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GENERALIZED REIDEMEISTER NUMBER
ON A TRANSFORMATION GROUP

K1 SuNG PARK

ABSTRACT. In this paper we study the generalized Reidemeister
number R(p, ¢) for a self-map (p, ¥) : (X, G) — (X, G) of a
transformation group (X, G), as an extension of the Reidemeister
number R(f) for a self-map f: X — X of a topological space X.

1. Introduction

It is observed that the number of the fixed point classes for a self-
map f: X — X of a compact connected ANR could be calculated by
defining an equivalence relation on the fundamental group m (X, ).

The number of equivalence classes of m (X, xg), the Reidemeister
number R(f), equals the number of the fixed point classes of f.

F.Rhodes [3] represented the fundamental group o(X, zg, G) of a
transformation group (X, G), a group G of homeomorphisms of a space
X, as a generalization of the fundamental group 71 (X, z¢) of a topo-
logical space X.

In the present paper we defined the generalized Reidemeister number
R(p, ¢) for a self-map (¢, ¥): (X, G) — (X, G) of the transformation
group (X, G) and investigate its homotopy invariance. We also give
the algebraic estimation of the definition of R(¢p, ¢) in the same way
as in [2].

2. Preliminaries
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In this paper, a transformation group is a pair (X, G), where X
is a path connected space with base point zg and G is a group of
homeomorphisms of X. A map (¢, ¥): (X, G) — (X, G) consists of
a continuous map ¢ : X — X and a homomorphism ¢ : G — G such
that p(gx) = ¥(g)p(x) for every pair (z, g).

Given any element g of G, a path « of order g with base point xg is
a continuous map « : I — X such that a(0) = zg and a(l) = gzg. A
path « of order g; and a path g of order go form a new path a + g1
of order g1 9> defined by the following equations

(a+g18)(t) = { Zl(;gt ) Ol

Two paths a and S of the same order g are said to be homotopic if
there is a continuous map F': I x I — X such that

1
S §§7
<s<l1

F(t,0) =a(t), 0<t<1,
F(t, 1) = 6(t), 0<t<1,
F(0, s) = xo 0<s<1,
F(1,s) =gz9, 0<s<1.

The equivalence relation o ~ 3 denotes that o and § are homotopic
paths of the same order. Denote the equivalence class containing a
path « of order g by [«; g]. Two homotopic classes of paths of different
orders g; and g, are distinct, even if g;z¢g = gaxo. F.Rhodes [3] showed
that the set of homotopy classes of paths of prescribed order with the
rule of composition * is a group, where * is defined by [a; g1]*[3; g2] =
[+ g10; g192]. This group was called the fundamental group of (X, G)
with base points z(, and was denoted by (X, z¢, G). He also proved
that o(X, zo, G) is an invariant of the base point z.

3. Main results

Let (¢, ¥) @ (X, G) — (X, G) be a mapping. It is easy to see
that if « is a path in X of order g with base point zy then ¢« is
a path in X of order v(g) with base point ¢(zp). Furthermore, if
a ~ 3 then pa ~ pB. Thus (p, 1) induces a homomorphism (¢, 1).:
o(X, o, G) — o(X, ¢(x0), G) defined by (¢, ¥)«[e; g] = [pa; ¥(g)].
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If X\ is a path from ¢(z¢) to xg, then A induces an isomorphism
A 1 0(X,0(20),G) — o(X, 20, G)

defined by A\.[a; g] = [Ap+ a+ gA; g] for each [o; g] € o(X, ¢(x0), G),
where p(t) = 1—t. This isomorphism A, depends only on the homotopy
class of .

Consider the composition

Ve, 5(X, pl0), G) 25 (X, 0, G).

O'(X, Zo, G)
DEFINITION 3.1. Let A(p, ¥)« = (¢, ¥)s. Two elements [o; ¢1]

and [3; g2 in 0(X, z¢, G) are said to be (¢, ©¥), — equivalent, denoted

by [a; g1] (o) [B; go], if there exists [v;g] € o(X, o, G) such that

[a; g1] = [v; 91183 92](w, ¥)s([v; g]~1). This is an equivalence relation
on o(X, xg, G). Let o(X, zo, G)/(go, 1), be the set of equivalence
classes of o(X, xg, G) under (¢, 1) -equivalence.

The cardinality of (X, 2, G) (¢, 1) is the algebraic Reidemeister
number of (p, ¥),, and is denoted by R.(y¢, ¥),. With this view,
we may define the Reidemeister number of a map (¢, ¥); (X, G) —
(X, G), R(yp, 1), to be the algebraic Reidemeister number of (¢, ¥),.
In symbols,

R(p, ¥) = Ruli0, ) = #0(X, 20, G) (2, ¥)o
LEMMA 3.2. The definition of R(p, 1) is independent of the choice
of the path X from (zg) to xg.

