BASIC CONSTRUCTIONS FOR $N_{f} \subset M_{f}$

Jung Rye Lee

Abstract

We show that there exists an isomorphism between the basic construction $\left(M_{f}\right)_{1}$ for $N_{f} \subset M_{f}$ and the reduction $\left(M_{1}\right)_{f}$ of the basic construction M_{1} for $N \subset M$, where f is a nontrivial projection in N. For a nontrivial projection $f \in N^{\prime} \cap M$ we give the basic construction $\left(M_{f}\right)_{1}$ for $N_{f} \subset M_{f}$ and compare it with $\left(M_{1}\right)_{f}$.

1. Introduction

Murray and von Neumann defined the coupling constant of II_{1}-factor which measures the relative mobility of the factor and its commutant. Index theory for II_{1}-subfactors was introduced by Jones in [4] by using the coupling constants and it was extended by H. Kosaki in [5] to an arbitrary factors.

Jones' index theory is one of the most important and interesting topics in recent operator algebras and many connections with other areas of mathematics and mathematical physics are pointed out. Ocneau's paragroup theory, bimodule theory, and sector theory were introduced for the research of index theory $[2,3,6,7,8]$.

We fix some notations and recall the definition of Jones' index. Let M be a finite von Neumann algebra with faithful normal normalized trace τ and N a von Neumann subalgebra of M. Then there exists a conditional expectation $E_{N}: M \rightarrow N$ defined by the relation $\tau\left(E_{N}(x) y\right)=\tau(x y)$, for $x \in M, y \in N$. If M is a finite factor acting on a Hilbert space H with finite commutant M^{\prime}, then the coupling constant $\operatorname{dim}_{M}(H)$ of M is defined as $\tau\left(\left[M^{\prime} \xi\right]\right) / \tau^{\prime}([M \xi])$, where $\xi_{\neq 0} \in H$, and τ^{\prime} is a trace in $M^{\prime} . L^{2}(M, \tau)$ is the Hilbert space of $G N S$ representation of M given by τ and M acts on $L^{2}(M, \tau)$ by left

Received April 30, 1997.
1991 Mathematics Subject Classification: 46L55.
Key words and phrases: Jones' index, Reduced II_{1}-factor, Induced II_{1}-factor.
multiplication. E_{N} extends to a projection e_{N} via $e_{N}(x \xi)=E_{N}(x) \xi$, where ξ is the canonical cyclic trace vector in $L^{2}(M, \tau)$. For a pair of finite factors $N \subset M$, Jones defined in [4] the index of N in M by $[M: N]=\operatorname{dim}_{N}(H) / \operatorname{dim}_{M}(H)$, or equivalently, $\operatorname{dim}_{N}\left(L^{2}(M, \tau)\right)$. From now on, $N \subset M$ denotes a pair of II_{1}-factors with faithful normal normalized trace τ and finite Jones' index and M_{1} the basic construction for $N \subset M$, which is generated by M and e_{N}.

In this paper, we study Jones' index for a pair of reduced II_{1} subfactors $N_{f} \subset M_{f}$, where f is a nontrivial projection in N. We will prove that the basic construction $\left(M_{f}\right)_{1}$ for $N_{f} \subset M_{f}$ is isomorphic to $\left(M_{1}\right)_{f}$. We also study the Jones' index for induced and reduced $\mathrm{II}_{1}-$ subfactors $N_{f} \subset M_{f}$, where f is a nontrivial projection in $N^{\prime} \cap M$. We will construct the basic construction $\left(M_{f}\right)_{1}$ for $N_{f} \subset M_{f}$ and compare $\left(M_{f}\right)_{1}$ with $\left(M_{1}\right)_{f}$.

2. The basic construction for reduced factors

For a nontrivial projection $f \in N$, if we consider the reductions $M_{f}=\left\{\left.f x f\right|_{f H} \mid x \in M\right\}$ and $N_{f}=\left\{\left.f x f\right|_{f H} \mid x \in N\right\}$, where M acts on H, then $N_{f} \subset M_{f}$ is a pair of II_{1}-factors. Since for a projection e in $M \operatorname{dim}_{M_{e}}(e H)=\tau(e)^{-1} \operatorname{dim}_{M}(H)$ holds, we have the following proposition.

