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Abstract

The advanced development in many fields of engineering and science has caused much
interests and demands for crashworthiness and non-lincar dynamic transient analysis of
structure response. Crash and impact problems have a dominant characteristic of large
deformation with material plasticity for short time scales. The structural material shows strain
rate-dependent behaviors in those cases. Conventional rate-independent constitutive equations
used in the general purposed finite analysis programs are inadequate for dynamic finite strain
problems.

In this paper, a rate-dependent constitutive equation for elastic-plastic matenial is developed.
The plastic stretch rate is modeled based on slip model with dislocation velocity and its
density so that there is neither yielding condition, nor loading conditions. Non-linear hardening
rule is also introduced for finite strain. Material constants of present constitutive equation are
determined by experimental data of mild steel, and the constitutive equation is applied to
uniaxile tension loading.
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1. Introduction

In recent years, there has been a growing
interest and demand in the crashworthiness of
structures for the safe and reasonable design,
which has a characteristic of the nonlinear
problems involving large deformation over short
time scales. From the end of 1970's, hydrocodes
such as LS/DYNA3D, MSC/DYTRAN, PAM-
CRASH, ec. have been devdoped for the
mumerical analysis of these problems. By the way,
the structural materials show rate—dependent
behaviars rather than rate-independent ones with
increasing strain ratel1-3]. Therefare, conventional
rate-independent  constitutive equation has a
limitation for the analysis of large deformation
finite strain problem such as crash or impact
analysis.

Perzynafl4] proposed Perzyna-type rate-
dependent  constitutive  eguation in 1963,
infroducing relaxation functions and drawing
dynamic vield condition. On the other hand
Gilman[5] suggested Johnston-Gilman-type rate-
dependent constitutive equation in 1965, using
the model of dislocation velocity and dislocation
density. Ricel6] established a  theoretical
framework of a flow potential for rate-
dependent inelastic behavior in 1971. Recently,
Paglietti[7] explained the elastoplastic
deformation based on the Bell's experimental
results, by interpreting an elastic limit by the
thermodynamic  theory and by  describing
rate—dependent  plastic deformation as the
change of elastic limit. However, these models
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have mot yet been amranged, and practical
constitutive equations applied to these models
have not been published.

Perzyna-type and Johnston-Gilman-type are
usually used at present as the rate—dependent
constitutive equations[8-10). That is because
these types are convenient to approximate the
experimental results of dislocation velocity to
exponential rules[11} Since the exponential rules
do not consider dislocation density, it is hard to
apply themn to mild steel in which the change of
dislocation density senstively affects the plastic
deformation behavior. Though Johnston-Gilman-
type constitutive equation is used, it has not yet
been applied to hydrocodes, the range of its
application is still narrow, and it is not
generalized to apply to the general purpose
finite element programs.

The objective of this paper is to develop
large deformation, rate-dependent elastic plastic
constitutive equation, by employing the slip
model to represent well the plastic deformation
behavior of mild sted for improvement of the
above problems, and by introducing a nonlinear
hardening to broaden the applicable range of
strainn. The others are to develop the
computational algarithm applicable to the finite
element programs and hydrocodes, and to enable
to analyze mare reasonably large deformation,
dynamic plastic problem such as collision and
stranding of ship. Mild steedd is the major for
the developed constitutive equation here, while
the body—centered cubic lattice material is also
possible to be applied to.
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2. Basic Framework for the Constitutive
Equations

Assuming elastic and plastic deformations to
be non-interaction, Helmholtz free energy can
be composed of the elastic and plastic terms as
follows:

$(E  Hi, Hi) = ¢(E )+ ¢ (H Ho, (1

where E. is (een strain tensor, H;, H, are
the intermal variables indicating isotropic
hardening and kinematic hardening, respectively.
Assume that the fourth order tensor, constant,
Cw is ntroduced, and that the elastic free

energy can be expressed as fallows!

p¢:e(Ee):% E. CE.. (2)

Since Green strain tensor E,. and the 2nd
Piola~Kirchhoff stress o, are conjugate, the

