GENERALIZED REIDEMEISTER NUMBER ON A TRANSFORMATION GROUP

KI SUNG PARK

ABSTRACT. In this paper we study the generalized Reidemeister number $R(\varphi, \psi)$ for a self-map $(\varphi, \psi) : (X, G) \to (X, G)$ of a transformation group (X, G), as an extension of the Reidemeister number R(f) for a self-map $f: X \to X$ of a topological space X.

1. Introduction

It is observed that the number of the fixed point classes for a selfmap $f: X \to X$ of a compact connected ANR could be calculated by defining an equivalence relation on the fundamental group $\pi_1(X, x_0)$.

The number of equivalence classes of $\pi_1(X, x_0)$, the Reidemeister number R(f), equals the number of the fixed point classes of f.

F.Rhodes [3] represented the fundamental group $\sigma(X, x_0, G)$ of a transformation group (X, G), a group G of homeomorphisms of a space X, as a generalization of the fundamental group $\pi_1(X, x_0)$ of a topological space X.

In the present paper we defined the generalized Reidemeister number $R(\varphi, \psi)$ for a self-map (φ, ψ) : $(X, G) \to (X, G)$ of the transformation group (X, G) and investigate its homotopy invariance. We also give the algebraic estimation of the definition of $R(\varphi, \psi)$ in the same way as in [2].

2. Preliminaries

Received November 15, 1996.

¹⁹⁹¹ Mathematics Subject Classification: Primary 55M20, 57M05.

Key words and phrases: $(\varphi, \psi)_{\sigma}$ -equivalent, (algebraic) Reidemeister number, diagonal path..

In this paper, a transformation group is a pair (X, G), where X is a path connected space with base point x_0 and G is a group of homeomorphisms of X. A map (φ, ψ) : $(X, G) \to (X, G)$ consists of a continuous map $\varphi : X \to X$ and a homomorphism $\psi : G \to G$ such that $\varphi(qx) = \psi(q)\varphi(x)$ for every pair (x, q).

Given any element g of G, a path α of order g with base point x_0 is a continuous map $\alpha: I \to X$ such that $\alpha(0) = x_0$ and $\alpha(1) = gx_0$. A path α of order g_1 and a path β of order g_2 form a new path $\alpha + g_1\beta$ of order g_1g_2 defined by the following equations

$$(\alpha + g_1 \beta)(t) = \begin{cases} \alpha(2t), & 0 \le s \le \frac{1}{2}, \\ g_1 \beta(2t - 1), & \frac{1}{2} \le s \le 1. \end{cases}$$

Two paths α and β of the same order g are said to be homotopic if there is a continuous map $F: I \times I \to X$ such that

$$F(t, 0) = \alpha(t), \quad 0 \le t \le 1,$$

$$F(t, 1) = \beta(t), \quad 0 \le t \le 1,$$

$$F(0, s) = x_0, \quad 0 \le s \le 1,$$

$$F(1, s) = gx_0, \quad 0 \le s \le 1.$$

The equivalence relation $\alpha \sim \beta$ denotes that α and β are homotopic paths of the same order. Denote the equivalence class containing a path α of order g by $[\alpha; g]$. Two homotopic classes of paths of different orders g_1 and g_2 are distinct, even if $g_1x_0 = g_2x_0$. F.Rhodes [3] showed that the set of homotopy classes of paths of prescribed order with the rule of composition * is a group, where * is defined by $[\alpha; g_1] * [\beta; g_2] = [\alpha + g_1\beta; g_1g_2]$. This group was called the fundamental group of (X, G) with base points x_0 , and was denoted by $\sigma(X, x_0, G)$. He also proved that $\sigma(X, x_0, G)$ is an invariant of the base point x_0 .

3. Main results

Let $(\varphi, \psi) : (X, G) \to (X, G)$ be a mapping. It is easy to see that if α is a path in X of order g with base point x_0 then $\varphi \alpha$ is a path in X of order $\psi(g)$ with base point $\varphi(x_0)$. Furthermore, if $\alpha \sim \beta$ then $\varphi \alpha \sim \varphi \beta$. Thus (φ, ψ) induces a homomorphism $(\varphi, \psi)_*$: $\sigma(X, x_0, G) \to \sigma(X, \varphi(x_0), G)$ defined by $(\varphi, \psi)_*[\alpha; g] = [\varphi \alpha; \psi(g)]$.

