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GENERALIZED REIDEMEISTER NUMBER
ON A TRANSFORMATION GROUP

Ki Sung Park

Abstract. In this paper we study the generalized Reidemeister

number R(ϕ, ψ) for a self-map (ϕ, ψ) : (X, G) → (X, G) of a
transformation group (X, G), as an extension of the Reidemeister

number R(f) for a self-map f : X → X of a topological space X.

1. Introduction

It is observed that the number of the fixed point classes for a self-
map f : X → X of a compact connected ANR could be calculated by
defining an equivalence relation on the fundamental group π1(X, x0).

The number of equivalence classes of π1(X, x0), the Reidemeister
number R(f), equals the number of the fixed point classes of f .

F.Rhodes [3] represented the fundamental group σ(X, x0, G) of a
transformation group (X, G), a group G of homeomorphisms of a space
X, as a generalization of the fundamental group π1(X, x0) of a topo-
logical space X.

In the present paper we defined the generalized Reidemeister number
R(ϕ, ψ) for a self-map (ϕ, ψ): (X, G) → (X, G) of the transformation
group (X, G) and investigate its homotopy invariance. We also give
the algebraic estimation of the definition of R(ϕ, ψ) in the same way
as in [2].

2. Preliminaries
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In this paper, a transformation group is a pair (X, G), where X
is a path connected space with base point x0 and G is a group of
homeomorphisms of X. A map (ϕ, ψ): (X, G) → (X, G) consists of
a continuous map ϕ : X → X and a homomorphism ψ : G → G such
that ϕ(g x) = ψ(g)ϕ(x) for every pair (x, g).

Given any element g of G, a path α of order g with base point x0 is
a continuous map α : I → X such that α(0) = x0 and α(1) = gx0. A
path α of order g1 and a path β of order g2 form a new path α+ g1β
of order g1g2 defined by the following equations

(α+ g1β)(t) =
{
α(2t), 0 ≤ s ≤ 1

2 ,

g1β(2t− 1), 1
2 ≤ s ≤ 1.

Two paths α and β of the same order g are said to be homotopic if
there is a continuous map F : I × I → X such that

F (t, 0) = α(t), 0 ≤ t ≤ 1,

F (t, 1) = β(t), 0 ≤ t ≤ 1,

F (0, s) = x0, 0 ≤ s ≤ 1,

F (1, s) = gx0, 0 ≤ s ≤ 1.

The equivalence relation α ∼ β denotes that α and β are homotopic
paths of the same order. Denote the equivalence class containing a
path α of order g by [α; g]. Two homotopic classes of paths of different
orders g1 and g2 are distinct, even if g1x0 = g2x0. F.Rhodes [3] showed
that the set of homotopy classes of paths of prescribed order with the
rule of composition * is a group, where * is defined by [α; g1]∗ [β; g2] =
[α+g1β; g1g2]. This group was called the fundamental group of (X, G)
with base points x0, and was denoted by σ(X, x0, G). He also proved
that σ(X, x0, G) is an invariant of the base point x0.

3. Main results

Let (ϕ, ψ) : (X, G) → (X, G) be a mapping. It is easy to see
that if α is a path in X of order g with base point x0 then ϕα is
a path in X of order ψ(g) with base point ϕ(x0). Furthermore, if
α ∼ β then ϕα ∼ ϕβ. Thus (ϕ, ψ) induces a homomorphism (ϕ, ψ)∗:
σ(X, x0, G) → σ(X, ϕ(x0), G) defined by (ϕ, ψ)∗[α; g] = [ϕα; ψ(g)].
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If λ is a path from ϕ(x0) to x0, then λ induces an isomorphism

λ∗ : σ(X,ϕ(x0), G) → σ(X,x0, G)

defined by λ∗[α; g] = [λρ+α+ gλ; g] for each [α; g] ∈ σ(X, ϕ(x0), G),
where ρ(t) = 1−t. This isomorphism λ∗ depends only on the homotopy
class of λ.