2nd Piola-Kirchhoff stress can be described as
follows:

0, pj;géff =C:E,. @

Differentiating Eq. (3) with time, the following
incremental form can be obtained:

0,=CE,. (4)

Since the 2nd Piola-Kirchhoff stress and Green
strain are the Lagrangian tensors, their
differentiations with time also satisfy objectivity.
The tensor field from Eq. (4), therefore, is
objective.
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When Eg. (4) is expwessed as FEulerian
tensor after its transformation, stress rate
becomes objective. Though every stress rate
can be used, this stress rate is not conjugate
with the usually used Eulerian strain rate.
Another difficulty is that the rotation defined
from corotational stress rate can not exactly
express that of strain rate. Even though these
problems have not yet settled, there is no big
difficulty in the incremental numerical
computations except fructuational solution of
Jaumann rate in paticular condition.

Truesdell rate is used as the objective stress
rate in this study. Pre- and post-multiplying
both sides of Eq. (4) with deformation gradient
tensor leads to the following:

J}LF&,FT:’}FC:EEFT. ®)
The left side of above Eq. (5) is Truesdell rate,
e" . The right side of Eq. (5) is developed as

follows:

} FC E.F' = %tr(CFTEeFT)
=C: JJ"FTECFT ®)
- C: } FN(FI)*D.F.FIFT.

Assuming small increments in the updated
Lagrangian method, then J=1,F,=F.,=F=1L

Stretch rate tensor, therefore, can be used as
the strain rate. Egs. (5) and (6) can be
expressed as follows:

eT=C:D.=C:(D-D,), D

where D, D. and D, are total, elastic and
plastic stretch rate tensors, respectively.



80

3. Strain Rate-Dependent Plastic
Development Equations

3.1 Dislocation Velocity

Johnston{12]  examined the  dislocation
velocity and its density in Lif closely through
experiments. The dislocation velocity showed to
be extremely sensitive to applied stress. The
following four models for the dislocation velocity
are usually used exponential type model
approximated from experimental results for the
dislocation velocity, vdocity modd from the
point defect drag, modd based on the thermal
excitation, and model based on the friction and
dispersion of phonon at high strain rate. In this
study, the point defect drag model such as the
following expression is used, which is suitable
for body-centered cubic lattice material:

v=v,e"", ®)

where v, is a limiting velocity of dislocation,
D is a characteristic drag stress, and r is a
applied shear stress.

3.2 Dislocation Density

The growth of dislocation is also senstive to
applied stress. When a dislocation is subjected
to a constant stress that is sufficiently high to
make it multiply, the density of loops along its
glide plane increases with time[13]. The number
of dislocations increases exponentially with time
at the beginming of the multiplication process.
This density within the band begins to increase
only after the swface of the aystal is
completely covered with glide bands. The lateral
growth of the glide bands is a linear function of
the macroscopic strain.
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It is verified the dislocation density (the
number of dislocation per area) increases almost
linearly uwp to 109% with strain in Lif
Johnston{14] modeled the change of the
dislocation density based on this fact. f 6 is
the number of new dislocation loops per length
of wake, then the rate of change of mumber of
loops 1s as follow:

dN =28Ndx, ©

where dx is a linear distance swept out by
each dislocation, and dx=vdt. Integration of
Eq. (9) with time gives

N=N,e?" (10

Fquation (10) means that the total nmumber of
loops in a growing band increases exponentially
with time, and represents one-dimensional ship.
Since attrition of dislocation occurs in addition
to multiplication dwing growth of a
three-dimensional ghde band, the overall rate
change of dislocation density p is written as

(cilt =ap— Bp°. an

3.3 Slip Velocoty

Slip velocity is affected by the dislocation
velocity and the dislocation density, that is, slip
is determined by the mmmber of dislocations and
their velocities. Slip velocity can be represented
by the dislocation velocity and its density as
following procedure. When a dislocation moves
along the distance x;, slip &: can be written as

