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NORMALITY CONDITION FOR MULTIOBJECTIVE
OPTIMIZATION WITH SET FUNCTIONS

Jun Yull Lee

Abstract. In this paper we generalize the concept of normality

for the problem involving set functions in a view of Jahn. The main
result is that the problem with Slater’s constraint qualification is

normal and stable.

1. Introduction

The idea of normality was applied to duality in the ordinary con-
vex optimization program by Van Slyke and Wets [9]. In the case
of a convex programming, one can find that normality is equivalently
described by the closure of a perturbation function [7]. Ponstein de-
scribed the relationship between the Van Slyke and Wets approach and
the Rockafellar approach in the finite dimensional case [6].

For a multiobjective program, normality idea was extended to vec-
tor supremization problems by Nieuwenhuis[5] and Borwein[1]. Jahn
extended related notions to Pareto-minimization problems[3]. Jahn’s
normality is defined through all the optimization problems scalarized
by the positive cone whereas Nieuwenhuis’ involves the primal problem
in a direct way.

In this paper we consider normality for the problem involving set
functions in a view of Jahn. The main result is that the problem with
Slater’s constraint qualification is normal and stable.
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2. Multiobjective Dual Programming Problem with Set
Functions

In this section, we specify multiobjective programming with set func-
tions and its dual problem through scalarization of Lagrangean func-
tion.

Let (X,A, µ) be a finite, atomless measure space and L1(X,A, µ)
be separable. Then, by considering characteristic function χΩ of Ω in
A, we can embed A into L∞(X,A, µ). In this setting for Ω,Λ ∈ A,
and α ∈ I = [0, 1], there exists a sequence, called a Morris sequence,
{Γn} ⊂ A such that

χΓn

w∗−→ αχΩ + (1− α)χΛ,

where w∗−→ denotes the weak∗– convergence of elements in L∞(X,A, µ)
[4].

A subfamily S is said to be convex if for every (α, Ω,Λ) ∈ I ×S ×S
and every Morris sequence {Γn} associated with (α, Ω,Λ) in A, there
exists a subsequence {Γnk

} of {Γn} in S. If S ⊆ A is convex, then the
weak∗–closure cl(S) of χS in L∞(X,A, µ) is the weak∗–closed convex
hull of χS , and A = {f ∈ L∞ : 0 ≤ f ≤ 1}.

Definition 2.1. Let S be a convex subfamily of A. Let K be a
convex cone of Rn. A set function H : S → Rn is called K-convex, if
given (α, Ω1,Ω2) ∈ I×S×S and Morris-sequence {Γn} in A associated
with (α, Ω1,Ω2), there exists a subsequence {Γnk

} of {Γn} in S such
that

lim sup
k→∞

H(Γnk
) 5K αH(Ω1) + (1− α)H(Ω2),

where lim sup is taken over each component. And x <K y denotes
y − x ∈ int(K),x ≤K y denotes y − x ∈ K \ {0}, and x 5K y denotes
y − x ∈ K.

Definition 2.2. A set function H = (H1,H2, . . . ,Hn) : S → Rn

is called weak∗-continuous on S if for each f ∈ cl(S) and for each
j = 1, 2, . . . , n, the sequence {Hj(Ωk)} converges to the same limit for

all {Ωk} with χΩk

w∗−→ f .
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Now multiobjective programming problem with set functions can be
described as follows:

(P)

MinD F (Ω)
subject to Ω ∈ S
and G(Ω) 5Q 0,

which has been defined as the problem finding all feasible efficient D−
or properly efficient D−solution with respect to the pointed closed con-
vex cones D and Q of Euclidean spaces Rp and Rm with nonempty inte-
riors, Do and Qo, respectively. That is, letting S ′ = {Ω ∈ S : G(Ω) 5Q

0}, we want to find Ω∗ ∈ S ′ such that

(F (S ′)− F (Ω∗)) ∩ (−D) = {0}, ∅ if 0 /∈ D

or
cl(p(F (S ′) + D − F (Ω∗))) ∩ (−D) = {0}, ∅ if 0 /∈ D,

where the set p(S) = {αy : α > 0, y ∈ S} is the projecting cone for a
set S ⊂ Rp.

For the primal problem (P), we assume that F : S → Rp, G : S →
Rm are D−convex, Q−convex, respectively and weak∗–continuous.
Under these assumptions and Slater’s constraint qualification , we have
the Lagrange multiplier theorem for a properly efficient D-solution as
in usual multiobjective optimization problems [2].