Consider the composition

σ(X, x0, G)
(ϕ,ψ)∗−−−−→ σ(X, ϕ(x0), G) λ∗−→ σ(X, x0, G).

Definition 3.1. Let λ∗(ϕ, ψ)∗ = (ϕ, ψ)σ. Two elements [α; g1]
and [β; g2] in σ(X, x0, G) are said to be (ϕ, ψ)σ−equivalent, denoted

by [α; g1]
(ϕ,ψ)σ∼ [β; g2], if there exists [γ; g] ∈ σ(X, x0, G) such that

[α; g1] = [γ; g][β; g2](ϕ, ψ)σ([γ; g]−1). This is an equivalence relation
on σ(X, x0, G). Let σ(X, x0, G)

′
(ϕ, ψ)σ be the set of equivalence

classes of σ(X, x0, G) under (ϕ, ψ)σ-equivalence.
The cardinality of σ(X, x0, G)

′
(ϕ, ψ)σ is the algebraic Reidemeister

number of (ϕ, ψ)σ, and is denoted by R∗(ϕ, ψ)σ. With this view,
we may define the Reidemeister number of a map (ϕ, ψ); (X, G) →
(X, G), R(ϕ, ψ), to be the algebraic Reidemeister number of (ϕ, ψ)σ.
In symbols,

R(ϕ, ψ) = R∗(ϕ, ψ)σ = #σ(X, x0, G)
′
(ϕ, ψ)σ.

Lemma 3.2. The definition of R(ϕ, ψ) is independent of the choice
of the path λ from ϕ(x0) to x0.

Proof. Let τ denote another path from ϕ(x0) to x0. Then λ−1τ is
a loop at x0 and therefore induces an inner automorphism

(λ−1τ)∗ : σ(X, x0, G) → σ(X, x0, G)

generated by the element [λ−1τ ; e], since

(λ−1τ)∗[α; g] = [λ−1τρ; e][α; g][λ−1τ ; e].
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Applying this automorphism to the left-hand side of λ∗(ϕ, ψ)∗ we have
R∗(λ∗(ϕ, ψ)∗) = R∗(τ∗λ−1

∗ λ∗(ϕ, ψ)∗) = R∗(τ∗(ϕ, ψ)∗).
Hence we have independence of the path λ. � �

For a given homotopy F : ϕ1
∼= ϕ2 : X → X and a given path

c : I → X, define the (diagonal) path < F, c >: I → X by < F, c >
(t) = F (c(t), t), 0 ≤ t ≤ 1. Then the path < F, c > preserves inverse
in the following sense.

Lemma 3.3. [1] < F, c >−1=< F−1, c−1 > .

Our first result is the following.

Theorem 3.4. (Homotopy Invariance) Let (ϕ1, ψ1), (ϕ2, ψ2) be
self-maps of (X, G). If F : ϕ1

∼= ϕ2 : X → X is homotopy from ϕ1 to
ϕ2, then R(ϕ1, ψ1) = R(ϕ2, ψ2).

Proof. Let x0 ∈ X. Then < F, x0 > is a path from ϕ1(x0) to
ϕ2(x0). Thus the path < F, x0 > induces a homomorphism

< F, x0 >∗: σ(X, ϕ1(x0), G) → σ(X, ϕ2(x0), G).
So we obtain the following induced commutative diagram

σ(X,x0, G)
(ϕ1,ψ1)∗−−−−−→ σ(X,ϕ1(x0), G)

(ϕ2, ψ2)∗ ↘ ↗< F−1, x0 >∗

σ(X,ϕ2(x0), G)
From Lemma 3.2 and Lemma 3.3, we have

R(ϕ1, ψ1) =R∗(λ∗(ϕ1, ψ1)∗)

=R∗(λ∗ < F, x0 >
−1
∗ (ϕ, ψ2)∗)

