ESTIMATIONS OF THE GENERALIZED REIDEMEISTER NUMBERS

Soo Youp Ahn, Eung Bok Lee and Ki Sung Park

Abstract

Let $\sigma\left(X, x_{0}, G\right)$ be the fundamental group of a transformation group (X, G). Let $R(\varphi, \psi)$ be the generalized Reidemeister number for an endomorphism $(\varphi, \psi):(X, G) \rightarrow(X, G)$. In this paper, our main results are as follows ; we prove some sufficient conditions for $R(\varphi, \psi)$ to be the cardinality of $\operatorname{Coker}\left(1-(\varphi, \psi)_{\bar{\sigma}}\right)$, where 1 is the identity isomorphism and $(\varphi, \psi)_{\bar{\sigma}}$ is the endomorphism of $\bar{\sigma}\left(X, x_{0}, G\right)$, the quotient group of $\sigma\left(X, x_{0}, G\right)$ by the commutator subgroup $C\left(\sigma\left(X, x_{0}, G\right)\right)$, induced by (φ, ψ). In particular, we prove $R(\varphi, \psi)=\left|\operatorname{Coker}\left(1-(\varphi, \psi)_{\bar{\sigma}}\right)\right|$, provided that (φ, ψ) is eventually commutative.

1. Introduction

F. Rhodes [5] initiated the study of the fundamental group $\sigma\left(X, x_{0}\right.$, G) of a transformation group (X, G), a group G of homeomorphisms of a space X, as a generalization of the fundamental group $\pi_{1}\left(X, x_{0}\right)$ of a topological space X. In [4], we defined the generalized Reidemeister number $R(\varphi, \psi)$ for an endomorphism $(\varphi, \psi):(X, G) \rightarrow(X, G)$ of a transformation group (X, G) and investigated the algebraic estimations of $R(\varphi, \psi)$.

The purpose of this paper is to prove some sufficient conditions for the generalized Reidemeister number $R(\varphi, \psi)$ to be the number of elements of $\operatorname{Coker}\left(1-(\varphi, \psi)_{\bar{\sigma}}\right)$, where 1 is the identity isomorphism and $(\varphi, \psi)_{\bar{\sigma}}$ is the endomorphism of $\bar{\sigma}\left(X, x_{0}, G\right)$, the quotient group of $\sigma\left(X, x_{0}, G\right)$ by the commutator subgroup $C\left(\sigma\left(X, x_{0}, G\right)\right)$, induced

Received June 27, 1997.
1991 Mathematics Subject Classification: 55M20, 57M05.
Key words and phrases: $(\varphi, \psi)_{\sigma^{-}}$equivalent, (algebraic) Reidemeister number, eventual commutativity.
by (φ, ψ). In particular, if $(\varphi, \psi):(X, G) \rightarrow(X, G)$ is eventually commutative, then

$$
R(\varphi, \psi)=\left|\operatorname{Coker}\left(1-(\varphi, \psi)_{\bar{\sigma}}\right)\right|
$$

We always assume that the space X is a compact connected polyhedron. The reader may refer to [5] for more details on the fundamental group $\sigma\left(X, x_{0}, G\right)$ of a transformation group (X, G).

2. Definitions and lemmas

Let $(\varphi, \psi):(X, G) \rightarrow(X, G)$ be an endomorphism. Since $\varphi(g x)=$ $(\psi g)(\varphi x)$ for every pair (x, g), if α is a path in X of order g with basepoint x_{0}, then $\varphi \alpha$ is a path in X of order $\psi(g)$ with base-point $\varphi\left(x_{0}\right)$. Furthermore, if two path α and β of the same order g is homotopic, $\alpha \simeq \beta$, then $\varphi \alpha \simeq \varphi \beta$. Thus (φ, ψ) induces a homomorphism

$$
(\varphi, \psi)_{*}: \sigma\left(X, x_{0}, G\right) \rightarrow \sigma\left(X, \varphi\left(x_{0}\right), G\right)
$$

defined by $(\varphi, \psi)_{*}[\alpha ; g]=[\varphi \alpha ; \psi(g)]$.
If λ is a path from $\varphi\left(x_{0}\right)$ to x_{0}, then λ induces an isomorphism

$$
\lambda_{*}: \sigma\left(X, \varphi\left(x_{0}\right), G\right) \rightarrow \sigma\left(X, x_{0}, G\right)
$$

defined by $\lambda_{*}[\alpha ; g]=[\lambda \rho+\alpha+g \lambda ; g]$ for each $[\alpha ; g] \in \sigma\left(X, \varphi\left(x_{0}\right), G\right)$, where $\rho(t)=1-t$. This isomorphism λ_{*} depends only on the homotopy class of λ.

