>
<td>435</td>
</tr>
</tbody>
</table>

Fig. 6. Monthly variations in number of species(A), number of individuals(B) and biomass(C) collected during day and night in the eelgrass bed in 1994.

고 첨

본 조사해역에서 소형 trawl을 이용하여 채집된 어류는 57종이었다. 국내의 다른 장마밭에서 행해진 연구와 비교해 보면, 충무한실폴 장마밭에서는 push net을 이용하여 35여종이 채집되었고(허, 1986), 제주도 항력 연안의 장마밭에서는 소형 beam trawl을 이용하여 58여종이 채집되었다(고. 조, 1997). 따라서 광양만 네이두변 장마밭에서 채집된 어종수는 제주도 연안 해조지대와 유사하였다.

본 장마밭 주변에 위치한 장마가 분포하지 않는 해역에서 실시된 어류 군집 연구(추, 1997)에서는 주둥지, 꿀지, 줄망둑, 청보리멸, 심장패, 베도라치, 무지치가미 등이 우점종으로 나타났다. 상기 어종 중 주둥지, 꿀지, 줄망둑, 청보리멸, 베도라치 등은 본 장마밭에서도 우점하였다. 이는 장마밭과 그 주변에 서식하는 어류의 종소성 차이에 큰 차이가 없음을 의미한다. 그러나 각 어종별로 장마밭에서 출현하는 시기와 주변 해역에서 출현하는 시기는 다르로 차이가 있었으며, 각 장소에서 채집된 어류의 크기 분포는 상당한 차이를 보였다.

주둥지의 경우 장마밭에서는 3월부터 7월까지 소량씩 채집되었으며, 8~9월에 1~3 cm 크기의 개체가 다량 출현하여 최대 채집량을 보였다(허, 1997c). 한편, 주변 해역에서는 주둥지가 5월부터 10월사이에 갑층 출현하였으며, 채집된 크기는 5~9cm가 대부분을 차지하였다(추, 1997). 꿀지의 경우 장마밭에서는 2월과 3월에 1~2cm 정도의 매우 작은 개체들이 다량 출현한 후, 그 이후에는 전혀 채집되지 않았으나(작, 1997), 주변 해역에서는 3~5월에 3~14cm 범위의 성장한 개체들이 다
상기의 결과를 제주도 연안 잡피밭에서 실시된 어류 군집 연구 결과(고ведение, 1997)와 비교해 보면, 종조성에 있어 서로 다른 차이가 있다. 우선 우점종을 비교해 보면, 광양만 잡피밭에서는 실고기, 베도라치, 가시만족, 주동치, 붐바 등이 우점으나, 제주도 잡피밭에서는 심비늘치, 황축만족(Pterogobius zonoleucus), 그룹코저치, 실고기 등이 우점하였다. 본 조사해역에서 전체 개체수의 19.4%를 차지하였던 실고기는 제주도 연안 잡皮밭에서는 4.8%에 불과하였다. 한편, 제주도 연안 잡피밭에서 채집된 종 개체수의 65.4%를 차지하며 가장 우점하였던 실비늘치는 본 조사해역에서는 겨울에만 소량 채집되었다. 그 밖에 본 잡皮밭에서 많이 채집되었던 베도라치, 가시만족, 주동치 등은 제주도에서는 거의 채집되지 않았다. 반면 제주도 잡피밭에서 많이 채집된 황축만족, 불종개(Plotosus lineatus) 등은 본 조사해역에서는 채집되지 않았다. 또한 어류 군집의 계절 변동 양상도 달랐는데, 광양만 잡피밭에서는 채집 개체수 및 생태계가 높은 수준을 보이는 외래에서 움직이기 위해 잡피밭을 떠나기 때문에 겨울에 채집 종수 및 개체수가 매우 낮았다. 한편, 북에는 수온 상승과 함께 잡피의 현존량이 증가하게 되어 큰 포식자들로부터 보호받기 유리한 환경이 조성되며, 또한 잡피 앞에 주로 부착하여 서식하는 단각류(카프레리류 및 멜제어류)의 출현량이 크게 증가하기 때문에 이들을 잡아먹는 많은 소형 어류들이 잡피밭으로 유입된 결과 북에 어류의 출현량이 많은 것으로 생각된다. 본 조사해역에서 가장 많이 채집된 실고기와 베도라치의 식성 연구에서 이들 두 어종의 주먹이 대상 생물이 잡피의 앞에서 부착하여 서식하는 단 각류로 밝혀진 바 있으며(고ведение, 1997a, b), 또한 이들 어종의 출현량과 단각류의 출현량 변동 양상은 이 점을 알 수 없고 있어 잡피밭 환경에서 먹이생물의 양적 변동이 특정 어종의 출현량에 영향을 미치고 있음을 간접적으로 시사해준다. 이와 같은 결과로 볼때, 광양만 대도주변 잡피밭 어류 군집의 계절 변동은 기본적으로 수온 변동에 의하여 초래되며, 수온의 변동에 따른 잡피의 현존량 및 환경 먹이생물의 양적 변동에 의해서도 크게 영향을 반영하고 있는 것으로 판단된다.
과 초겨울에 놓았다. 따라서 본 조사해역과 제주도 연안 해조지대는 독감이 깊게 밀생한 해역이지만 서식하는 어류의 종조성은 크게 달랐으며, 겨울 변동 양상도 달랐다.

