Kangweon-Kyungki Math. Jour. 5 (1997), No. 2, pp. 135–139

THE WEAKLY SEMI-PRIME IDEALS OF *po*-Γ-SEMIGROUPS

*Young In Kwon and **Sang Keun Lee

ABSTRACT. We introduce the concepts of weakly prime and weakly semi-prime ideals in po- Γ -semigroup and give some characterizations of weakly prime and weakly semi-prime ideals of po- Γ -semigroups analogous to the characterizations of weakly prime and weakly semi-prime ideals of po-semigroups considered by N. Kehayopulu.

M. K. Sen([2]) have introduced Γ -semigroups in 1981. M. K. Sen and N. K. Saha([3]) have introduced Γ -semigroups different from the first definition of Γ -semigroups in the sense of Sen(1981). From Sen([2]) we recall the following definition of Γ -semigroup.

Let M and Γ be any two non-empty sets. M is called a $\Gamma\text{-semigroup}$ if

(1) $M\Gamma M \subseteq M, \Gamma M \Gamma \subseteq \Gamma.$

(2) (axb)yc = a(xby)c = ax(byc)

for all $a, b, c \in M$ and $x, y \in \Gamma$.

In 1996, authors([5]) have introduced po- Γ -semigroups(: partially ordered Γ -semigroups).

A po- Γ -semigroup is an ordered set M at the same time a Γ -semigroup such that:

$$a \leq b \Longrightarrow a\gamma x \leq b\gamma x$$
 and $x\mu a \leq x\mu b$

 $\forall a, b, x \in M \text{ and } \forall \gamma, \mu \in \Gamma.$

In 1990, Kehayopulu([1]) obtained the four equivalent conditions to be weakly semiprime for an ideal T of a *po*-semigroup S.

Received May 30, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 03G25, 06F35.

Key words and phrases: po- Γ -semigroup, weakly prime, weakly prime ideal, weakly semi-prime, weakly semi-prime ideal.

The second author was supported in part by the Basic Science Research Institute Program, Ministry of Education, Korea, 1966, Project No. BSRI-96-1411.

Young In Kwon and Sang Keun Lee

THEOREM. An ideal T of a po-semigroup S is weakly semiprime if and only if one of the following four equivalent conditions hold in S:

(1) For every $a \in S$ such that $(aSa] \subseteq T$, we have $a \in T$.

(2) For every $a \in S$ such that $(I(a))^2 \subseteq T$, we have $a \in T$.

(3) For every right ideal A of S such that $A^2 \subseteq T$, we have $A \subseteq T$.

(4) For every left ideal B of S such that $B^2 \subseteq T$, we have $B \subseteq T$.

In this paper we obtain the similar results in po- Γ -semigroup and give the characterization of weakly prime ideals in po- Γ -semigroups. Now we recall the definitions and notations.

NOTATION 1. For subsets A, B of M, let

$$A\Gamma B := \{a\gamma b | a \in A, b \in B \text{ and } \gamma \in \Gamma\}.$$

DEFINITION 1. Let M be a po- Γ -semigroup and A a nonempty subset of M. A is called a right(resp. left) ideal of M if

(1) $A\Gamma M \subseteq A$ (resp. $M\Gamma A \subseteq A$).

(2) $a \in A, b \leq a$ for $b \in M \Longrightarrow b \in A$.

A subset A of M is called an *ideal* of M if it is a right and left ideal of M.

See to [4] for the definitions of the left(right) ideals and ideals in Γ -semigroups.

NOTATION 2[1]. For $H \subseteq M$, we denote

 $(H] = \{a \in M : a \le h \text{ for some } h \in H\}.$

We write (a] instead of $(\{a\}](a \in M)$. We denote by I(a)(resp. R(a), L(a)) the ideal(resp. right ideal, left ideal) of M generated by $a(a \in M)$, respectively.

