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A NOTE ON LIFTING TRANSFORMATION GROUPS

Sung Ki Cho and Choon Sung Park

Abstract. The purpose of this note is to compare two known re-

sults related to the lifting problem of an action of a topological

group G on a G-space X to a coverring space of X.

1. Introduction

For a G-space X and a covering space X̃H of X associated with a
subgroup H of π1(X, x0), there exist some results related to the lifting
problem of an action of G on X to an action of G on X̃H . In this
note, we show that the result due to M. A. Armstrong [1] is equivalent
to a minor modification of the result due to F. Rhodes [2] under some
restricted conditions. Also, we briefly refer to a role of the evaluation
map with respect to the lifting problem.

We shall assume throughout this note that G is a locally path-
connected topological group, that X is a path-connected, locally path-
connected, and locally simply connected G-space and that p : X̃H → X
is a covering projection associated with a subgroup H of π1(X, x0).
Also, we use the following notations:

e: the identity element of G.
α ∗ β: the composition of two paths α and β.
f ◦ g: the composition of two functions f and g.
iX : the identity function on a set X.
f#: the homomorphism from π1(X, x0) to π1(Y, f(x0)) induced by

a map f : X → Y .
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2. Preliminaries

For g ∈ G, let λ be a path from x0 to gx0. Define g∗ : π1(X, x0) →
π1(X, x0) by g∗([α]) = [λ∗gα∗λ−1] for [α] ∈ π1(X, x0). It is clear that
for every normal subgroup H of π1(X, x0), g∗(H) is a normal subgroup
which is independent of λ.

Definition 2.1. ([2]) A normal subgroup H of π1(X, x0) is said to
be G-invariant if g∗(H) = H for every g ∈ G.

Definition 2.2. ([2]) Given g ∈ G, a path α order g, written by
(α; g), with base point x0 is a continuous function α : I → X such that
α(0) = x0 and α(1) = gx0.

Lemma 2.3. ([2]) Let H be a subgroup of π1(X, x0) and let [α; g]H
be the equivalence class of (α; g) under the equivalence relation

(α; g) ∼ (β;h) iff g = h and [α ∗ β−1] ∈ H.
If H is G-invariant normal, then the set σH(X, x0, G) of equivalence
classes forms a group under the rule of composition

[α; g]H ∗ [β;h]H = [α ∗ gβ; gh]H .

Lemma 2.4. ([2]) Let H be a subgroup of π1(X, x0). If σH(X, x0, G)
is a group, then we have a short exact sequence

0 → π1(X, x0)/H
i→ σH(X, x0, G)

j→ G → 0,

where i([α] ∗H) = [α; e]H and j([β; g]H) = g.

From now on, j always denotes the homomorphism defined in
Lemma 2.4.

In [2], a basis of open nbds is defined for the set σH(X, x0, G) as
follows. Given [α; g]H and open nbds U of gx0 and V of e, define
WX([α; g]H ,U,V) to be the set of classes [α∗β;h]H where hg−1 ∈ V and
β is a path in U from gx0 to hx0. Sets of the form of WX([α; g]H , U, V )
constitude a basis for a topology on σH(X, x0, G).

F. Rhodes [2] showed that, if σH(X, x0, G) is a group, it is a topo-
logical group with the topology just defined.
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Definition 2.5. ([2]) Let σH(X, x0, G) be a group. If there exists
a continuous homomorphism φ : G → σH(X, x0, G) such that j ◦ φ =
iG, then the group σH(X, x0, G) is said to admit a continuous split
extension.

Definition 2.6. We say that X admits a family of H-preferred
paths at x0 if it is possible to associate with every element g of G
a path kg from gx0 to x0 such that [ke] ∈ H and for every pair of
elements g, h, the paths kg, kh and kgh associated with g, h and gh

satisfy [gkh ∗ kg ∗ k−1
gh ] ∈ H.