두 해역에서 사용한 어구가 trawl 어구로 유사한 점으로 미루어 보아, 두 해역의 종조성 차이는 채집 어구의 차이에서 초래된 것이 아니며, 두 해역사이의 환경 특성 차이로 초래된 것으로 생각된다. 온대해역 어류의 분포에 가장 큰 영향을 주는 환경 요인으로 알려져 있는 수온을 비교해보면(Livingstone, 1982; Middleton et al., 1984; Baelde, 1990), 쿠로시오 난류의 지류인 쓰시마 해류의 영향으로 제주도 연안 절대발은 광양만 절대발에 비해 수온이 대체적으로 높았으며, 또한 겨울에 따른 수온 변동이 심하지 않았다. 특히 어류철의 고수온 및 겨울철의 저수온 현상이 제주도 연안 해조지대에서는 광양만 절대발에 비해 심하지 않았다. 이와 같은 수온 환경의 차이가 일차적으로 절대발 어류 군집의 종조성에 큰 영향을 미친 것으로 생각된다. 또한 절대발의 현존량면에서도 제주도 연안 해조지대에서는 수중 관찰로만 이루어져 정확한 비교는 어렵겠지만 절대의 생태가 본 조사해역과 비교하여 1~2달 정도 빠르게 나타났다. 이로 역시 절때발에 서식하는 각 종 동물의 현존량 변동에 영향을 미쳤을 것으로 생각된다. 그 결과 이들어 먹이로 하는 어류의 출현 양상에 영향을 주었을 것으로 판단된다.

조과 낚 동안의 채집량을 비교한 결과, 거의 모든 계절에 걸쳐 어종수 및 채집량이 낮아 비해 밖에 놓았다. 이에 대해 몇 가지 해석이 가능하다. 첫째로 낚 동안에 어망을 끌어 넣어 놓아 있기 때문에 밖에 비해 낮 도피 현상이 많이 발생할 가능성이 높다. 둘째로 낚 동안 조사해역 주변의 암초 지역에 숨어 있던 어종들이 심어질 때 밖에 절대발으로 유입되기 때문에 종수 및 채집량이 밖에 많아질 수 있다. 둘째로, 농어 및 꼬리노래미 등은 주로 주변 암초지대에서 서식하는 어종으로 낚에는 절대발에서 거의 채집되지 않고, 밖에 주로 채집되었는데, 이들은 절대발에 머무는 동안 절대발에 서식하는 단검류, 개류, 세우류 및 기타 저서동물을 섭취하는 것으로 나타났다(表, 1997). 국외의 해조지 연구에서도 낮 보다는 밖에 어류의 출현량이 상당히 높은 것으로 보고된 바 있으며(Bell and Harmelin - Vivien, 1982; Robertson, 1984; Gray and Bell, 1986; Leber and Greening, 1986), 제주도 연안 절대발에서도 어류의 개체수 및 생체량이 낮아비해 밖에 현저히 많다고 보고된 바 있다(고, 1997).

사사

시리의 채집과 자료의 분석까지 많은 도움을 준 부경대학교 해양학과 추현기, 안용락, 김대지와 어류 분류학 도움을 준 서남대 생명과학 윤창호교수님께 감사드립니다.

인용문헌

고유봉·조성환·고경민. 1997. 제주도 연안 해조지대 어류군집에 관한 연구. II. 심비늘치(Aulichthys japonicus Brevoort)의 성장, 산란 및 식성. 한어기 9(1): 61~70.

