ESTIMATIONS OF THE GENERALIZED REIDEMEISTER NUMBERS

SOO YOUP AHN, EUNG BOK LEE AND KI SUNG PARK

ABSTRACT. Let $\sigma(X, x_0, G)$ be the fundamental group of a transformation group (X, G). Let $R(\varphi, \psi)$ be the generalized Reidemeister number for an endomorphism $(\varphi, \psi) : (X, G) \to (X, G)$. In this paper, our main results are as follows; we prove some sufficient conditions for $R(\varphi, \psi)$ to be the cardinality of $Coker(1-(\varphi, \psi)_{\bar{\sigma}})$, where 1 is the identity isomorphism and $(\varphi, \psi)_{\bar{\sigma}}$ is the endomorphism of $\bar{\sigma}(X, x_0, G)$, the quotient group of $\sigma(X, x_0, G)$ by the commutator subgroup $C(\sigma(X, x_0, G))$, induced by (φ, ψ) . In particular, we prove $R(\varphi, \psi) = |Coker(1-(\varphi, \psi)_{\bar{\sigma}})|$, provided that (φ, ψ) is eventually commutative.

1. Introduction

F. Rhodes [5] initiated the study of the fundamental group $\sigma(X, x_0, G)$ of a transformation group (X, G), a group G of homeomorphisms of a space X, as a generalization of the fundamental group $\pi_1(X, x_0)$ of a topological space X. In [4], we defined the generalized Reidemeister number $R(\varphi, \psi)$ for an endomorphism $(\varphi, \psi) : (X, G) \to (X, G)$ of a transformation group (X, G) and investigated the algebraic estimations of $R(\varphi, \psi)$.

The purpose of this paper is to prove some sufficient conditions for the generalized Reidemeister number $R(\varphi, \psi)$ to be the number of elements of $Coker(1 - (\varphi, \psi)_{\bar{\sigma}})$, where 1 is the identity isomorphism and $(\varphi, \psi)_{\bar{\sigma}}$ is the endomorphism of $\bar{\sigma}(X, x_0, G)$, the quotient group of $\sigma(X, x_0, G)$ by the commutator subgroup $C(\sigma(X, x_0, G))$, induced

Received June 27, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 55M20, 57M05.

Key words and phrases: $(\varphi, \psi)_{\sigma}$ -equivalent, (algebraic) Reidemeister number, eventual commutativity.

by (φ, ψ) . In particular, if $(\varphi, \psi) : (X, G) \to (X, G)$ is eventually commutative, then

$$R(\varphi, \psi) = |Coker(1 - (\varphi, \psi)_{\bar{\sigma}})|.$$

We always assume that the space X is a compact connected polyhedron. The reader may refer to [5] for more details on the fundamental group $\sigma(X, x_0, G)$ of a transformation group (X, G).

2. Definitions and lemmas

Let $(\varphi, \psi) : (X, G) \to (X, G)$ be an endomorphism. Since $\varphi(gx) = (\psi g)(\varphi x)$ for every pair (x, g), if α is a path in X of order g with basepoint x_0 , then $\varphi \alpha$ is a path in X of order $\psi(g)$ with base-point $\varphi(x_0)$. Furthermore, if two path α and β of the same order g is homotopic, $\alpha \simeq \beta$, then $\varphi \alpha \simeq \varphi \beta$. Thus (φ, ψ) induces a homomorphism

$$(\varphi,\psi)_*: \sigma(X,x_0,G) \to \sigma(X,\varphi(x_0),G)$$

defined by $(\varphi, \psi)_*[\alpha; g] = [\varphi \alpha; \psi(g)].$

If λ is a path from $\varphi(x_0)$ to x_0 , then λ induces an isomorphism

$$\lambda_* : \sigma(X, \varphi(x_0), G) \to \sigma(X, x_0, G)$$

defined by $\lambda_*[\alpha; g] = [\lambda \rho + \alpha + g\lambda; g]$ for each $[\alpha; g] \in \sigma(X, \varphi(x_0), G)$, where $\rho(t) = 1-t$. This isomorphism λ_* depends only on the homotopy class of λ .

For the composition

$$\sigma(X, x_0, G) \xrightarrow{(\varphi, \psi)_*} \sigma(X, \varphi(x_0), G) \xrightarrow{\lambda_*} \sigma(X, x_0, G),$$

we denote $\lambda_*(\varphi, \psi)_* = (\varphi, \psi)_\sigma$.