Definition 2.7. ([1]) Suppose that G also acts on a space Z, and
that f : Z → X is a G-map which sends z0 to x0. If for every element g
of G, loop α representing an element of H and path γ which joins z0 to
gz0 in Z, [(fγ)∗gα∗(fγ−1)] ∈ H, then H is said to be (f,G)-invariant.

3. Main Results

Lemma 3.1. Let H be a normal subgroup of π1(X, x0). If for every
g ∈ G, g∗(H) ⊂ H, then σH(X, x0, G) is a group.

Proof. Assume [α1; g]H = [α2; g]H and [β1;h]H = [β2;h]H . Then
[α1 ∗ α−1

2 ], [β1 ∗ β−1
2 ] ∈ H. Since g−1α2 is a path from g−1x0 to x0,

[g−1α−1
2 ∗ g−1(β2 ∗ β−1

1 ) ∗ g−1α2] ∈ H. From this, we obtain

[(α1 ∗ gβ1) ∗ (α2 ∗ gβ2)−1] ∗ [(α1 ∗ α−1
2 ) ∗ (β1 ∗ β−1

2 )]−1

=[α1 ∗ g(β1 ∗ β−1
2 ) ∗ g(g−1α−1

2 ∗ g−1(β2 ∗ β−1
1 ) ∗ g−1α2) ∗ α−1

1 ]

∈g∗(H)
=H.

Thus [(α1∗gβ1)∗(α2∗gβ2)−1] ∈ H. This says that the binary operation
is well defined. The other conditions for σH(X, x0, G) to be a group is
obvious. � �
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Lemma 3.2. Let H be a subgroup of π1(X, x0). If there exists
a path connected space Z, and an action of G on Z, and a based
G-map f : (Z, z0) → (X, x0) such that f#(π1(Z, z0)) ⊂ H, then X
admits a family of H-preferred paths at x0. Furthermore, if H is a
normal subgroup of π1(X, x0) such that g∗(H) ⊂ H for all g ∈ G, then
σH(X, x0, G) admits a continuous split extension.

Proof. For each g ∈ G, choose a path γg in Z which joins gz0 to
z0 and let kg = fγg. By hypothesis, [ke] = [fγe] = f#([γe]) ∈ H. If
g, h ∈ G, then gγh ∗ γg ∗ γ−1

gh is a loop at z0. Since f#(π1(X, x0)) ⊂ H,
[gkh ∗ kg ∗ k−1

gh ] ∈ H. Thus {kg|g ∈ G} is a collection of H-preferred
paths at x0. Now, assume that g∗(H) ⊂ H for all g ∈ G. By Lemma
3.1, σH(X, x0, G) is a group. Define φ : G → σH(X, x0, G) by φ(g) =
[k−1

g ; g]H . Since {kg|g ∈ G} is a family of H-preferred paths,

φ(g1g2) = [k−1
g1g2

; g1g2]H = [k−1
g1
∗ g1k

−1
g2

; g1g2]H
= [k−1

g1
; g1]H ∗ [k−1

g2
; g2]H

= φ(g1) ∗ φ(g2).

This shows that φ is a spliting homomorphism. Let WX([k−1
g ; g]H , U, V )

be a basis element containning [k−1
g ; g]H . Choose an open nbd V1 of

e such that V1 ⊂ V and for any h1 ∈ V1, h1gx0 ∈ U . Also, choose
an open nbd V2 of e such that for all h2 ∈ V2, h2gz0 ∈ f−1(U). Let
V ′ be the path component of V1 ∩ V2 which contains e, let g′ ∈ V ′g
and let c : I → V g be a path which joins g and g′. Then the
map g : I → Z, defined by γ(s) = c(s)z0 is a path in f−1(U)
which joins gz0 to g′z0, and hence fγ is a path in U joining gx0

to g′x0. Since [k−1
g ∗ (fγ) ∗ kg′ ] = f#([γ−1

g ∗ γ ∗ γg′ ]) ∈ H, we
have [k−1

g′ ; g′]H = [k−1
g ∗ (fγ); g′]H ∈ WX([k−1

g ; g]H , U, V ) and hence
φ(V ′g) ⊂ WX([k−1

g ; g]H , U, V ). Consequently, φ is continuous. � �

Theorem 3.3. Let H be a normal subgroup of π1(X, x0) and let
Z and f be the same as in Lemma 3.2. If