공명삼. 1982. 절대의 화수형성과 씨의 발생에 관한 연구. 동양수진 논문집 17: 37~42.

신민철·이태현. 1996. 대전해변 절때대 어류군집의 계절변화. 함해지 25(3): 135~144.

허성희·곽석남. 1997b. 광양만 절때발에 서식하는 살코기(Syngnathus schlegeli)의 식성. 한어기 30(5): 211.
896～902.

허성회-곽석남. 1997c. 광양만 장피밭에 서식하는 주둥치(Leiognathus nuchalis)의 식성. 한어지 9(2) : 221～227.

허성회-곽석남. 1988a. 광양만 장피밭에 서식하는 가시망둑(Pseudobleniopsis cottoidea)의 식성. 한수지 3(1) : (37～44).

허성회-곽석남. 1988b. 광양만 장피밭에 서식하는 불락(Sebastes inermis)의 식성. 한수지 31(2) : (인쇄중).

허성회-곽석남. 1988c. 광양만 장피밭에 서식하는 날개망둑(Favonigobius gymnauchen)의 식성. 한수지 : (두고중).

허성회-곽석남. 1998d. 광양만 장피밭에 서식하는 농어(Lateolabrax japonicus)의 식성. 어업기 술 : (두고중).

Appendix. Monthly variation in abundance of fishes collected in the eelgrass bed in Kwangyang Bay in 1994