8 ="ib, (12)
where b is the Burgers vector. If a dislocation
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moves along the length 7, a slip proceeds by
the Burgers vectar. Therefore, slip velocity is
described as

7= ‘l’l b, (13)

where v; is a dislocation veloaty. Assurming
there are N dislocations on slip plan, Eq. (13}
is rearranged as follows:

y= pbv, (14)

where v is the average dislocation velocity and
o=N/ 1

It is reported that dislocations are composed
of the edge and screw components, and that the
edge components move about 30 times as fast
as the screw components at a given stress{12]
Considering this point, Eq. (14) can be modified
as follow:

7=b{(Peve+ PsVs), (15

where the subscripts, € and s, refer to the edge
and screw dislocations, respectively. Using
Oslpe=v./vs=50 and p=p.+p=p,, Eq. (15)
may be written as

PeVe

ey )=2bovs=2bov, (16)

r=bov.(l1+

Finally, slip velocity 7 is expressed in terms of
the dislocation density and the dislocation
velocity as shown in Eq. (16). Slip velocity of
Eq. (16) can be obtained when the dislocation
density and the dislocation velocity are
expressed by the stress and the slip.

Gilman[5] derived the dislocation density
from Egs. (11) and (16). Setting 2=0 of Eq.
(11), combination of this with Eq. (16) yields

REBEHSBERE F 34 & £ 1 5% 1997F 28

o(N=0(p, +0,7). amn

This result is consistent with the experimental
observation that the dislocation density increses
lincarly at the beginmng of deformation. As
straining proceeds, by the way, some of the
dislocations of Eq. (17) will lose their mobility
through several reasons and will beconme
restrained  dislocations. Their fraction also
increases with increasing strain. f f is the
fracion of the mohile dislocations, the
expression for the change of f is as followlS):

df =— ¢fdy, 18

where ¢ is a coefficient. From Eg. (18), the
fraction of the nobile dislocations f can be
written as

f=e %, (19

By combining Fgs. (17) and (19), the nohile
dislocation density is then obtained as

o(D=(po + orNe ", (20)

where p, and p, are the initial dislocation
density and the multiplicaion constant,
respectively. From Egs. (8) and (20), therefore,
slip velocity is given by

. ~(gr+ 1) ,
y=2bv,{(p, + o17)e ™ , 0

where ¢ decreases the slip velocity with
increasing slip, which represents a kind of
wark-hardening. Letting ¢=H;/r, then Eq.
(21) can be written as

~ VH,,+7Hly)
y=2bv,{(0, + o17) e N (22)
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Since the real power necessary t0 move
dislocations is the effective stress except the
back stress (the long range stress) r,, the
correction of Eq. (22) gives as follows:

- (,H-f HJZ)

r=2bv,(p, + e ", (23)

where the back stress represents a kinematic—
hardening phenomina known as Bausinger's
effect.

3.4 Generatization of Plastic Development
Equations

In this study, the Johnston-Gilman-type
constitutive equation is more generalized and is
developed suitable for the large deformation
plastic expressions. Using the slip modd
explained previously, the plastic stretch rate
tensor D, the objective strain rate, is expressed
as follows:

H,+H+Hlt, 5—-B

G JA6—-B) |V I(ad-B)’ @)

D,=C.(p,+0, E,)EXP{

where B is the back stress representing the
Bausinger’'s effect. To model the plastic
deformation within more wideranging deformation
rate, the exponential term goveming the
deformation rate for the stress is modified as
falows:

H B0 (7 B By (1 BD)T | o

EXP = o
(VJ(o —B))

where, H,,n and H, are the material
constants, B’ is deviatoric back stress, E, is
an accumulated plastic deformation, H is a
hardening function defined in the following Eq.
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(26), and J.(d — B") is the second invanant of

the effective stress (o —B’). In the above
equation, whereas the back stress represents
kinematic hardening, H, and H, isotropic
hardening. n and H, govem dynamic yield
stresses of material.