(i) H is (f,G)-invariant and
(ii) f#(π1(Z, z0)) ⊂ H,

then σH(X, x0, G) is a group which admits a continuous split extension.
Furthermore, g∗(H) = H for every g ∈ G.
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Proof. By Lemma 3.2, there exists a family {kg|g ∈ G} of H-
preferred paths at x0. Let g ∈ G and [α] ∈ H. Since for every g ∈ G,
g∗([α]) = [k−1

g ∗ gα ∗ kg] = [(fγ−1
g ) ∗ gα ∗ (fγg)] ∈ H by (i), we have

g∗(H) ⊂ H. By Lemma 3.1 and Lemma 3.2, σH(X, x0, G) is a group
which admits a continuous split extension.

To show that H ⊂ g∗(H), let [α] ∈ H. Since gγg−1 ∗ γg is a loop
in Z based at z0, [gkg−1 ∗ kg] = f#([gγg−1 ∗ γg]) ∈ H by (ii). Let
β = gkg−1 ∗ kg. Then

[α] = [β−1 ∗ (β ∗ α ∗ β−1) ∗ β]

= [k−1
g ∗ g(k−1

g−1 ∗ g−1(β ∗ α ∗ β−1) ∗ kg−1) ∗ kg]

= g∗([k−1
g−1 ∗ g−1(β ∗ α ∗ β−1) ∗ kg−1 ])

= (g∗ ◦ g−1
∗ )([β ∗ α ∗ β−1])

∈ g∗(H).�

�

Lemma 3.4. Let σH(X, x0, G) be a group. Then X admits a family
of H-preferred paths at x0 if and only if the short exact sequence in
Lemma 2.4 splits.

Proof. (⇒) Define φ : G → σH(X, x0, G) by φ(g) = [α−1
g ; g]H , where

αg is an H-preferred path associated with g. Clearly, j ◦ φ = iG. Let
g, h ∈ G. Since [gαh ∗ αg ∗ α−1

gh ] ∈ H, we have φ(gh) = [α−1
gh ; gh]H =

[α−1
g ∗ gα−1

h ; gh]H = [α−1
g ; g] ∗ [α−1

h ;h]H = φ(g) ∗ φ(h). Thus φ is a
splitting homomorphism.

(⇐) Let φ : G → σH(X, x0, G) be a splitting homomorphism. Then
φ(e) = [cx0 ; e]H , where cx0 is the constant path at x0. For each g ∈ G,
let φ(g) = [αg; g]H . Since [αgh; gh]H = φ(gh) = φ(g) ∗ φ(h) = [αg ∗
gαh; gh]H , we have [αg ∗ gαh ∗ α−1

gh ] ∈ H. Therefore, {α−1
g |g ∈ G} is a

collection of H-preferred paths at x0. � �

Theorem 3.5. Let H be a normal subgroup of π1(X, x0). If
g∗(H) ⊂ H for every g ∈ G and σH(X, x0, G) admits a continuous

split extension, then the action of G lifts to an action of G on X̃H .
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Proof. Define µ̃ : σH(X, x0, G) × X̃H → X̃H by µ̃([α; g]H , < ω >

) =< α ∗ gω > for [α; g]H ∈ σH(X, x0, G) and < ω >∈ X̃H . Then µ̃

is a well-defined action of σH(X, x0, G) on X̃H .(see Proposition 2 of
[2]) By hypothesis, there exists a continuous homomorphism φ : G →
σH(X, x0, G) such that j ◦ φ = iG. Let µ be the composition of

G× X̃H

φ×iX̃H−→ σH(X, x0, G)× X̃H
µ̃−→ X̃H .