<table>
<thead>
<tr>
<th>Species</th>
<th>January</th>
<th></th>
<th>February</th>
<th></th>
<th>March</th>
<th></th>
<th>April</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>B</td>
<td>N</td>
<td>B</td>
<td>N</td>
<td>B</td>
<td>N</td>
<td>B</td>
</tr>
<tr>
<td>Synognathus schlegeli</td>
<td>5</td>
<td>6.6</td>
<td>21</td>
<td>28.6</td>
<td>11</td>
<td>14.8</td>
<td>26</td>
<td>28.2</td>
</tr>
<tr>
<td>Pholis nebulosa</td>
<td>41</td>
<td>248.4</td>
<td>121</td>
<td>1,125.6</td>
<td>141</td>
<td>1,025.7</td>
<td>482</td>
<td>4,730.2</td>
</tr>
<tr>
<td>Pseudobleniura cotoides</td>
<td>27</td>
<td>5.9</td>
<td>159</td>
<td>20.2</td>
<td>412</td>
<td>479.1</td>
<td>320</td>
<td>404.1</td>
</tr>
<tr>
<td>Leiognathus nuchalis</td>
<td>5</td>
<td>30.1</td>
<td>3</td>
<td>11.1</td>
<td>7</td>
<td>38.2</td>
<td>31</td>
<td>139</td>
</tr>
<tr>
<td>Sebastes inermis</td>
<td>2</td>
<td>2.4</td>
<td>31</td>
<td>34.6</td>
<td>47</td>
<td>78.6</td>
<td>269</td>
<td>119.7</td>
</tr>
<tr>
<td>Favogobius gymnauchen</td>
<td>19</td>
<td>12.1</td>
<td>52</td>
<td>25.1</td>
<td>25</td>
<td>10.1</td>
<td>103</td>
<td>55.3</td>
</tr>
<tr>
<td>Acentrogobius pflaumi</td>
<td>3</td>
<td>17.5</td>
<td>5</td>
<td>4.1</td>
<td>105</td>
<td>192.1</td>
<td>2</td>
<td>3.6</td>
</tr>
<tr>
<td>Acanthogobius flavimanus</td>
<td>1</td>
<td>23.6</td>
<td>12</td>
<td>71.9</td>
<td>30</td>
<td>218.2</td>
<td>2</td>
<td>13.9</td>
</tr>
<tr>
<td>Takifugu niphobles</td>
<td>1</td>
<td>0.8</td>
<td>1</td>
<td>0.8</td>
<td>1</td>
<td>0.8</td>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>Rudaris erodeles</td>
<td>11</td>
<td>229.9</td>
<td>6</td>
<td>96.2</td>
<td>8</td>
<td>175.8</td>
<td>8</td>
<td>190.4</td>
</tr>
<tr>
<td>Lateolabrax japonicus</td>
<td>25</td>
<td>10.1</td>
<td>103</td>
<td>55.3</td>
<td>31</td>
<td>14.3</td>
<td>179</td>
<td>129.1</td>
</tr>
<tr>
<td>Conger myriaster</td>
<td>7</td>
<td>2.1</td>
<td>109</td>
<td>22.7</td>
<td>2</td>
<td>1.1</td>
<td>131</td>
<td>79.3</td>
</tr>
<tr>
<td>Acanthogobius schlegeli</td>
<td>7</td>
<td>2.1</td>
<td>109</td>
<td>22.7</td>
<td>2</td>
<td>1.1</td>
<td>131</td>
<td>79.3</td>
</tr>
<tr>
<td>Liparis tanakai</td>
<td>23</td>
<td>87.4</td>
<td>26</td>
<td>133.8</td>
<td>38</td>
<td>193.3</td>
<td>49</td>
<td>218.1</td>
</tr>
<tr>
<td>Stegobolus cirrifer</td>
<td>3</td>
<td>20.6</td>
<td>9</td>
<td>49.2</td>
<td>3</td>
<td>20.6</td>
<td>9</td>
<td>49.2</td>
</tr>
<tr>
<td>Auxichthys japonicus</td>
<td>1</td>
<td>74.4</td>
<td>2</td>
<td>93.1</td>
<td>1</td>
<td>45.8</td>
<td>1</td>
<td>33.1</td>
</tr>
<tr>
<td>Hexagrammos otakii</td>
<td>1</td>
<td>74.4</td>
<td>2</td>
<td>93.1</td>
<td>1</td>
<td>45.8</td>
<td>1</td>
<td>33.1</td>
</tr>
<tr>
<td>Silago japonicus</td>
<td>1</td>
<td>74.4</td>
<td>2</td>
<td>93.1</td>
<td>1</td>
<td>45.8</td>
<td>1</td>
<td>33.1</td>
</tr>
<tr>
<td>Trindiger trigonocephalus</td>
<td>2</td>
<td>0.8</td>
<td>3</td>
<td>8.1</td>
<td>1</td>
<td>1.6</td>
<td>2</td>
<td>1.1</td>
</tr>
<tr>
<td>Hippocampus japonica</td>
<td>6</td>
<td>27.1</td>
<td>3</td>
<td>21.4</td>
<td>2</td>
<td>9.2</td>
<td>4</td>
<td>31.8</td>
</tr>
<tr>
<td>Platycodorus indicus</td>
<td>1</td>
<td>71.9</td>
<td>5</td>
<td>254.9</td>
<td>2</td>
<td>92.6</td>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>Limanda yokohamae</td>
<td>1</td>
<td>71.9</td>
<td>5</td>
<td>254.9</td>
<td>2</td>
<td>92.6</td>
<td>1</td>
<td>1.1</td>
</tr>
<tr>
<td>Petrocoris breviceps</td>
<td>3</td>
<td>4.1</td>
<td>1</td>
<td>71.9</td>
<td>5</td>
<td>254.9</td>
<td>2</td>
<td>92.6</td>
</tr>
<tr>
<td>Chaenogobius heptacanthus</td>
<td>3</td>
<td>4.1</td>
<td>1</td>
<td>71.9</td>
<td>5</td>
<td>254.9</td>
<td>2</td>
<td>92.6</td>
</tr>
<tr>
<td>Ditremus termincki</td>
<td>1</td>
<td>1.1</td>
<td>1</td>
<td>1.1</td>
<td>2</td>
<td>2.4</td>
<td>2</td>
<td>2.7</td>
</tr>
<tr>
<td>Repomucenus valencienni</td>
<td>1</td>
<td>1.1</td>
<td>1</td>
<td>1.1</td>
<td>2</td>
<td>2.4</td>
<td>2</td>
<td>2.7</td>
</tr>
<tr>
<td>Hypodytes rubripinnis</td>
<td>1</td>
<td>1.1</td>
<td>1</td>
<td>1.1</td>
<td>2</td>
<td>2.4</td>
<td>2</td>
<td>2.7</td>
</tr>
<tr>
<td>Oplegnathus fasciatus</td>
<td>1</td>
<td>1.1</td>
<td>1</td>
<td>1.1</td>
<td>2</td>
<td>2.4</td>
<td>2</td>
<td>2.7</td>
</tr>
<tr>
<td>Upenus bensasi</td>
<td>1</td>
<td>1.1</td>
<td>1</td>
<td>1.1</td>
<td>2</td>
<td>2.4</td>
<td>2</td>
<td>2.7</td>
</tr>
</tbody>
</table>