DEFINITION 2.1. ([4]) Two elements $[\alpha; g_1]$, $[\beta; g_2]$ in $\sigma(X, x_0, G)$ are said to be $(\varphi, \psi)_{\sigma}$ -equivalent, $[\alpha; g_1] \sim [\beta; g_2]$, if there exists $[\gamma; g] \in \sigma(X, x_0, G)$ such that

$$[\alpha; g_1] = [\gamma; g][\beta; g_2](\varphi, \psi)_{\sigma}([\gamma; g]^{-1}).$$

Note that the relation \sim is an equivalence relation on $\sigma(X, x_0, G)$, and partitions $\sigma(X, x_0, G)$ into disjoint equivalence classes. Let $\sigma(X, x_0, G)$, $(G)'(\varphi, \psi)_{\sigma}$ be the set of equivalence classes of $\sigma(X, x_0, G)$ under $(\varphi, \psi)_{\sigma}$ -equivalence. The cardinality of $\sigma(X, x_0, G)'(\varphi, \psi)_{\sigma}$ called the *algebraic Reidemeister number* of $(\varphi, \psi)_{\sigma}$ and is denoted by $R_*(\varphi, \psi)_{\sigma}$.

DEFINITION 2.2. ([4]) For an endomorphism $(\varphi, \psi) : (X, G) \to (X, G)$, we define the *Reidemeister number* $R(\varphi, \psi)$ of (φ, ψ) to be the algebraic Reidemeister number of $(\varphi, \psi)_{\sigma}$, that is,

$$R(\varphi, \psi) = R_*(\varphi, \psi)_{\sigma}.$$

In Definition 2.2, note that $R(\varphi, \psi)$ is independent of the choice of the path λ from $\varphi(x_0)$ to x_0 .

The following two lemmas will be used in obtaining our main results.

LEMMA 2.3. Let $(\varphi, \psi)_{\sigma} : \sigma(X, x_0, G) \to \sigma(X, x_0, G)$ be a homomorphism and G be abelian. Then, for any $[\alpha; g_1], [\beta; g_2] \in \sigma(X, x_0, G)$,

(1) $[\alpha; g_1][\beta; g_2] \sim [\beta; g_2](\varphi, \psi)_{\sigma}([\alpha; g_1]).$ (2) $[\alpha; g_1] \sim (\varphi, \psi)_{\sigma}([\alpha; g_1]).$

Proof. (1) It follows immediately from Definition 2.1, that is,

$$[\alpha; g_1][\beta; g_2] \sim [\alpha; g_1]^{-1}([\alpha; g_1][\beta; g_2])(\varphi, \psi)_{\sigma}([\alpha; g_1])$$
$$\sim [\beta; g_2](\varphi, \psi)_{\sigma}([\alpha; g_1]).$$

(2) By taking $[\beta; g_2] = [x'_0; e]$ in (1), where x'_0 is the constant map $x'_0: I \to X$, we have

$$[\alpha; g_1] \sim (\varphi, \psi)_{\sigma}([\alpha; g_1]).\square$$

LEMMA 2.4. Under the same assumptions as that in Lemma 2.3, if $[\alpha; g_1] \sim [\beta; g_2]$ implies $[\alpha; g_1][\gamma; g] \sim [\beta; g_2][\gamma; g]$ for any $[\gamma; g] \in \sigma(X, x_0, G)$, then

$$[\alpha; g_1][\beta; g_2][\gamma; g_3] \sim [\beta; g_2][\alpha; g_1][\gamma; g_3]$$

for any $[\gamma; g_3] \in \sigma(X, x_0, G)$.

Proof. From (2) of Lemma 2.3, we have

$$\begin{aligned} [\alpha;g_1][\beta;g_2] &\sim (\varphi,\psi)_{\sigma}([\alpha;g_1][\beta;g_2]) \\ &\sim (\varphi,\psi)_{\sigma}([\alpha;g_1])(\varphi;\psi)_{\sigma}([\beta;g_2]), \end{aligned}$$

$$(\varphi,\psi)_{\sigma}([\alpha;g_1]) \sim [\alpha;g_1].$$

According to the hypothesis and the first result of Lemma 2.3,

$$(\varphi, \psi)_{\sigma}([\alpha; g_1])(\varphi, \psi)_{\sigma}([\beta; g_2]) \sim [\alpha; g_1](\varphi, \psi)_{\sigma}([\beta; g_2])$$
$$\sim [\beta; g_2][\alpha; g_1].$$

Again, from the hypothesis, we obtain

$$[\alpha;g_1][\beta;g_2][\gamma;g_3] \sim [\beta;g_2][\alpha;g_1][\gamma;g_3].$$

Hence we have the desired result.