We can easily prove that:

$$I(a) = (a \cup M\Gamma a \cup a\Gamma M \cup M\Gamma a\Gamma M],$$
$$R(a) = (a \cup a\Gamma M], \ L(a) = (a \cup M\Gamma a]$$

for all $a \in M$.

136

DEFINITION 2. Let M be a po- Γ -semigroup and T a nonempty subset of M. T is called *weakly prime* if for all ideals A, B of M such that $A\Gamma B \subseteq T$, then $A \subseteq T$ or $B \subseteq T$. T is called a *weakly prime ideal* if T is an ideal which is weakly prime.

We can easily prove the following lemma.

LEMMA 1. Let M be a po- Γ -semigroup. Then we have (1) $A \subseteq (A]$ for any $A \subseteq M$. (2) $(A] \subseteq (B]$ for $A \subseteq B \subseteq M$. (3) $(A]\Gamma(B] \subseteq (A\Gamma B]$ for all $A, B \subseteq M$. (4) $((A]] \subseteq (A]$ for all $A \subseteq M$. (5) For every left (right, two-sided) ideal T of M, (T] = T. (6) If A and B are ideals of M, then $(A\Gamma B]$ and $A \cup B$ are also ideals of M. (7) For every $a \in M$, $(M\Gamma a\Gamma M]$ is an ideal of M.

In [5; Theorem 5], we gave characterizations of weakly prime ideal elements of $poe-\Gamma$ -semigroups ($po-\Gamma$ -semigroup with the greatest element e.

Now we give characterizations of weakly prime ideals of po- Γ -semigroups(not necessarily having the greatest element e).

THEOREM 1. Let M be a po- Γ -semigroup and T an ideal of M. Then T is prime if and only if for a left ideal A and a right ideal B of M such that $A\Gamma B \subseteq T$, we have $A \subseteq T$ or $B \subseteq T$.

Proof. \implies : It is obvious.

 \Leftarrow : Let A be a left ideal and B be a right ideal of M. Then by hypothesis, $a\Gamma b \subseteq T$ for any $a \in A$ and for any $b \in B$. Then

$$L(a)\Gamma R(b) = (a \cup M\Gamma a]\Gamma(b \cup b\Gamma M]$$

$$\subseteq (a\Gamma b \cup a\Gamma b\Gamma M \cup M\Gamma a\Gamma b \cup M\Gamma a\Gamma b\Gamma M]$$

$$\subseteq (T \cup T\Gamma M \cup M\Gamma T \cup M\Gamma T\Gamma M]$$

$$= (T] = T$$

By hypothesis, $a \in L(a) \subseteq T$ or $b \in R(b) \subseteq T$, and so $A \subseteq T$ or $B \subseteq T$. Therefore T is weakly-prime. DEFINITION 3. Let M be a po- Γ -semigroup and T a subset of M. Then T is called *weakly semi-prime* if every ideal A of M such that $A\Gamma A \subseteq T$, we have $A \subseteq T$.

THEOREM 2. Let M be a po- Γ -semigroup and T an ideal of M. Then the following are equivalent:

- (1) T is weakly semi-prime.
- (2) For every $a \in M$ such that $(a\Gamma M\Gamma a] \subseteq T$, we have $a \in T$.
- (3) For every $a \in M$ such that $I(a) \Gamma I(a) \subseteq T$, we have $a \in T$.
- (4) For every right ideal A of M such that $A\Gamma A \subseteq T$, we have $A \subseteq T$.
- (5) For every left ideal A of M such that $A\Gamma A \subseteq T$, we have $A \subseteq T$.