N : number of individuals, B : biomass in grams
<table>
<thead>
<tr>
<th>Species</th>
<th>January Day</th>
<th>January Night</th>
<th>February Day</th>
<th>February Night</th>
<th>March Day</th>
<th>March Night</th>
<th>April Day</th>
<th>April Night</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexagrammos aggregatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inimicus japonicus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryptocentrus filifer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sebastes schlegelii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thryssa kammalensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sebastes oblongus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thamnakus modestus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chirolphus japonicus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thryssa adelae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gasterosteus aculeatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pholis crassispina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erythrinus japonicus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chasmichthys dolichogonatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ernagrammus hexagrammhus</td>
<td>1</td>
<td>2.7</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eunnis japonica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parapercis sexfasciata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pleuronichthys cornutus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudoblemius percoides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siganus fuscescens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trachinocephalus myops</td>
<td>1</td>
<td>2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammodytes personatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Champsodon snyderi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ctenotrypauchen micarocephalus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cynoglossus interruptus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pholis fangi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kareius bicoloratus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactoria cornuta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Versasper variegatus</td>
<td>1</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Total | 95 | 461.5 | 266 | 1,806.2 | 239 | 1,658.2 | 943 | 6,164.1 |

N: number of individuals, B: biomass in grams
Appendix. (continued)

<table>
<thead>
<tr>
<th>Species</th>
<th>May</th>
<th></th>
<th>June</th>
<th></th>
<th>July</th>
<th></th>
<th>August</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night</td>
<td>Day</td>
<td>Night</td>
<td>Day</td>
<td>Night</td>
<td>Day</td>
<td>Night</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------</td>
<td>-------</td>
<td>----------</td>
<td>-------</td>
<td>----------</td>
<td>-------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Syngnathus schlegeli</td>
<td>380</td>
<td>1,561.2</td>
<td>852</td>
<td>3,493.2</td>
<td>244</td>
<td>589.7</td>
<td>187</td>
<td>452.2</td>
</tr>
<tr>
<td>Pholis nebulousa</td>
<td>270</td>
<td>6,400.4</td>
<td>249</td>
<td>5,832.6</td>
<td>125</td>
<td>1,792.6</td>
<td>148</td>
<td>2,113.1</td>
</tr>
<tr>
<td>Pseudoblemnus cottoides</td>
<td>436</td>
<td>548.7</td>
<td>441</td>
<td>562.1</td>
<td>104</td>
<td>134.2</td>
<td>94</td>
<td>120.4</td>
</tr>
<tr>
<td>Leognathus nuchalis</td>
<td>14</td>
<td>220.1</td>
<td>10</td>
<td>54.1</td>
<td>3</td>
<td>1.1</td>
<td>10</td>
<td>3.2</td>
</tr>
<tr>
<td>Sebastes nimera</td>
<td>297</td>
<td>424.8</td>
<td>155</td>
<td>219.5</td>
<td>60</td>
<td>256.9</td>
<td>78</td>
<td>334.8</td>
</tr>
<tr>
<td>Favinogobius gymnauchen</td>
<td>2</td>
<td>1.2</td>
<td>44</td>
<td>26.4</td>
<td>2</td>
<td>1.8</td>
<td>127</td>
<td>111.4</td>
</tr>
<tr>
<td>Acentrogobius pflauini</td>
<td>12</td>
<td>26.1</td>
<td>19</td>
<td>41.8</td>
<td>1</td>
<td>1.8</td>
<td>59</td>
<td>106.5</td>
</tr>
<tr>
<td>Acanthogobius flavimanus</td>
<td>1</td>
<td>13.1</td>
<td>9</td>
<td>119.3</td>
<td>1</td>
<td>34.2</td>
<td>16</td>
<td>542.4</td>
</tr>
<tr>
<td>Tokifugu niphobles</td>
<td>152</td>
<td>553.7</td>
<td>88</td>
<td>90.8</td>
<td>14</td>
<td>14.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rudaris erodes</td>
<td>8</td>
<td>8.7</td>
<td>123</td>
<td>136.1</td>
<td>30</td>
<td>61.7</td>
<td>60</td>
<td>123.4</td>
</tr>
<tr>
<td>Lateolabrax japonicus</td>
<td>14</td>
<td>452.2</td>
<td>8</td>
<td>424.8</td>
<td>28</td>
<td>124.2</td>
<td>2</td>
<td>67.5</td>
</tr>
<tr>
<td>Conger myriaster</td>
<td>1</td>
<td>13.7</td>
<td>100</td>
<td>19.2</td>
<td>20</td>
<td>3.7</td>
<td>126</td>
<td>62.8</td>
</tr>
<tr>
<td>Liparis tanakai</td>
<td>1</td>
<td>111.1</td>
<td>120</td>
<td>873.2</td>
<td>46</td>
<td>334.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stephanolepis cirrhifer</td>
<td>1</td>
<td>4.6</td>
<td>8</td>
<td>44.8</td>
<td>3</td>
<td>13.9</td>
<td>2</td>
<td>9.2</td>
</tr>
<tr>
<td>Auichthys japonicus</td>
<td>2</td>
<td>1.3</td>
<td>9</td>
<td>5.9</td>
<td>2</td>
<td>1.3</td>
<td>9</td>
<td>5.9</td>
</tr>
<tr>
<td>Hexagrammos otakii</td>
<td>19</td>
<td>125.8</td>
<td>20</td>
<td>133.6</td>
<td>14</td>
<td>241.2</td>
<td>29</td>
<td>498.2</td>
</tr>
<tr>
<td>Silago japonicus</td>
<td>1</td>
<td>6.2</td>
<td>2</td>
<td>40.4</td>
<td>10</td>
<td>4.6</td>
<td>11</td>
<td>5.1</td>
</tr>
<tr>
<td>Trideniger trigonocephalus</td>
<td>1</td>
<td>0.4</td>
<td>1</td>
<td>0.5</td>
<td>3</td>
<td>2.9</td>
<td>3</td>
<td>2.7</td>
</tr>
<tr>
<td>Hippocampus japonica</td>
<td>1</td>
<td>79.8</td>
<td>20</td>
<td>9.7</td>
<td>3</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platyccephalus indicus</td>
<td>3</td>
<td>5.1</td>
<td>17</td>
<td>63.1</td>
<td>2</td>
<td>82.6</td>
<td>2</td>
<td>5.9</td>
</tr>
<tr>
<td>Limanda yokohamae</td>
<td>20</td>
<td>21.6</td>
<td>19</td>
<td>21.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petroscirtes breviceps</td>
<td>31</td>
<td>13.1</td>
<td>47</td>
<td>18.7</td>
<td>26</td>
<td>10.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaoenogobius heptacanthus</td>
<td>2</td>
<td>71.4</td>
<td>16</td>
<td>51.2</td>
<td>5</td>
<td>15.8</td>
<td>8</td>
<td>93.2</td>
</tr>
<tr>
<td>Ditrema temminckii</td>
<td>24</td>
<td>14.4</td>
<td>5</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repomucenus valencienni</td>
<td>2</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypodytes rubripinnis</td>
<td>42</td>
<td>134.4</td>
<td>4</td>
<td>12.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oplegnathus fasciatus</td>
<td>8</td>
<td>4.5</td>
<td>20</td>
<td>109.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: number of individuals, B: biomass in grams
Appendix. (continued)