Clearly, µ covers the action of G on X. Let φ(g) = [αg; g]H for g ∈ G.
By Lemma 3.4, {α−1

g : g ∈ G} is a family of H-preferred paths. Thus
for g1, g2 ∈ G and < ω >∈ X̃H ,

µ(g1g2, < ω >) =< αg1g2 ∗ (g1g2)ω >

=< αg1 ∗ g1αg2 ∗ (g1g2)ω >

=< αg1 ∗ g1(αg2 ∗ g2ω) >

= µ(g1, < αg2 ∗ g2ω >)

= µ(g1, µ(g2, < ω >)).

Since µ(e,< ω >) =< ω > for all < ω >∈ X̃H , we conclude that µ is
an action of G on X̃H . � �

Now, let E : G → X be the evaluation map define by E(g) = gx0

for g ⊂ G.

Lemma 3.6. If N is a G-invariant subgroup of π1(G, e) such that
E#(N) ⊂ H, then the map

ER
# : σN (G, e, G) → σH(X, x0, G),

defined by ER
#([γ; g]N ) = [Eγ; g]H for [γ; g]N ∈ σN (G, e, G), is a con-

tinuous homomorphism.

Proof. Clearly, ER
# is a well-defined homomorphism. Now, let

[γ; g]N ∈ σN (G, e, G) and let WX([wγ; g]H , U, V ) be an open neighbor-
hood of [Eγ; g]H . Since E is continuous, there exists an open neighbor-
hood U ′ of g such that E(U ′) ⊂ U . Let V ′ be an open neighborhood
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of e such that V ′g ⊂ U ′ ∩ V g. Then for any h ∈ V ′g and any path
γ′ in U ′ from g to h, h ∈ Vg and Eγ′ is a path in U from gx0 to hx0.
This means that

ER
#(WG([γ; g]N , U ′, V ′)) ⊂ WX([Eγ; g]H , U, V ).

Thus, ER
# is continuous. �

�

Lemma 3.7. Let N be a G-invariant subgroup of π1(G, e) such that
E#(N) ⊂ H. If σN (G, e, G) admits a continuous split extension, then
σH(X, x0, G) admits a continuous split extension.

Proof. Consider the following commutative diagram

σN (G, e, G)
j′−→ G

ER
# ↓ iG ↓

σH(X, x0, G)
j−→ G

where j′([γ; g]N ) = g for [γ; g]N ∈ σG(G, e, G).
By hypothesis, there exists a continuous homomorphism φ′ : G →

σN (G, e, G) such that j′◦φ′ = iG. Let φ = ER
#◦φ′. By Lemma 3.6, φ is

a continuous homomorphism. Since j ◦φ = j ◦ (ER
# ◦φ′) = j′ ◦φ′ = iG,

σH(X, x0, G) admits a continuous split extension. � �

Lemma 3.8. If π1(G, e) = N , then σN (G, e, G) admits a continuous
split extension.

Proof. By hypothesis, j′ : σN (G, e, G) → g is an isomorphism. Let
φ′ = (j′)−1. For g ∈ G, let φ′(g) = [αg; g]H and let W ([αg; g]H , U, V )
be an open nbd of [αg; g]H . Without loss of generality, we may assume
that U is path connected. For h ∈ V g, choose a path γ in U from
gx0 to hx0. Since φ′ is an isomorphism, [αh;h]H = [αg ∗ γ;h]H ∈
W ([αg; g]H , U, V ), and hence φ′(V g) ⊂ W ([αg; g]H , U, V ). This implies
that φ′ is continuous. � �

Corollary 3.9. Let H be a G-invariant normal subgroup of
π1(X, x0). If E#(π1(G, e)) ⊂ H, then the action of G on X lifts to

an action of G on X̃H .
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