The generalized Slater’s constraint qualification that there exists
Ωo ∈ S such that G(Ωo) <Q 0 is assumed in the sequel.

We define a dual programming problem based on the scalarization of
the vector-valued Lagrangian function. Let < x, y > denote the inner
product of two vectors.

Definition 2.3. The dual problem to the problem (P) is defined
as

MaxD

⋃
µ∈Do,λ∈Qo

YH−(µ,λ),

where YH−(µ,λ) is the set

{y ∈ Rp :< µ, F (Ω) > + < λ,G(Ω) >≥< µ, y > for Ω ∈ S}.

Weak duality theorem for the above dual program follows.
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Theorem 2.4. For any y ∈
⋃

µ∈Do,λ∈Qo YH−(µ,λ) and for any Ω ∈
S ′, F (Ω) 6≤D y.

Proof. Let Ω ∈ S and y ∈ YH−(µ,λ) some µ ∈ Do, λ ∈ Qo. Then
< µ,F (Ω) > + < λ,G(Ω) >≥< µ, y >. Since < λ,G(Ω) >5 0,
< µ,F (Ω) >≥< µ, y >. Then F (Ω) 6≤D y for µ ∈ Do. � �

3. Normality and Stability of Multiobjective Programming
Problem with Set Functions

In this section, we generalize Jahn’s normality and stability con-
cepts for the primal problem (P) with set functions. Let us introduce
following sets.

B = {(u, y) ∈ Rm ×Rp : F (Ω) 5D y, G(Ω) 5Q u for some Ω ∈ S},
YB = {y ∈ Rp : (0, y) ∈ B}.

Furthermore, for u ∈ Rp, we denote the set {(u, α) ∈ Rm×R : α =<
µ, y > for (u, y) ∈ B} by B(µ) and the set {α ∈ R : (0, α) ∈ B(µ),0 ∈
Rm} by AB(µ), respectively.

Note that cl(B) is convex and that for the ordinary convex scalar
optimization problem inf{f(x) : g(x) 5Q 0, x ∈ X ⊂ Rn}, B ⊂
epigraph of w ⊂ cl(B) where w(u) = inf{f(x) : g(x) 5Q u}.

Definition 3.1. The primal problem (P) is said to be normal if for
every µ ∈ Do,

cl(AB(µ)) = Acl(B(µ)).

Note that cl(AB(µ)) ⊂ Acl(B(µ)) is always true.
Our main result is that Slater’s constraint qualification is a necessary

condition for the primal problem (P) to be normal.

Theorem 3.2. Suppose that interiors of D and Q are nonempty.
Then Slater’s constraint qualification in the problem (P) with set func-
tions implies normality.
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Proof. Let µ ∈ Do. Then < µ, F (·) >: S → R is a convex set
function. For (α, Ω1,Ω2) ∈ [0, 1]× S × S and {Γn} a Morris sequence
associated with (α, Ω1,Ω2), there is a subsequence {Γnk

} of {Γn} in S
such that

αF (Ω1) + (1− α)F (Ω2)− lim sup
k→∞

F (Γnk
) ∈ D,

since F is D-convex over S. Also since F is w∗−continuous and
χΓn

w∗−→ αχΩ1 + (1 − α)χΩ2 , it follows that lim supk→∞ F (Γnk
) =

lim supn→∞ F (Γn) = limn→∞ F (Γn). Now µ ∈ Do implies that

< µ,αF (Ω1) + (1− α)F (Ω2)− lim sup
k→∞

F (Γnk
) > ≥ 0.

Hence,

< µ,αF (Ω1) + (1− α)F (Ω2) >

≥ < µ, lim sup
n→∞

F (Γn) > = < µ, lim
n→∞

F (Γn) > .

Therefore, < µ,F (Ω) > is a convex function.
Now it suffices to show that cl(AB(µ)) ⊃ Acl(B(µ)). Let a > 0.

Consider an element (0, y′) = (0, < µ, F (Ωo) > +a) with G(Ωo) <Q 0,
Ωo ∈ S from the Slater’s constraint qualification. Clearly (0, y′) ∈ Bo,
where

Bo = {(u, y) :< µ,F (Ω) > < y, G(Ω) <Q u for some Ω ∈ S}.

Moreover, (0, y′) ∈ intBo. For each u with G(Ω) <Q u <Q 0, the
origin 0 ∈ int(u + Q). Let D = R+ ∪ {0}. Take a neighborhood V of
0 in u+Q and U of < µ,F (Ωo) > +a in int(< µ,F (Ωo) > +D). Then
V × U is a neighborhood of (0, < µ, F (Ωo) > +a) and V × U ⊂ Bo.