If λ is a path from $\varphi(x_0)$ to x_0 , then λ induces an isomorphism

$$\lambda_*: \sigma(X, \varphi(x_0), G) \to \sigma(X, x_0, G)$$

defined by $\lambda_*[\alpha; g] = [\lambda \rho + \alpha + g\lambda; g]$ for each $[\alpha; g] \in \sigma(X, \varphi(x_0), G)$, where $\rho(t) = 1 - t$. This isomorphism λ_* depends only on the homotopy class of λ .

Consider the composition

$$\sigma(X, x_0, G) \xrightarrow{(\varphi, \psi)_*} \sigma(X, \varphi(x_0), G) \xrightarrow{\lambda_*} \sigma(X, x_0, G).$$

DEFINITION 3.1. Let $\lambda_*(\varphi, \psi)_* = (\varphi, \psi)_{\sigma}$. Two elements $[\alpha; g_1]$ and $[\beta; g_2]$ in $\sigma(X, x_0, G)$ are said to be $(\varphi, \psi)_{\sigma} - equivalent$, denoted by $[\alpha; g_1] \stackrel{(\varphi, \psi)_{\sigma}}{\sim} [\beta; g_2]$, if there exists $[\gamma; g] \in \sigma(X, x_0, G)$ such that $[\alpha; g_1] = [\gamma; g][\beta; g_2](\varphi, \psi)_{\sigma}([\gamma; g]^{-1})$. This is an equivalence relation on $\sigma(X, x_0, G)$. Let $\sigma(X, x_0, G)'(\varphi, \psi)_{\sigma}$ be the set of equivalence classes of $\sigma(X, x_0, G)$ under $(\varphi, \psi)_{\sigma}$ -equivalence.

The cardinality of $\sigma(X, x_0, G)'(\varphi, \psi)_{\sigma}$ is the algebraic Reidemeister number of $(\varphi, \psi)_{\sigma}$, and is denoted by $R_*(\varphi, \psi)_{\sigma}$. With this view, we may define the Reidemeister number of a map (φ, ψ) ; $(X, G) \rightarrow (X, G)$, $R(\varphi, \psi)$, to be the algebraic Reidemeister number of $(\varphi, \psi)_{\sigma}$. In symbols,

$$R(\varphi, \psi) = R_*(\varphi, \psi)_{\sigma} = \#\sigma(X, x_0, G)'(\varphi, \psi)_{\sigma}.$$

LEMMA 3.2. The definition of $R(\varphi, \psi)$ is independent of the choice of the path λ from $\varphi(x_0)$ to x_0 .

Proof. Let τ denote another path from $\varphi(x_0)$ to x_0 . Then $\lambda^{-1}\tau$ is a loop at x_0 and therefore induces an inner automorphism

$$(\lambda^{-1}\tau)_*: \sigma(X, x_0, G) \to \sigma(X, x_0, G)$$

generated by the element $[\lambda^{-1}\tau; e]$, since

$$(\lambda^{-1}\tau)_*[\alpha;\,g] = [\lambda^{-1}\tau\rho;\,e][\alpha;\,g][\lambda^{-1}\tau;\,e].$$

Applying this automorphism to the left-hand side of $\lambda_*(\varphi, \psi)_*$ we have

$$R_*(\lambda_*(\varphi, \psi)_*) = R_*(\tau_*\lambda_*^{-1}\lambda_*(\varphi, \psi)_*) = R_*(\tau_*(\varphi, \psi)_*).$$

Hence we have independence of the path λ .

For a given homotopy $F: \varphi_1 \cong \varphi_2: X \to X$ and a given path $c: I \to X$, define the (diagonal) path $< F, c >: I \to X$ by < F, c > $(t) = F(c(t), t), \ 0 \le t \le 1$. Then the path < F, c > preserves inverse in the following sense.