For the composition

$$
\sigma\left(X, x_{0}, G\right) \xrightarrow{(\varphi, \psi)_{*}} \sigma\left(X, \varphi\left(x_{0}\right), G\right) \xrightarrow{\lambda_{*}} \sigma\left(X, x_{0}, G\right),
$$

we denote $\lambda_{*}(\varphi, \psi)_{*}=(\varphi, \psi)_{\sigma}$.
Definition 2.1. ([4]) Two elements $\left[\alpha ; g_{1}\right],\left[\beta ; g_{2}\right]$ in $\sigma\left(X, x_{0}, G\right)$ are said to be $(\varphi, \psi)_{\sigma}$-equivalent, $\left[\alpha ; g_{1}\right] \sim\left[\beta ; g_{2}\right]$, if there exists $[\gamma ; g] \in$ $\sigma\left(X, x_{0}, G\right)$ such that

$$
\left[\alpha ; g_{1}\right]=[\gamma ; g]\left[\beta ; g_{2}\right](\varphi, \psi)_{\sigma}\left([\gamma ; g]^{-1}\right) .
$$

Note that the relation \sim is an equivalence relation on $\sigma\left(X, x_{0}, G\right)$, and partitions $\sigma\left(X, x_{0}, G\right)$ into disjoint equivalence classes. Let $\sigma\left(X, x_{0}\right.$ $, G)^{\prime}(\varphi, \psi)_{\sigma}$ be the set of equivalence classes of $\sigma\left(X, x_{0}, G\right)$ under $(\varphi, \psi)_{\sigma}$-equivalence. The cardinality of $\sigma\left(X, x_{0}, G\right)^{\prime}(\varphi, \psi)_{\sigma}$ called the algebraic Reidemeister number of $(\varphi, \psi)_{\sigma}$ and is denoted by $R_{*}(\varphi, \psi)_{\sigma}$.

Definition 2.2. ([4]) For an endomorphism $(\varphi, \psi):(X, G) \rightarrow$ (X, G), we define the Reidemeister number $R(\varphi, \psi)$ of (φ, ψ) to be the algebraic Reidemeister number of $(\varphi, \psi)_{\sigma}$, that is,

$$
R(\varphi, \psi)=R_{*}(\varphi, \psi)_{\sigma}
$$

In Definition 2.2, note that $R(\varphi, \psi)$ is independent of the choice of the path λ from $\varphi\left(x_{0}\right)$ to x_{0}.

The following two lemmas will be used in obtaining our main results.
Lemma 2.3. Let $(\varphi, \psi)_{\sigma}: \sigma\left(X, x_{0}, G\right) \rightarrow \sigma\left(X, x_{0}, G\right)$ be a homomorphism and G be abelian. Then, for any $\left[\alpha ; g_{1}\right],\left[\beta ; g_{2}\right] \in \sigma\left(X, x_{0}, G\right)$,
(1) $\left[\alpha ; g_{1}\right]\left[\beta ; g_{2}\right] \sim\left[\beta ; g_{2}\right](\varphi, \psi)_{\sigma}\left(\left[\alpha ; g_{1}\right]\right)$.
(2) $\left[\alpha ; g_{1}\right] \sim(\varphi, \psi)_{\sigma}\left(\left[\alpha ; g_{1}\right]\right)$.

Proof. (1) It follows immediately from Definition 2.1, that is,

$$
\begin{aligned}
{\left[\alpha ; g_{1}\right]\left[\beta ; g_{2}\right] } & \sim\left[\alpha ; g_{1}\right]^{-1}\left(\left[\alpha ; g_{1}\right]\left[\beta ; g_{2}\right]\right)(\varphi, \psi)_{\sigma}\left(\left[\alpha ; g_{1}\right]\right) \\
& \sim\left[\beta ; g_{2}\right](\varphi, \psi)_{\sigma}\left(\left[\alpha ; g_{1}\right]\right) .
\end{aligned}
$$

(2) By taking $\left[\beta ; g_{2}\right]=\left[x_{0}^{\prime} ; e\right]$ in (1), where x_{0}^{\prime} is the constant map $x_{0}^{\prime}: I \rightarrow X$, we have

$$
\left[\alpha ; g_{1}\right] \sim(\varphi, \psi)_{\sigma}\left(\left[\alpha ; g_{1}\right]\right) .
$$