Now let ŷ ∈ Acl(B(µ)). Then (0, ŷ) ∈ cl(B(µ)) so that there exists
a sequence (un, yn) ∈ B(µ) converging to (0, ŷ). Since (un, yn) ∈ B(µ)
for each n, there exists {Ωn} ⊂ S such that

G(Ωn) 5Q un, < µ, F (Ωn) > 5D yn.



88 Jun Yull Lee

Choose q ∈ intQ and p > 0. Then we have sequences {u′n = un + 1
n ·q}

and {y′n = yn+ 1
n ·p} such that G(Ωn) <Q u′n and < µ,F (Ωn) ><D y′n.

Hence, (u′n, y′n) ∈ Bo for each n. But then

lim
n→∞

u′n = 0, and lim
n→∞

y′n = ŷ.

Therefore, (0, ŷ) ∈ cl(Bo). Now since (0, y′) ∈ intBo and (0, ŷ) ∈
cl(Bo) and Bo is convex, considering the affine set M = {(0, y) : y ∈ R}
in Rm ×R and applying Corollary 6.5.1[7], we have ŷ in cl(ABo(µ)) ⊂
cl(AB(µ)). Consequently, (P) is normal � �

Now we give a definition of stability for multiobjective optimization
with set functions.

Definition 3.3. The primal problem (P) is said to be stable if it
is normal and for arbitrary µ ∈ Do, the problem (Dµ)

sup
λ∈Qo

inf
Ω∈S

{< µ,F (Ω) > + < λ,G(Ω) >}

has at least one solution.

We also show that Slater’s constraint qualification implies stability
of the primal problem (P).

Theorem 3.4. Suppose that, for each µ ∈ Do, the problem (Pµ)

inf{< µ,F (Ω) >: G(Ω) 5Q 0,Ω ∈ S}

has a solution whose value is finite. If Slater’s constraint qualification
holds, then the problem (P) is stable.

Proof. Applying Theorem 3.2, the problem (Pµ) is normal. Since
< µ, F (Ω) > is a convex set function, it follows, by Theorem 3.1[2],
that there exists a λ∗ ≥Qo 0 such that µo = inf{< µ,F (Ω) > + <
λ∗, G(Ω) >: G ∈ S}, so that the infimum is obtained at some Ω∗ ∈ S.
Then, for any λ ∈ Qo,

inf{< µ,F (Ω) > + < λ,G(Ω) >: Ω ∈ S}
≤ inf{< µ,F (Ω) > + < λ∗, G(Ω) >: Ω ∈ S}
≤ inf{< µ,F (Ω) > + < λ∗, G(Ω) >: Ω ∈ S, G(Ω) 5Q 0}
≤ µo.
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Thus µo = supλ∈Qo infΩ∈S{< µ,F (Ω) > + < λ, G(Ω) >}. Therefore,
(P) is stable. � �

References

1. J.M.Borwein, and J.W.Nieuwenhuis, Two kinds of Normality in Vector Opti-

mization, Math. Programming 28 (1984), 185–191.
2. W.S.Hsia, T.Y.Lee, and J.Y.Lee, Lagrange Multiplier Theorem of Multiobjec-

tive Programming Problems with Set Functions, Journal of Optimization The-
ory and Applications 70 (1991), 137–155.

3. J. Jahn, Duality in Vector Optimization, Math. Programming 25 (1983), 343–

353.
4. R.J.T.Morris, Optimal Constrained Selection of a Measurable Subset, Journal

of Mathematical Analysis and Applications 70 (1979), 546–562.

5. J.W.Nieuwenhuis, Supremal Points and Generalized Duality, Math. Opera-
tionforsch. Statist. Ser. Optimization 11 (1980), 41–59.

6. J. Ponstein, Approaches to the Theory of Optimization, Cambridge Univ. Press,

London and New York, 1980.
7. R.T.Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, New Jer-

sey, 1970.

8. Y.Sawaragi, H.Nakayama and T.Tanino, Theory of Multiobjective Optimiza-
tion, Academic Press, Orlando, 1985.

9. R.M. Van Slyke and R.J.-B. Wets, A Duality Theory for Abstract Mathematical

Programs with Application to Optimal Control Theory, Journal of Math. Anal.
and Appl. 22 (1968), 679–706.

Department of Mathematics Education
Kangwon National University
Chunchon 200-701, Korea