Proof. (1) \Longrightarrow (2). Let $a \in M$ and $(a\Gamma M\Gamma a] \subseteq T$. Then we have

$$(M\Gamma a\Gamma M]\Gamma(M\Gamma a\Gamma M] \subseteq (M\Gamma a\Gamma M\Gamma M\Gamma a\Gamma M]$$
$$\subseteq (M\Gamma (a\Gamma M\Gamma a]\Gamma M]$$
$$\subseteq (M\Gamma T\Gamma M]$$
$$\subseteq (T] = T.$$

Since $(M\Gamma a\Gamma M]$ is an ideal of M and T is weakly semiprime, we have $(M\Gamma a\Gamma M] \subseteq T$. Then we get

$$(I(a)\Gamma I(a)]\Gamma(I(a)\Gamma I(a)] \subseteq (T] = T.$$

Since T is weakly semiprime and $(I(a)\Gamma I(a)]$ is an ideal of M, we have $(I(a)\Gamma I(a)] \subseteq T$, and so $I(a)\Gamma I(a) \subseteq T$. And since T is weakly semiprime and I(a) is an ideal of M, we have $I(a) \subseteq T$, and so $a \in T$. (2) \Longrightarrow (3). Let $a \in M$ and let $I(a)\Gamma I(a) \subseteq T$. Now

$$(a]\Gamma(M\Gamma a] \subseteq (I(a)\Gamma M\Gamma a]$$
$$\subseteq (I(a)(\Gamma M\Gamma)I(a)]$$
$$\subseteq (I(a)\Gamma I(a)]$$
$$\subseteq (T] = T.$$

and so

$$((a]\Gamma(M\Gamma a]] \subseteq (T] = T.$$

138

Since $(a\Gamma M\Gamma a] \subseteq ((a]\Gamma(M\Gamma a)] \subseteq ((a\Gamma M\Gamma a)] \subseteq (a\Gamma M\Gamma a)$, we have $(a\Gamma M\Gamma a) = ((a]\Gamma(M\Gamma a)]$. Therefore $(a\Gamma M\Gamma a) \subseteq T$. By (2), we get $a \in T$.

(3) \Longrightarrow (4). Let A be a right ideal of M such that $A\Gamma A \subseteq T$ and a any element of A. Then we have

$$I(a) = (a \cup M\Gamma a \cup a\Gamma M \cup M\Gamma a\Gamma M]$$

$$\subseteq (A \cup M\Gamma A \cup A\Gamma M \cup M\Gamma A\Gamma M]$$

$$= (A \cup M\Gamma A].$$

Thus we get

$$I(a)\Gamma I(a) \subseteq (A \cup M\Gamma A]\Gamma(A \cup M\Gamma A]$$
$$\subseteq ((A \cup M\Gamma A)\Gamma(A \cup M\Gamma A)]$$
$$= (A\Gamma A \cup A\Gamma M\Gamma A \cup M\Gamma A\Gamma A \cup M\Gamma A\Gamma M\Gamma A]$$
$$\subseteq (T \cup M\Gamma T]$$
$$= (T] = T.$$

By (3), *a* is contained in *T*. Therefore
$$A \subseteq T$$
.
(3) \Longrightarrow (5). The proof is similar to the one of (3) \Longrightarrow (4).
(4), (5) \Longrightarrow (1). They are obvious.

References

- N. Kehayopulu, On weakly prime ideals of ordered semigroups, Math. Japon. 35 (1990), 1051-1056.
- M. K. Sen, On Γ-semigroups, Proc. of the Int. Conf. on Algebra and it's Appl., Decker Publication, New York 301.
- M. K. Sen and N. K. Saha, On Γ-semigroup I, Bull. Cal. Math. Soc. 78 (1986), 180-186.
- 4. N. K. Saha, On Γ-semigroup II, Bull. Cal. Math. Soc. 79 (1987), 331-335.
- Y. I. Kwon and S. K. Lee, Some special elements in ordered Γ-semigroups, Kyungpook Math. J. Vol 35 (1996), 679-685.

Department of Mathematics College of Education Gyeongsang National University, Chinju 660-701, Korea *E-mail*: *yikwon@ nongae.gsnu.ac.kr, **sklee@ nongae.gsnu.ac.kr