Lemma 3.3. [1]
$$\langle F, c \rangle^{-1} = \langle F^{-1}, c^{-1} \rangle$$
.

Our first result is the following.

THEOREM 3.4. (Homotopy Invariance) Let (φ_1, ψ_1) , (φ_2, ψ_2) be self-maps of (X, G). If $F : \varphi_1 \cong \varphi_2 : X \to X$ is homotopy from φ_1 to φ_2 , then $R(\varphi_1, \psi_1) = R(\varphi_2, \psi_2)$.

Proof. Let $x_0 \in X$. Then $\langle F, x_0 \rangle$ is a path from $\varphi_1(x_0)$ to $\varphi_2(x_0)$. Thus the path $\langle F, x_0 \rangle$ induces a homomorphism

$$< F, x_0 >_* : \sigma(X, \varphi_1(x_0), G) \to \sigma(X, \varphi_2(x_0), G).$$

So we obtain the following induced commutative diagram

$$\sigma(X, x_0, G) \xrightarrow{(\varphi_1, \psi_1)_*} \sigma(X, \varphi_1(x_0), G)$$

$$(\varphi_2, \psi_2)_* \searrow \nearrow < F^{-1}, x_0 >_*$$

$$\sigma(X, \varphi_2(x_0), G)$$

From Lemma 3.2 and Lemma 3.3, we have

$$R(\varphi_1, \psi_1) = R_*(\lambda_*(\varphi_1, \psi_1)_*)$$

$$= R_*(\lambda_* < F, x_0 >_*^{-1} (\varphi, \psi_2)_*)$$

$$= R_*((< F^{-1}, x_0 > \lambda)_*(\varphi_2, \psi_2)_*)$$

$$= R(\varphi_2, \psi_2).$$

Hence we complete the proof of theorem.

Let $\sigma(X, x_0, G)'$ be a commutator subgroup of $\sigma(X, x_0, G)$ generated by the set

$$\{ [\alpha; g_1][\beta; g_2][\alpha; g_1] \}^{-1} [\beta; g_2]^{-1} \mid [\alpha; g_1][\beta; g_2] \in \sigma(X, x_0, G) \}.$$

For a convenient notation, we shall write $\bar{\sigma}(X, x_0, G)$ for the quotient group $\sigma(X, x_0, G)/\sigma(X, x_0, G)'$.

THEOREM 3.5. If
$$(\varphi, \psi): (X, G) \to (X, G)$$
 is a self-map, then $R(\varphi, \psi) \ge \# \operatorname{Coker}(1 - (\varphi, \psi))_{\bar{\sigma}} \ge 1$,

where 1 and $(\varphi, \psi)_{\bar{\sigma}}$ denote respectively the identity isomorphism and the endomorphism of $\bar{\sigma}(X, x_0, G)$ induced by (φ, ψ) .

Proof. Obviously, there exists a canonical homomorphism

$$\theta_{\sigma}: \sigma(X, x_0, G) \to \bar{\sigma}(X, x_0, G)$$

such that $\operatorname{Ker}\theta_{\sigma} = \sigma(X, x_0, G)'$. Hence the following diagram is commutative:

$$\sigma(X, x_0, G) \xrightarrow{(\varphi, \psi)_{\sigma}} \sigma(X, x_0, G)$$

$$\downarrow^{\theta_{\sigma}} \qquad \qquad \downarrow^{\theta_{\sigma}}$$

$$\bar{\sigma}(X, x_0, G) \xrightarrow{(\varphi, \psi)_{\bar{\sigma}}} \bar{\sigma}(X, x_0, G)$$

For $[\gamma; g] \in \sigma(X, x_0, G)$, any element of the $(\varphi, \psi)_{\sigma}$ -equivalent class containing $[\beta; g_2]$ may be expressed in the form

$$[\alpha; g_1] = [\gamma; g][\beta; g_2](\varphi, \psi)_{\sigma}([\gamma; g]^{-1}).$$