The constitutive equation is completed
obtaining the development equations for the
hardening and back stress in Fq. (25), and the
constants are determined from the experimental
results. The functions of back stress and
isotropic hardening are modeled as follows,
based on the hardening model of Hul15]:

H=C,(H,-H) D,, (26)
Bzcb( % (1+{1)B,D,— B D,,), @7

where C,, He, Cy, B, are the material constants
from experiments, D, is the equivalent strain
rate as follows:

D,y 1D,:D,. (28)

4. Strain Rate-Dependent Constitutive
Equations

The constitutive equation of elastoplastic
materials explained up to the present is
rearranged. Constitutive equation is largely made
up of the relationship of objective stress and
strain (7), plastic development equations (24)
and (25), and equations for hardening and back
stress (26) and (27). Especially, there are no
vielding condition and  loading/unloading
condition in these plastic development equations,
rather than the rate-independent ones. The
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obove equations are rearranged for convenience
in Table 1.

Table 1 Constltutlve equatlon set
aT=C:(D- Dp)

D,=C,(0,+o1 EJEXP[A] (¢ p B)
H=Cy(H,~H) D,

B=Cy(§(1+ {f )B.D,~ BD,)

where
-1 x—1
Exp(4) - Exp| A ut@nﬁ‘pﬁ,,,]
#=vJ;

In this study, midpoint rule is employed as
time integration of constitutive equation which
1s arranged in the following Tables 2 and 3.

@ F, - dx,tda) _ . (4w
! ox, ox ,
! A ( 34u)
@ L o= 3
Lo 240y
0%y eps

Table 2 Time integration of constitutive
__equation by midpoint rule
@ Ca]culate du

@ 6‘n+a:an M(L n+adn+ dnId n+a+ t.l’(L n+a)o'n)
® D=5 (Lot LT

® Go To Table 3

@ ;fna:C:(D nta— Dyl i
an+a=

@ Co1= Onso —(1=a)A[L 13, 004,
+ an+aL:+a+tr(L nfa) 6n+a]

@ Go To STEP @

. ~T
g n+¢z+4 Oata

, Table 3 Calculation of plastlc stretch. tensor
‘® n+a“E “a/-t(L ataEnt E Ln+a+'~1’(L n+adE )

EI:1+|1:ED"¢Y4( n+aET+EgL:+a+U(Ln+a)E§)
Boio=B,~adt(L, Byt B, L, . +t{L, B,

(2 Py=- 3 tr(a;;), Pg=—3 tr(B-.,-) (Spherical Stress)

6;=0;+P8;, B;=B;+Psd; (Deviatoric Stress)

H +Hu e )" '+ HiER (o "' ] Gpra Bova |
(I‘n-fa)n Hnta i

‘® DD:CO(PO+P1§E)EXP[’

@ H=C,(H,—H) D,

@ B=Cb( é 1+ gs B.D,—-B t)n)

‘© En+a:E;)+a+4Dn+a
| EZ.,-EI.+aD,

@D E, = Ene (1~ &Ly B it Byl prattr{L o E 0
Eg+l: n+a—~(l—"a)4([ln+a n+a+En+aLnT+a+tr(Ln+a)En+a)

j: Bn+a: Br‘:*{‘a*“ii3

i@ Bn&l: Bn+a“(l“a)4(LnfaBn*a+ Bn+aLnT+a+tr(Ln+a)Ln+a)

j H,.;=H,+aH

® D,=y § D,:D,

@ E2.,=El+ 4D,

\@ Go To STEP @ of Table 2
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5. Material Constants and Application
for Uniaxia! Tensile Loading

Material constants are refared to mild steel
S41C and are based on the Kuriyama's
experiment{2). Figure 1 shows the result of this
experiment, rearranging and plotting true stress
and true strain diagram. It is found that the
upper and lower vield points occur and their
difference increases with increasing strain rate
as shown in Fig. 1. Macroscopic softening of
matenal ocours around at 20% stram under
staic loading and at 926 stram under high
strain rate Softening means the material
unstability, and this unstable phenomenon is
concerned with the forrmation of slip band and
its behavior. The material constants from Fig. 1
list at Table 4 within strain range between 0%
and 15% except unstable region.
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Fig. 1 Strain-stress curve of
Kurivama's experimen