Proof. Let 7 denote another path from ¢(zg) to 9. Then A\~!7 is
a loop at xp and therefore induces an inner automorphism

A7 ), o(X, 0, G) — o(X, 20, G)
generated by the element [A\717; ¢], since

A )ules gl = A rp; e]las gl[AT T ).
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Applying this automorphism to the left-hand side of A, (p, 1), we have

Re(A(p, 1)) = Ru(m AT A (0, 9)4) = Ru( (0, 1))
Hence we have independence of the path . O O
For a given homotopy F' : ¢1 = 9 : X — X and a given path
¢: I — X, define the (diagonal) path < F, ¢ >: I — X by < F, ¢ >

(t) = F(c(t), t), 0 <t < 1. Then the path < F, ¢ > preserves inverse
in the following sense.

LEMMA 3.3. [1] < F,ec>"l=<F71 ¢1>.
Our first result is the following.

THEOREM 3.4. (Homotopy Invariance) Let (y1, ¥1), (p2, ¥2) be
self-maps of (X, G). If F': ¢1 = @9 : X — X is homotopy from ¢ to

@2, then R(p1, Y1) = R(p2, ¥2).

Proof. Let 29 € X. Then < F, zy > is a path from ¢q(xg) to
©2(xg). Thus the path < F, xg > induces a homomorphism

< F, zg >, 0(X, p1(x0), G) — (X, p2(z0), G).

So we obtain the following induced commutative diagram

(X, 20, G) 1 5(X, oy (20), G)

(P2, ¥2)e o /< F ' o>,
o(X, ¢2(20), G)
From Lemma 3.2 and Lemma 3.3, we have
R(p1, 1) =R.( A1, ¥1))
=R.(M\ < Fy 20 >0 (¢, 42)4)
=R.((< F71, 20 > N)ulp2, ¥2))

:R(8027 ¢2)
Hence we complete the proof of theorem. O O

Let o(X, g, G)' be a commutator subgroup of o(X, xg, G) gener-
ated by the set

{[os 91][8; g2l 1)) 71 [B5 92) 7 | s 04[5 g2] € 0(X, 2o, G)}-
For a convenient notation, we shall write (X, o, G) for the quotient
group o (X, zo, G)/o(X, z9, G)'".
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THEOREM 3.5. If (¢, ¥) : (X, G) — (X, G) is a self-map, then

R(p, ¥) = # Coker(1 — (¢, ¥))s = 1,

where 1 and (p, 1)s denote respectively the identity isomorphism and
the endomorphism of 6(X, xo, G) induced by (¢, ).

Proof. Obviously, there exists a canonical homomorphism
0y : 0(X, 29, G) — (X, x9, G)

such that Kerf, = o(X, z¢, G)". Hence the following diagram is com-

mutative:

U(Xa Lo, G) M U(X7 Zo, G)

lea leo
— (907’1/’)6 —
0(X,29,G) —= (X, z0,G)

For [v; 9] € o(X, o, G), any element of the (¢, 1) -equivalent class
containing [3; go] may be expressed in the form

[ 1] = [7: 91185 92) (0, ) ([v:9) 7).

From the above diagram, we can easily obtain

05 ([ 91]) = 05 ([v; 91185 92) (0, ¥)o([v: 917 1))

= 0,([v:9]) + 05([8; 92]) — 05 (0, V) ([73 9])
= 0[5 9]) + 05([8; 92]) — (v, V)50 ([7; 9])
= 0,([8; 92]) + (1 = (0, ¥)5) (0[5 9]))-

Thus there exists an element [7; g] € o(X, z¢, G) such that

0o ([ 91]) — 05 ([8: 92]) =
(1= (s ¥)a)(0s([7: 9])) € (1 = (¢, ¥)5)(0(X, 20, G)).
Let 05 : 0(X, xo, G) — Coker(1 — (¢, ¥)5) be the natural projec-
tion. Now consider
o(X, xg, G) Lo, 7(X, z9, G) 2% Coker(1 — (¢, ¥)5).

Since both 6, and 7nz are epimorphisms, 756, is also an epimorphism.
Moreover, the 1560, images of all element of a (p, 1),-equivalent class
are the same element of Coker(1 — (¢, ¥)5). This completes the proof
of theorem. OJ O
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COROLLARY 3.6. Let (p, ¥) : (X, G) — (X, G) be a self-map. If
o(X, xo, G) is abelian and G is abelian, then

R<S07 W = # COker(l - (Qoa Wa)-

Proof. 1f o(X, o, G) is abelian, then the natural homomorphism
0y : 0(X, x9, G) — (X, 9, G) is an isomorphism. From Definition
3.1, [a; 1] ~ [B; g2] if and only if there exists [y; g] € o(X, xg, G) such
that

O (s 91] — 05([8, g2]) = (1 = (¢, ¥)5)(0([7: 91)),

In other words,

N600 ([ 91]) — 1505 ([3; g2]) = 0.

This completes the proof of theorem. Il O]
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