Proposition 2.1. If f is a nontrivial projection in N, then we have $\left[M_{f}: N_{f}\right]=[M: N]$.

Proof. For a nontrivial projection f in N

$$
\begin{aligned}
{\left[M_{f}: N_{f}\right] } & =\operatorname{dim}_{N_{f}}(f H) / \operatorname{dim}_{M_{f}}(f H) \\
& =\tau(f)^{-1} \operatorname{dim}_{N}(H) / \tau(f)^{-1} \operatorname{dim}_{M}(H)=[M: N]
\end{aligned}
$$

gives the proof.
Now we define the faithful normal normalized trace τ_{f} on M_{f} and the trace preserving conditional expectation $E_{N_{f}}$.

Proposition 2.2. For a nontrivial projection $f \in N$, we have the followings:
(i) The faithful normal normalized trace τ_{f} on M_{f} is given by

$$
\tau_{f}(f x f)=\tau(f)^{-1} \tau(f x f), \quad x \in M .
$$

(ii) The unique τ_{f}-preserving conditional expectation $E_{N_{f}}$ is given by

$$
E_{N_{f}}(f x f)=E_{N}(f x f), x \in M
$$

Proof. (i) Since τ (resp. $\left.\tau\right|_{M_{f}}$) is a faithful normal finite trace on M (resp. on M_{f}), τ_{f} is a scalar multiple of $\left.\tau\right|_{M_{f}}$. Since $\tau_{f}(f \cdot 1 \cdot f)=$ $\tau_{f}(f)=\tau(f)^{-1} \tau(f)=1, \tau_{f}$ is a normalized trace and the uniqueness of normalized trace on II_{1}-factor M_{f}, τ_{f} is the faithful normal normalized trace on M_{f}.
(ii) Since E_{N} is the τ-preserving conditional expectation, we have

$$
\begin{aligned}
\tau_{f}\left(E_{N_{f}}(f x f)\right) & =\tau(f)^{-1} \tau\left(E_{N}(f x f)\right) \\
& =\tau(f)^{-1} \tau(f x f)=\tau_{f}(f x f), x \in M
\end{aligned}
$$

Thus $E_{N_{f}}$ is the unique τ_{f}-preserving conditional expectation.
Moreover, for any projection f_{0} in N with $f_{0} \leq f$, we have $E_{N}\left(f_{0}\right)=$ $E_{N_{f}}\left(f_{0}\right)$ and

$$
\begin{aligned}
\tau_{f}\left(f E_{N}(x) f\right) & =\tau_{f}\left(E_{N}(f x f)\right)=\tau(f)^{-1} \tau\left(E_{N}(f x f)\right) \\
& =\tau(f)^{-1} \tau(f x f)=\tau_{f}(f x f), x \in M
\end{aligned}
$$

For a nontrivial projection $f \in N$, let $\left(M_{f}\right)_{1}$ be the basic construction for $N_{f} \subset M_{f}$ and $\left(M_{1}\right)_{f}$ reduction for M_{1}. The reduction $\left(M_{1}\right)_{f}$ is a II_{1}-subfactor of M_{1}, containing M_{f} and has the faithful normal normalized trace $\left.\tau_{1}\right|_{\left(M_{1}\right)_{f}}$, where τ_{1} is the faithful normal normalized trace on M_{1}. The trace preserving conditional expectation $E_{M_{f}}$ onto M_{f} is defined by $E_{M_{f}}(f x f)=E_{M}(f x f), x \in M_{1}$. So $\left(M_{1}\right)_{f}$ and $\left(M_{f}\right)_{1}$ are II_{1}-factors containing M_{f}, as a subfactor.

We investigate the relation between the reduction $\left(M_{1}\right)_{f}$ and the basic construction $\left(M_{f}\right)_{1}$. Here we prove that there exists an isomorphism in the sense of that in Proposition 1.2 in [9] between them which fixes M_{f}.

Theorem 2.3. If f is a nontrivial projection in N, then there exists an isomorphism ϕ of $\left(M_{f}\right)_{1}$ onto $\left(M_{1}\right)_{f}$ such that $\phi(x)=x, x \in M_{f}$ and $\phi\left(e_{N_{f}}\right)=f e_{N} f$.