<table>
<thead>
<tr>
<th>Species</th>
<th>May Day</th>
<th>Night</th>
<th>June Day</th>
<th>Night</th>
<th>July Day</th>
<th>Night</th>
<th>August Day</th>
<th>Night</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>B</td>
<td>N</td>
<td>B</td>
<td>N</td>
<td>B</td>
<td>N</td>
<td>B</td>
</tr>
<tr>
<td>Hexagrammos ogrammus</td>
<td>9</td>
<td>517.8</td>
<td>2</td>
<td>115.2</td>
<td>1</td>
<td>49.8</td>
<td>2</td>
<td>62.4</td>
</tr>
<tr>
<td>Inimicus japonicus</td>
<td></td>
<td></td>
<td>2</td>
<td>249.1</td>
<td>2</td>
<td>10.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryptocentrus filifer</td>
<td></td>
<td></td>
<td>8</td>
<td>12.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sebastes schlegeli</td>
<td>5</td>
<td>49.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thryssa kamalensis</td>
<td>1</td>
<td>9.3</td>
<td>2</td>
<td>5.5</td>
<td>9</td>
<td>25.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sebastes oblongus</td>
<td>1</td>
<td>30.7</td>
<td>1</td>
<td>7.4</td>
<td>6</td>
<td>46.8</td>
<td>4</td>
<td>27.6</td>
</tr>
<tr>
<td>Thamacorus modestus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>7.2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Chirolophis japonicus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>5.2</td>
</tr>
<tr>
<td>Thryssa adelae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gasterosteus aculeatus</td>
<td>5</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pholis crassipina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engraulis japonicus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chasmichthys dolichognathus</td>
<td>1</td>
<td>8.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ernogranum hexagrammurus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evynnis japonica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parapercis sexfasciata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pleuronichthys cornatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudobleniis percoide</td>
<td>2</td>
<td>5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siganus fuscescens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trachinocephalus myops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammodos oes personatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Champsodon snyderi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centrolymphaen micarocephalus</td>
<td>1</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cynoglossus interruptus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pholis fangi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kareius bicoloratus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactoria cornuta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verasper variegatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1,451</td>
<td>9,816.9</td>
<td>1,966</td>
<td>11,534.1</td>
<td>636</td>
<td>3,252.4</td>
<td>898</td>
<td>5,123.6</td>
</tr>
</tbody>
</table>