=R∗((< F−1, x0 > λ)∗(ϕ2, ψ2)∗)

=R(ϕ2, ψ2).
Hence we complete the proof of theorem. � �

Let σ(X, x0, G)′ be a commutator subgroup of σ(X, x0, G) gener-
ated by the set

{[α; g1][β; g2][α; g1]]−1[β; g2]−1 | [α; g1][β; g2] ∈ σ(X, x0, G)}.
For a convenient notation, we shall write σ̄(X, x0, G) for the quotient
group σ(X, x0, G)/σ(X, x0, G)′.
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Theorem 3.5. If (ϕ, ψ) : (X, G) → (X, G) is a self-map, then

R(ϕ, ψ) ≥ # Coker(1− (ϕ, ψ))σ̄ ≥ 1,

where 1 and (ϕ, ψ)σ̄ denote respectively the identity isomorphism and
the endomorphism of σ̄(X, x0, G) induced by (ϕ, ψ).

Proof. Obviously, there exists a canonical homomorphism

θσ : σ(X, x0, G) → σ̄(X, x0, G)

such that Kerθσ = σ(X, x0, G)′. Hence the following diagram is com-
mutative:

σ(X, x0, G)
(ϕ,ψ)σ−−−−→ σ(X, x0, G)yθσ

yθσ

σ̄(X,x0, G)
(ϕ, ψ)σ̄−−−−→ σ̄(X,x0, G)

For [γ; g] ∈ σ(X, x0, G), any element of the (ϕ, ψ)σ-equivalent class
containing [β; g2] may be expressed in the form

[α; g1] = [γ; g][β; g2](ϕ, ψ)σ([γ; g]−1).

From the above diagram, we can easily obtain

θσ([α; g1]) = θσ([γ; g][β; g2](ϕ, ψ)σ([γ; g]−1))

= θσ([γ; g]) + θσ([β; g2])− θσ(ϕ, ψ)σ([γ; g])

= θσ([γ; g]) + θσ([β; g2])− (ϕ, ψ)σ̄θσ([γ; g])

= θσ([β; g2]) + (1− (ϕ, ψ)σ̄)(θσ([γ; g])).

Thus there exists an element [γ; g] ∈ σ(X, x0, G) such that

θσ([α; g1])− θσ([β; g2]) =

(1− (ϕ, ψ)σ̄)(θσ([γ; g])) ∈ (1− (ϕ, ψ)σ̄)(σ̄(X, x0, G)).

Let ησ̄ : σ̄(X, x0, G) → Coker(1 − (ϕ, ψ)σ̄) be the natural projec-
tion. Now consider

σ(X, x0, G) θσ−→ σ̄(X, x0, G)
ησ−→ Coker(1− (ϕ, ψ)σ̄).

Since both θσ and ησ̄ are epimorphisms, ησ̄θσ is also an epimorphism.
Moreover, the ησ̄θσ images of all element of a (ϕ, ψ)σ-equivalent class
are the same element of Coker(1− (ϕ, ψ)σ̄). This completes the proof
of theorem. � �
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Corollary 3.6. Let (ϕ, ψ) : (X, G) → (X, G) be a self-map. If
σ(X, x0, G) is abelian and G is abelian, then

R(ϕ, ψ) = # Coker(1− (ϕ, ψ)σ̄).

Proof. If σ(X, x0, G) is abelian, then the natural homomorphism
θσ : σ(X, x0, G) → σ̄(X, x0, G) is an isomorphism. From Definition
3.1, [α; g1] ∼ [β; g2] if and only if there exists [γ; g] ∈ σ(X, x0, G) such
that

θσ([α; g1]− θσ([β, g2]) = (1− (ϕ, ψ)σ̄)(θσ([γ; g])),

In other words,

ησ̄θσ([α; g1])− ησ̄θσ([β; g2]) = 0.

This completes the proof of theorem. � �
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