Proof. Since f is a nontrivial projection in N, by Proposition 2.1, we have $\left[M_{f}: N_{f}\right]=[M: N]$ and $\left[\left(M_{1}\right)_{f}: M_{f}\right]=\left[M_{1}: M\right]=[M: N]$. Consider $f e_{N} f \in\left(M_{1}\right)_{f}, f e_{N}=e_{N} f$ implies that $f e_{N} f$ is a projection and $f e_{N} f \in N^{\prime}$. Moreover we have

$$
E_{M_{f}}\left(f e_{N} f\right)=f E_{M}\left(e_{N}\right) f=\left[\left(M_{1}\right)_{f}: M_{f}\right]^{-1} 1_{M_{f}}
$$

Thus by Proposition 1.2 in [9], our proof is over.

3. The basic construction for an induced factor and a reduced factor

We study Jones' index for an induced II_{1}-factor and a reduced II_{1} factor. We construct the basic extension $\left(M_{f}\right)_{1}$ for $N_{f} \subset M_{f}$ and compare $\left(M_{f}\right)_{1}$ with $\left(M_{1}\right)_{f}$, where f is a nontrivial projection in $N^{\prime} \cap$ M. If e is a projection in M^{\prime}, then $\operatorname{dim}_{M_{e}}(e H)=\tau^{\prime}(e) \operatorname{dim}_{M}(H)$. For a projection $f \in N^{\prime} \cap M$, if we consider the reduction M_{f} and the induction N_{f}, then $N_{f} \subset M_{f}$ is a pair of II_{1}-factors.

Here, we also define the faithful normal normalized trace on M_{f} and the trace preserving conditional expectation $E_{N_{f}}$. Note that for $f \in N^{\prime} \cap M$ and $x \in N$, we have

$$
E_{N}(f) \cdot x=E_{N}(f x)=E_{N}(x f)=x \cdot E_{N}(f),
$$

which gives $E_{N}(f)=\lambda \cdot 1$ for some scalar λ.
Since $\tau(f)=\tau\left(E_{N}(f)\right)=\lambda$, we have $E_{N}(f)=\tau(f) \cdot 1$.
Proposition 3.1. For a nontrivial projection $f \in N^{\prime} \cap M$, we have the followings:
(i) If we define τ_{f} by

$$
\tau_{f}(f x f)=\tau(f)^{-1} \tau(f x f), x \in M,
$$

then τ_{f} gives the faithful normal normalized trace on M_{f}.
(ii) If we define $E_{N_{f}}: M_{f} \rightarrow N_{f}$ by

$$
E_{N_{f}}(f x f)=\tau(f)^{-1} f \cdot E_{N}(f x f) \cdot f, x \in M,
$$

then $E_{N_{f}}$ is the τ_{f}-preserving conditional expectation.

Proof. (i) Since τ (resp. $\left.\tau\right|_{M_{f}}$) is a faithful normal finite trace on M (resp. on M_{f}), τ_{f} is a scalar multiple of $\left.\tau\right|_{M_{f}}$. Since $\tau_{f}(f \cdot 1 \cdot f)=$ $\tau_{f}(f)=\tau(f)^{-1} \tau(f)=1, \tau_{f}$ is a normalized trace and the uniqueness of normalized trace on II_{1}-factor M_{f}, τ_{f} is the faithful normal normalized trace on M_{f}.
(ii) For any $f x f \in M_{f}$, we have

$$
\begin{aligned}
\tau_{f}\left(E_{N_{f}}(f x f)\right) & =\tau_{f}\left(\tau(f)^{-1} f E_{N}(f x f) f\right) \\
& =\left(\tau(f)^{-2}\right) \tau\left(E_{N}(f) E_{N}(f x f)\right)=\tau_{f}(f x f) .
\end{aligned}
$$

Corollary 3.2. For a nontrivial projection $f \in N^{\prime} \cap M$, we have the followings:
(i) For $x \in N$, we have $\tau_{f}(f x f)=\tau(x)$.
(ii) For any projection f_{0} in $N^{\prime} \cap M$ with $f_{0} \leq f$, we have

$$
\left\|E_{N}\left(f_{0}\right)\right\| \leq\left\|E_{N_{f}}\left(f_{0}\right)\right\|
$$