3. The estimations of $R(\varphi, \psi)$

Let $C(\sigma(X, x_0, G))$ be a commutator subgroup $\sigma(X, x_0, G)$ and let

$$\bar{\sigma}(X, x_0, G) = \sigma(X, x_0, G) / C(\sigma(X, x_0, G)).$$

Then $\theta_{\sigma}: \sigma(X, x_0, G) \to \overline{\sigma}(X, x_0, G)$ is a canonical homomorphism.

THEOREM 3.1. ([4]) If $(\varphi, \psi) : (X, G) \to (X, G)$ is an endomorphism and G is an abelian, then $R(\varphi, \psi) \ge |Coker(1 - (\varphi, \psi)_{\bar{\sigma}})|$, where 1 and $(\varphi, \psi)_{\bar{\sigma}}$ denote respectively the identity isomorphism and the endomorphism of $\bar{\sigma}(X, x_0, G)$ induced by (φ, ψ) . Furthermore, if $\sigma(X, x_0, G)$ is abelian,

$$R(\varphi,\psi) = |Coker(1-(\varphi,\psi)_{\bar{\sigma}})|.$$

Now, in Theorem 3.2 and Theorem 3.4, we shall present some sufficient conditions in order that $R(\varphi, \psi)$ equals the number of elements of the set $Coker(1 - (\varphi, \psi)_{\bar{\sigma}})$.

THEOREM 3.2. Let G be an abelian. For any $[\alpha; g_1], [\beta; g_2], [\gamma; g_3] \in \sigma(X, x_0, G)$, if

$$[\alpha;g_1][\beta;g_2][\gamma;g_3] \sim [\beta;g_2][\alpha;g_1][\gamma;g_3]$$

then

$$R(\varphi, \psi) = |Coker(1 - (\varphi, \psi)_{\bar{\sigma}})|.$$

Proof. Let $\eta_{\bar{\sigma}} : \bar{\sigma}(X, x_0, G) \to Coker(1 - (\varphi, \psi)_{\bar{\sigma}})$ be the natural projection. It is sufficient to prove that the epimorphism $\eta_{\bar{\sigma}}\theta_{\sigma}$ induces a monomorphism between the set of $(\varphi, \psi)_{\sigma}$ -equivalent classes $\sigma(X, x_0, G)'(\varphi, \psi)_{\sigma}$ and $Coker(1 - (\varphi, \psi)_{\bar{\sigma}})$, that is, if $\eta_{\bar{\sigma}}\theta_{\sigma}([\alpha; g_1]) = \eta_{\bar{\sigma}}\theta_{\sigma}([\alpha'; g_1'])$, then $[\alpha; g_1] \sim [\alpha'; g_1']$.

(1) By the assumption of Theorem,

$$\begin{split} & [\alpha; g_1][\beta; g_2]([\alpha; g_1]^{-1}[\beta; g_2]^{-1}[\gamma; g_3]) \\ & \sim [\beta; g_2][\alpha; g_1]([\alpha; g_1]^{-1}[\beta; g_2]^{-1}[\gamma; g_3]) \\ & = [\gamma; g_3]. \end{split}$$

(2) Since $\theta_{\sigma}([\gamma; g_3]) = \theta_{\sigma}([\gamma'; g'_3])$ means $[\gamma'; g'_3][\gamma; g_3]^{-1} \in ker\theta_{\sigma}$, $[\gamma'; g'_3][\gamma; g_3]^{-1}$ is a product of commutators. Applying (1) again, we have $[\gamma; g_3] \sim [\gamma'; g'_3]$.

(3) Suppose that $\eta_{\bar{\sigma}}\theta_{\sigma}([\alpha;g_1]) = \eta_{\bar{\sigma}}\theta_{\sigma}([\alpha';g_1'])$. From the natural projection $\eta_{\bar{\sigma}}$, there exists $\overline{[\mu;g]} \in \bar{\sigma}(X, x_0, G)$ and $[\gamma;g_3] \in \theta_{\sigma}^{-1}(\overline{[\mu;g]})$ such that

$$\theta_{\sigma}([\alpha';g_1']) - \theta_{\sigma}([\alpha;g_1]) = (1 - (\varphi,\psi)_{\bar{\sigma}})(\overline{[\mu;g]})$$
$$= \overline{[\mu;g]} - (\varphi,\psi)_{\bar{\sigma}}(\overline{[\mu;g]}).$$