Table 4 Material constants

Co 1.6mmYs & 10°mm 2
a3 t He  30kg/mm?
H,  160kg/mm? B,  30kg/mm?
P 3.75x10’mm "’ C,

C, 170 H, 1200kg/mm”
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From Table 4 C, is material oonstant
designated as C,=2bv, where b is Burgers
vector and v is limit dislocation velocity. Since
b=2.5%10"'mm and v=23.2x10°mm/s in the
case of mild steel, C,=1.6mm%s. Material

property  p;  representing the growth of
dislocation density with plastic deformation is
given by 10°mm™? in mild steel[8]. Material
properties C, and o are fixed values in this
material constitutive  equation. The  other
matenial constants are determined by the
experimental results. Since material constants n
and H, control the yield stress, they are
determined referring to the yield stress from
stress-strain diagram. The others are decided
from the stress—strain diagram after vielding,
because their properties control the matenial
behaviar after yidding.

To examine the applicability of this
constitutive equation, the case of uniaxial tensile
loading is applied Fig 2 shows the
computational results of this constitutive
equation and the Kuriyama's experimental
results together, in which it can be seen that
computational results realize the upper and
lower yield points well and describe the
experimental data well between (0% and 15%
strain range. Here the strain rate is the one for
the nominal strain Fig. 3 represents the
computational results of the vield stress and the
flow stress for the strain rate in the range of
strain rate between 6.3x107'/s and 4.2x10%s.
As shown in this figure. the present constitutive
equation represents the strain rate dependence
of mild steel well.

Figs. 4 and 5 show the change of the stress
curves during loading when the strain rate is
changed Whereas Fig. 4 is the case of the strain

Journal of SNAK, Vol. 34, No. 1, February 1997
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Fig. 2 Experimental and calculated
strain-stress curve
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struin R
Fig. 3 Strain-stress curve according
to strain rates
rate increase from 6.3x107%s to 4.2x10%/s

where dot line is the computational data of
4.2x10%s, Fig. 5 is the one of the strain rate
decrease from 4.2x10%s to 20/s where dot
line is the experimental result. Generally. there
is a phenomenon of memory effect in materal.
The memary effect is that the past deformation
histary affects the present material behavior.
While there is apparent memory effect in
material such as aluminum, it is too small to be
neglected in steel. The outer appearance effect
of memory effect is usually represented by the
gradual approach of the stress aumve with
changed strain rate during deformation to the

REDEWEGRIE 5 34 & 5 1 8 1997% 28

mevious one with unchanged strain rate. The
resent constitutive equation does not show this
behavior as shown in Figs. 4 and 3 Therefare,
it might be thought that this constitubive
equation reasonably simulates the behaviar of
steel with the least memory effect.
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Fig. 4 Strain-stress curve for the change
of strain rate during deformation
{high rate after low rate)
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Fig. 5 Strain-stress curve for the change
of strain rate during deformation
(low rate after high rate)

6. Conclusion

Using plastic development equation by the
slip model expressed in terms of the dislocation
velocity and its density, the rate—dependent
elastic plastic  constitutive equation  was
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developed, in which the applicable range of
strain rate and strain was broadened by
introducing exponential rule and nonlinear
hardening based on Johnston-Gilman—type. Yield
and loading conditions are not needed as the
special features of this constitutive equation,
therefore, the calculation is more convenient.
Since plasticity is expressed by the dislocation
velocity and its density, a plastic phenomenon of
steel material can be expressed with more
physical meanings.

As a result of the application of the
developed constitutive equation to notably
rate—dependent mild steel S41C, rate-dependence
of mild steel is well represented Because of
wide applicable range of strain, the present
constitutive equation can be applied to the
dynamic plastic problems, hydrocodes and the
general elastoplastic analysis programs, and may
enable reasonably the analysis of the problems
such as the oollision and stranding of ship etc..
Though mild steel is the object material here,
body-centered cubic lattice materials can be
usually applicable to.
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