Proof. (i) For $x \in N$, we have $\tau(f x f)=\tau\left(E_{N}(f x)\right)=\tau\left(E_{N}(f)\right.$. $x)=\tau(f) \cdot \tau(x)$.
It follows that $\tau_{f}(f x f)=\tau(x)$.
(ii)

$$
\begin{aligned}
E_{N_{f}}\left(f_{0}\right) & =E_{N_{f}}\left(f f_{0} f\right) \\
& =\tau(f)^{-1} f E_{N}\left(f f_{0} f\right) f=\tau(f)^{-1} f E_{N}\left(f_{0}\right) f
\end{aligned}
$$

From the equalities of

$$
E_{N}\left(f E_{N}\left(f_{0}\right) f\right)=E_{N}\left(E_{N}\left(f_{0}\right) f\right)=E_{N}\left(f_{0}\right) E_{N}(f)=E_{N}\left(f_{0}\right) \tau(f)
$$

and from the fact of $\left\|E_{N}\right\|=1$, we have

$$
\left\|E_{N}\left(f_{0}\right)\right\|=\tau(f)^{-1}\left\|E_{N}\left(f E_{N}\left(f_{0}\right) f\right)\right\| \leq \tau(f)^{-1}\left\|f E_{N}\left(f_{0}\right) f\right\|
$$

Thus we obtain $\left\|E_{N}\left(f_{0}\right)\right\| \leq\left\|E_{N_{f}}\left(f_{0}\right)\right\|$.

Consider a pair of II_{1}-factors $N_{f} \subset M_{f}, \quad f \in N^{\prime} \cap M$, a projection, with the unique faithful normal normalized trace τ_{f} and the τ_{f}-preserving conditional expectation $E_{N_{f}}: M_{f} \rightarrow N_{f}$. The local index of N at f is defined by $[M: N]_{f}=\left[M_{f}: N_{f}\right]$. By Lemma 2.2.1 in [4], the index at f and the global index are related by the formula $[M: N]_{f}=[M: N] \cdot \tau(f) \cdot \tau^{\prime}(f)$, where τ^{\prime} is the trace on N^{\prime}. Now we are ready to study the basic construction $\left(M_{f}\right)_{1}$ for $N_{f} \subset M_{f}$.

When Jones' index $[M: N]$ is finite, $\left[M_{f}: N_{f}\right]$ is also finite. $L^{2}\left(M_{f}, \tau_{f}\right)$ is the Hilbert space of the $G N S$ representation of M_{f} and M_{f} acts on $L^{2}\left(M_{f}, \tau_{f}\right)$ by left multiplication. The canonical conjugation on $L^{2}\left(M_{f}, \tau_{f}\right)$ is denoted by J_{f} and J_{f} acts on the dense subspace $M_{f} \subset L^{2}\left(M_{f}, \tau_{f}\right)$ by $J_{f}(f x f)=(f x f)^{*} . E_{N_{f}}$ is the restriction to M_{f} of the orthogonal projection $e_{N_{f}}$ of $L^{2}\left(M_{f}, \tau_{f}\right)$ onto $L^{2}\left(N_{f}, \tau_{f}\right)$, which is the closure in $L^{2}\left(M_{f}, \tau_{f}\right)$ of N_{f}.

The following properties are easy consequences of the definition and proofs are straightforward computations.

1. $e_{N_{f}} x e_{N_{f}}=E_{N_{f}}(x) e_{N_{f}}, x \in M_{f}$.
2. $x \in M_{f}, x \in N_{f}$ iff $e_{N_{f}} x=x e_{N_{f}}$.
3. $N_{f}^{\prime}=\left(M_{f}^{\prime} \cup\left\{e_{N_{f}}\right\}\right)^{\prime \prime}$.
4. J_{f} commutes with $e_{N_{f}}$.

If $\left(M_{f}\right)_{1}=\left(M_{f} \cup\left\{e_{N_{f}}\right\}\right)^{\prime \prime}$ denotes the von Neumann algebra on $L^{2}\left(M_{f}, \tau_{f}\right)$, then $\left(M_{f}\right)_{1}=J_{f} N_{f}^{\prime} J_{f}$. This is called the basic construction for $N_{f} \subset M_{f}$.
5. $\left(M_{f}\right)_{1}$ is a factor iff N_{f} is a factor.
6. $\left(M_{f}\right)_{1}$ is finite iff N_{f}^{\prime} is finite.