Consider the following commutative diagram;

Soo Youp Ahn, Eung Bok Lee and Ki Sung Park

Since
$$(\varphi, \psi)_{\bar{\sigma}}([\mu; g]) = (\varphi, \psi)_{\bar{\sigma}}\theta_{\sigma}([\gamma; g_3]) = \theta_{\sigma}(\varphi, \psi)_{\sigma}([\gamma; g_3]),$$

 $\theta_{\sigma}([\alpha'; g_1']) = \theta_{\sigma}([\alpha; g_1]) + \theta_{\sigma}([\gamma; g_3]) - \theta_{\sigma}((\varphi, \psi)_{\sigma}([\gamma; g_3])))$
 $= \theta_{\sigma}([\gamma; g_3][\alpha; g_1](\varphi, \psi)_{\sigma}([\gamma; g_3]^{-1})).$

From (2), we obtain

$$\begin{split} [\alpha';g_1'] &\sim [\gamma;g_3][\alpha;g_1](\varphi,\psi)_\sigma([\gamma;g_3]^{-1}) \\ &\sim [\alpha;g_1]. \end{split}$$

Therefore the proof of this theorem is complete.

Let $(\varphi, \psi)^k_{\sigma}$ denote the *k*-th iterations of $(\varphi, \psi)_{\sigma}$.

DEFINITION 3.3. Let G be an abelian. An endomorphism (φ, ψ) : $(X,G) \to (X,G)$ will be said to be eventually commutative if there exists a natural number k such that

$$(\varphi,\psi)^k_{\sigma}([\alpha;g_1][\beta;g_2]) = (\varphi,\psi)^k_{\sigma}([\beta;g_2][\alpha;g_1])$$

for each $[\alpha; g_1], [\beta; g_2] \in \sigma(X, x_0, G)$. This means that $(\varphi, \psi)^k_{\sigma}(\sigma(X, x_0, G))$ is a commutative subgroup of $\sigma(X, x_0, G).$

THEOREM 3.4. Let G be an abelian. If $(\varphi, \psi) : (X, G) \to (X, G)$ is eventually commutative, then $R(\varphi, \psi) = |Coker(1 - (\varphi, \psi)_{\bar{\sigma}})|.$

Proof. We want to show that the condition of Theorem 3.2 holds. By the assumption, there exists a natural number k such that

$$(\varphi,\psi)^k_{\sigma}([\alpha;g_1][\beta;g_2]) = (\varphi,\psi)^k_{\sigma}([\beta;g_2][\alpha;g_1])$$

From (2) of Lemma 2.3,

$$\begin{split} [\alpha;g_1][\beta;g_2][\gamma;g_3] &\sim (\varphi,\psi)^k_{\sigma}([\alpha;g_1][\beta;g_2][\gamma;g_3]) \\ &= (\varphi,\psi)^k_{\sigma}([\alpha;g_1][\beta;g_2])(\varphi,\psi)^k_{\sigma}([\gamma;g_3]) \\ &= (\varphi,\psi)^k_{\sigma}([\beta;g_2][\alpha;g_1])(\varphi,\psi)^k_{\sigma}([\gamma;g_3]) \\ &= (\varphi,\psi)^k_{\sigma}([\beta;g_2][\alpha;g_1][\gamma;g_3]) \\ &\sim [\beta;g_2][\alpha;g_1][\gamma;g_3]. \end{split}$$

This completes the proof.

References

- 1. R. F. Brown, *The Lefschetz Fixed Point Theorem*, Scott, Foresman and Company, Glenview, Illinois, 1971.
- B. J. Jiang, Lectures on Nielsen fixed point theory, Contemporary Math., 14 Amer. Math. Soc. Providence, R. I. (1983), 1–99.
- 3. T. H. Kiang, *The theory of fixed point classes*, Science Press, Beijing, 1979 (Chinese); English edition, Springer-Verlag, Berlin, New York, 1989.
- K. S. Park, Generalized Reidemeister number on a transformation group, Kangweon Kyungki Math. Jour. 5 (1997), 49–54.
- F. Rhodes, On the fundamental group of a transformation group, Proc. London Math. Soc. 16 (1966), 635–650.

Department of Mathematics Education Kon-Kuk University Seoul 133–701, Korea

Department of Liberal Arts DaeYeu Technical College Sungnam 461–714, Korea

Department of Mathematics Kangnam University Yongin 449–702, Korea