N: number of individuals, B: biomass in grams
Appendix. (continued)

<table>
<thead>
<tr>
<th>Species</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night</td>
<td>Day</td>
<td>Night</td>
</tr>
<tr>
<td>Syngnathus schlegeli</td>
<td>95</td>
<td>198.8</td>
<td>64</td>
<td>133.9</td>
</tr>
<tr>
<td>Pholis nebula</td>
<td>5</td>
<td>47.1</td>
<td>3</td>
<td>27.6</td>
</tr>
<tr>
<td>Pseudoblennius cottiodes</td>
<td>14</td>
<td>38.1</td>
<td>1</td>
<td>2.8</td>
</tr>
<tr>
<td>Leiothrichus nucalis</td>
<td>275</td>
<td>316.8</td>
<td>349</td>
<td>415.1</td>
</tr>
<tr>
<td>Sebastes inermis</td>
<td>30</td>
<td>93.3</td>
<td>11</td>
<td>34.2</td>
</tr>
<tr>
<td>Favinogobius gymmauchen</td>
<td>1</td>
<td>0.7</td>
<td>41</td>
<td>28.1</td>
</tr>
<tr>
<td>Acentrogobius pflaum</td>
<td>13</td>
<td>8.8</td>
<td>31</td>
<td>21.3</td>
</tr>
<tr>
<td>Acanthogobius flavimanus</td>
<td>7</td>
<td>129.1</td>
<td>117</td>
<td>2,152.8</td>
</tr>
<tr>
<td>Takifugu niphobles</td>
<td>16</td>
<td>77.4</td>
<td>85</td>
<td>549.1</td>
</tr>
<tr>
<td>Rudaris erodes</td>
<td>99</td>
<td>200.4</td>
<td>20</td>
<td>40.8</td>
</tr>
<tr>
<td>Lateolabrax japonicus</td>
<td>5</td>
<td>166.1</td>
<td>13</td>
<td>430.7</td>
</tr>
<tr>
<td>Conger myriaster</td>
<td>46</td>
<td>729.6</td>
<td>1</td>
<td>17.1</td>
</tr>
<tr>
<td>Acanthopagrus schlegeli</td>
<td>18</td>
<td>152.4</td>
<td>4</td>
<td>33.4</td>
</tr>
<tr>
<td>Liparis tanakai</td>
<td>4</td>
<td>151.1</td>
<td>64</td>
<td>2,685.4</td>
</tr>
<tr>
<td>Stephanolepis cirrhifer</td>
<td>2</td>
<td>1.9</td>
<td>7</td>
<td>6.8</td>
</tr>
<tr>
<td>Autichthys japonicus</td>
<td>11</td>
<td>298.1</td>
<td>16</td>
<td>433.1</td>
</tr>
<tr>
<td>Hexagrammos otakii</td>
<td>9</td>
<td>17.5</td>
<td>23</td>
<td>43.7</td>
</tr>
<tr>
<td>Silago japonicus</td>
<td>13</td>
<td>66.6</td>
<td>2</td>
<td>10.4</td>
</tr>
<tr>
<td>Tridentiger trigonocephalus</td>
<td>29</td>
<td>24.1</td>
<td>18</td>
<td>14.4</td>
</tr>
<tr>
<td>Hippocampus japonica</td>
<td>6</td>
<td>14.4</td>
<td>30</td>
<td>72.5</td>
</tr>
<tr>
<td>Platyecephalus indicus</td>
<td>1</td>
<td>3.7</td>
<td>5</td>
<td>214.5</td>
</tr>
<tr>
<td>Limanda yokohama</td>
<td>11</td>
<td>36</td>
<td>7</td>
<td>23.1</td>
</tr>
<tr>
<td>Petroscirtes breviceps</td>
<td>6</td>
<td>56.8</td>
<td>5</td>
<td>47.5</td>
</tr>
<tr>
<td>Chaenogobius heptacanthus</td>
<td>15</td>
<td>3.7</td>
<td>5</td>
<td>5.5</td>
</tr>
<tr>
<td>Ditrema jemminki</td>
<td>1</td>
<td>0.6</td>
<td>9</td>
<td>6.8</td>
</tr>
<tr>
<td>Repomucenus valencienni</td>
<td>4</td>
<td>4.7</td>
<td>1</td>
<td>11.7</td>
</tr>
<tr>
<td>Hypodytes rubripinnis</td>
<td>3</td>
<td>30.7</td>
<td>3</td>
<td>34.5</td>
</tr>
</tbody>
</table>