There exists a trace $\left(\tau_{f}\right)_{1}$ on $\left(M_{f}\right)_{1}$ such that $\left.\left(\tau_{f}\right)_{1}\right|_{M_{f}}=\tau_{f}$ and $E_{M_{f}}\left(e_{N_{f}}\right)=\lambda \cdot 1_{M_{f}}$, where $E_{M_{f}}$ is the $\left(\tau_{f}\right)_{1}$-preserving conditional expectation of $\left(M_{f}\right)_{1}$ onto M_{f} and $\lambda>0$ is a scalar.
7. Jones' index $\left[M_{f}: N_{f}\right]$ is given by
$\left[M_{f}: N_{f}\right]=\operatorname{dim}_{N_{f}}\left(L^{2}\left(M_{f}, \tau_{f}\right)\right)=[M: N] \cdot \tau(f) \cdot \tau^{\prime}(f)$.
8. $E_{M_{f}}\left(e_{N_{f}}\right)=\left[M_{f}: N_{f}\right]^{-1} \cdot f$.

Next, we show a relationship between the basic construction $\left(M_{f}\right)_{1}$ for $N_{f} \subset M_{f}$ and the reduction $\left(M_{1}\right)_{f}$, for a nontrivial projection f in $N^{\prime} \cap M$.

Theorem 3.3. If f is a nontrivial projection in $N^{\prime} \cap M$, then there exists no isomorphism between $\left(M_{f}\right)_{1}$ and $\left(M_{1}\right)_{f}$ which fixes M_{f} and sends $e_{N_{f}}$ to $f e_{N} f$.

Proof. Suppose that there exists an isomorphism between $\left(M_{f}\right)_{1}$ and $\left(M_{1}\right)_{f}$ which fixes M_{f} and sends $e_{N_{f}}$ to $f e_{N} f$., where f is a nontrivial projection in $N^{\prime} \cap M$. Then, by Proposition 1.2 in [9], [$\left(M_{f}\right)_{1}$: $\left.M_{f}\right]=\left[\left(M_{1}\right)_{f}: M_{f}\right]$ must be hold. But since f is a nontrivial projection in $N^{\prime} \cap M$, we have

$$
\left[\left(M_{f}\right)_{1}: M_{f}\right]=\left[M_{f}: N_{f}\right]=[M: N] \cdot \tau(f) \cdot \tau^{\prime}(f) \neq[M: N]
$$

and by Proposition 2.1 we have $\left[\left(M_{1}\right)_{f}: M_{f}\right]=\left[M_{1}: M\right]=[M: N]$. It follows that $\left[\left(M_{f}\right)_{1}: M_{f}\right] \neq\left[\left(M_{1}\right)_{f}: M_{f}\right]$, which is a contradiction.

References

1. Bédos, E, On automorphisms of group von Neumann algebras, Math. Japon. 33 (1988), 27-37.
2. Bisch, D, Combinatorial and analytical aspects of the Jones theory of subfactors, Lecture notes(Summer School in Operator Algebras, Odense, August 1996).
3. Izumi, M, Applications of fusion rules to classification of subfactors, Publ. RIMS, Kyoto Univ. 27 (1991), 953-994.
4. Jones, V, Index for subfactors, Invent. Math. 72 (1983), 1-25.
5. Kosaki, H, Extension of Jones' theory on index to arbitrary factors, J. Funct. Anal. 66 (1986), 123-140.
6. Kosaki, H, Sector theory and automorphisms for factor-subfactor pairs, J. Math. Soc. Japan 48 (1996), 427-454.
7. Kosaki, H and Yamagami, S, Irreducible bimodules associated with crossed product algebras, Internat. J. Math. 3 (1992), 661-676.
8. Ocneanu, A, Quantized groups, string algebras and Galois theory for algebras,, Operator Algebras and Applications, Vol II (London Math. Soc. Lecture Note Series 136), Cambridge Univ. Press (1988), 120-172.
9. Pimsner, M and Popa, S, Iterating the basic constructions, Trans.Amer. Math. Soc. 310 (1988), 127-134.

Department of Mathematics
Daejin University
Pocheon 487-800, Korea
E-mail: jrlee@road.daejin.ac.kr