From the above diagram, we can easily obtain

$$\theta_{\sigma}([\alpha; g_{1}]) = \theta_{\sigma}([\gamma; g][\beta; g_{2}](\varphi, \psi)_{\sigma}([\gamma; g]^{-1}))$$

$$= \theta_{\sigma}([\gamma; g]) + \theta_{\sigma}([\beta; g_{2}]) - \theta_{\sigma}(\varphi, \psi)_{\sigma}([\gamma; g])$$

$$= \theta_{\sigma}([\gamma; g]) + \theta_{\sigma}([\beta; g_{2}]) - (\varphi, \psi)_{\bar{\sigma}}\theta_{\sigma}([\gamma; g])$$

$$= \theta_{\sigma}([\beta; g_{2}]) + (1 - (\varphi, \psi)_{\bar{\sigma}})(\theta_{\sigma}([\gamma; g])).$$

Thus there exists an element $[\gamma; q] \in \sigma(X, x_0, G)$ such that

$$\theta_{\sigma}([\alpha; g_1]) - \theta_{\sigma}([\beta; g_2]) = (1 - (\varphi, \psi)_{\bar{\sigma}})(\theta_{\sigma}([\gamma; g])) \in (1 - (\varphi, \psi)_{\bar{\sigma}})(\bar{\sigma}(X, x_0, G)).$$

Let $\eta_{\bar{\sigma}}: \bar{\sigma}(X, x_0, G) \to \operatorname{Coker}(1 - (\varphi, \psi)_{\bar{\sigma}})$ be the natural projection. Now consider

$$\sigma(X, x_0, G) \xrightarrow{\theta_{\sigma}} \bar{\sigma}(X, x_0, G) \xrightarrow{\eta_{\sigma}} \operatorname{Coker}(1 - (\varphi, \psi)_{\bar{\sigma}}).$$

Since both θ_{σ} and $\eta_{\bar{\sigma}}$ are epimorphisms, $\eta_{\bar{\sigma}}\theta_{\sigma}$ is also an epimorphism. Moreover, the $\eta_{\bar{\sigma}}\theta_{\sigma}$ images of all element of a $(\varphi, \psi)_{\sigma}$ -equivalent class are the same element of $\operatorname{Coker}(1-(\varphi, \psi)_{\bar{\sigma}})$. This completes the proof of theorem.

COROLLARY 3.6. Let $(\varphi, \psi) : (X, G) \to (X, G)$ be a self-map. If $\sigma(X, x_0, G)$ is abelian and G is abelian, then

$$R(\varphi, \psi) = \# \operatorname{Coker}(1 - (\varphi, \psi)_{\bar{\sigma}}).$$

Proof. If $\sigma(X, x_0, G)$ is abelian, then the natural homomorphism $\theta_{\sigma}: \sigma(X, x_0, G) \to \bar{\sigma}(X, x_0, G)$ is an isomorphism. From Definition 3.1, $[\alpha; g_1] \sim [\beta; g_2]$ if and only if there exists $[\gamma; g] \in \sigma(X, x_0, G)$ such that

$$\theta_{\sigma}([\alpha; g_1] - \theta_{\sigma}([\beta, g_2]) = (1 - (\varphi, \psi)_{\bar{\sigma}})(\theta_{\sigma}([\gamma; g])),$$

In other words,

$$\eta_{\bar{\sigma}}\theta_{\sigma}([\alpha;g_1]) - \eta_{\bar{\sigma}}\theta_{\sigma}([\beta;g_2]) = 0.$$

This completes the proof of theorem.

References

- [1] R. F. Brown, *The Lefschetz Fixed Point Theorem*, Scott, Foresman and Company, Illinois (1971).
- [2] B. J. Jiang, Lectures on Nielsen fixed point theory, Contemporary Math. 14, Amer. Math. Soc. Providence, R. I. (1983), 1-99.
- [3] F. Rhodes, On the fundamental group of a transformation group, Proc. London Math. Soc. 16 (1966), 635–650.

Department of Mathematics Kangnam University Kukal-Ri, Kiheung-Eub, Yongin-Si Kyungki-Do 449-702, Korea