N: number of individuals, B: biomass in grams
<table>
<thead>
<tr>
<th>Species</th>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night</td>
<td>Day</td>
<td>Night</td>
</tr>
<tr>
<td>Hexagrammus agrammus</td>
<td>1</td>
<td>30.6</td>
<td>2</td>
<td>41.2</td>
</tr>
<tr>
<td>Inimicus japonicus</td>
<td>1</td>
<td>8.9</td>
<td>1</td>
<td>20.6</td>
</tr>
<tr>
<td>Cryptocentrus filifer</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Sebastes schlegelii</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Thryssa kammalensis</td>
<td>2</td>
<td>4.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sebastes oblongus</td>
<td>2</td>
<td>39.1</td>
<td>2</td>
<td>38.3</td>
</tr>
<tr>
<td>Notothenia modestus</td>
<td>1</td>
<td>5.8</td>
<td>1</td>
<td>2.7</td>
</tr>
<tr>
<td>Chirolophus japonicus</td>
<td>1</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Gasterosteus aculeatus</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Pholis crassispina</td>
<td>1</td>
<td>2.4</td>
<td>2</td>
<td>3.2</td>
</tr>
<tr>
<td>Engraulis japonicus</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Chasmichthys dolichognathus</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Ernogonimus hexogrammus</td>
<td>2</td>
<td>30.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eivmis japonica</td>
<td>2</td>
<td>15.6</td>
<td>1</td>
<td>17.9</td>
</tr>
<tr>
<td>Parapercis sexfasciata</td>
<td>1</td>
<td>13.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pleuronichthys cornutus</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Pseudoblenius percoideus</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Siganus fuscescens</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trachinocephalus myops</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammodytes personatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Champtodon snyderi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ctenotrypauchen micaroccephalus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cynoglossus interruptus</td>
<td>1</td>
<td>39.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pholis fangi</td>
<td>1</td>
<td>13.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kareius bicoloratus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactoria cornuta</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verasper variegatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>696</td>
<td>2,286.9</td>
<td>882</td>
<td>7,531.8</td>
</tr>
</tbody>
</table>

N: number of individuals, B: biomass in grams
Species Composition and Seasonal Variations of Fishes in Eelgrass (Zostera marina) Bed in Kwangyang Bay

Sung - Hoi Huh and Seok Nam Kwak
Department of Oceanography and Korea Inter-University Institute of Ocean Science
Pukyong National University, Pusan 608 – 737, Korea.

A total of 57 species of fish species was collected by a trawl from the eelgrass bed in Kwangyang Bay. The dominant species were Pholis nebula, Syngnathus schlegeli, Leiognathus nuchalis, Pseudoblennius cottoides, Sebastes inermis, Favonigobius gymnauchen, which accounted for 69.9% of the total numbers of fish collected. Fish collected in the study area were primarily small fish species or early juveniles of large fish species. Only about 10% of fishes which were collected in the eelgrass bed exceeded 15cm in standard length.

Seasonal variations in both species composition and abundance were major charateristics in the study area. The peak abundance occurred in spring, while the number of species was the highest in fall. However, both the number of species and abundance of fishes showed the lowest values in winter. High species diversity indices were observed in fall. Temperature, eelgrass standing crop and abundance of food organisms influenced seasonal changes of the fish community in the study area.

More abundant and more diverse fishes were collected during nighttime than daytime.