Lemma 2.4. Under the same assumptions as that in Lemma 2.3, if $\left[\alpha ; g_{1}\right] \sim\left[\beta ; g_{2}\right]$ implies $\left[\alpha ; g_{1}\right][\gamma ; g] \sim\left[\beta ; g_{2}\right][\gamma ; g]$ for any $[\gamma ; g] \in$ $\sigma\left(X, x_{0}, G\right)$, then

$$
\left[\alpha ; g_{1}\right]\left[\beta ; g_{2}\right]\left[\gamma ; g_{3}\right] \sim\left[\beta ; g_{2}\right]\left[\alpha ; g_{1}\right]\left[\gamma ; g_{3}\right]
$$

for any $\left[\gamma ; g_{3}\right] \in \sigma\left(X, x_{0}, G\right)$.

Proof. From (2) of Lemma 2.3, we have

$$
\begin{aligned}
& {\left[\alpha ; g_{1}\right]\left[\beta ; g_{2}\right] } \sim(\varphi, \psi)_{\sigma}\left(\left[\alpha ; g_{1}\right]\left[\beta ; g_{2}\right]\right) \\
& \sim(\varphi, \psi)_{\sigma}\left(\left[\alpha ; g_{1}\right]\right)(\varphi ; \psi)_{\sigma}\left(\left[\beta ; g_{2}\right]\right), \\
&(\varphi, \psi)_{\sigma}\left(\left[\alpha ; g_{1}\right]\right) \sim\left[\alpha ; g_{1}\right] .
\end{aligned}
$$

According to the hypothesis and the first result of Lemma 2.3,

$$
\begin{aligned}
(\varphi, \psi)_{\sigma}\left(\left[\alpha ; g_{1}\right]\right)(\varphi, \psi)_{\sigma}\left(\left[\beta ; g_{2}\right]\right) & \sim\left[\alpha ; g_{1}\right](\varphi, \psi)_{\sigma}\left(\left[\beta ; g_{2}\right]\right) \\
& \sim\left[\beta ; g_{2}\right]\left[\alpha ; g_{1}\right] .
\end{aligned}
$$

Again, from the hypothesis, we obtain

$$
\left[\alpha ; g_{1}\right]\left[\beta ; g_{2}\right]\left[\gamma ; g_{3}\right] \sim\left[\beta ; g_{2}\right]\left[\alpha ; g_{1}\right]\left[\gamma ; g_{3}\right] .
$$

Hence we have the desired result.

3. The estimations of $R(\varphi, \psi)$

Let $C\left(\sigma\left(X, x_{0}, G\right)\right)$ be a commutator subgroup $\sigma\left(X, x_{0}, G\right)$ and let

$$
\bar{\sigma}\left(X, x_{0}, G\right)=\sigma\left(X, x_{0}, G\right) / C\left(\sigma\left(X, x_{0}, G\right)\right)
$$

Then $\theta_{\sigma}: \sigma\left(X, x_{0}, G\right) \rightarrow \bar{\sigma}\left(X, x_{0}, G\right)$ is a canonical homomorphism.
THEOREM 3.1. ([4]) If $(\varphi, \psi):(X, G) \rightarrow(X, G)$ is an endomorphism and G is an abelian, then $R(\varphi, \psi) \geq\left|\operatorname{Coker}\left(1-(\varphi, \psi)_{\bar{\sigma}}\right)\right|$, where 1 and $(\varphi, \psi)_{\bar{\sigma}}$ denote respectively the identity isomorphism and the endomorphism of $\bar{\sigma}\left(X, x_{0}, G\right)$ induced by (φ, ψ). Furthermore, if $\sigma\left(X, x_{0}, G\right)$ is abelian,

$$
R(\varphi, \psi)=\left|\operatorname{Coker}\left(1-(\varphi, \psi)_{\bar{\sigma}}\right)\right|
$$

Now, in Theorem 3.2 and Theorem 3.4, we shall present some sufficient conditions in order that $R(\varphi, \psi)$ equals the number of elements of the set $\operatorname{Coker}\left(1-(\varphi, \psi)_{\bar{\sigma}}\right)$.

Theorem 3.2. Let G be an abelian. For any $\left[\alpha ; g_{1}\right],\left[\beta ; g_{2}\right],\left[\gamma ; g_{3}\right] \in$ $\sigma\left(X, x_{0}, G\right)$, if

$$
\left[\alpha ; g_{1}\right]\left[\beta ; g_{2}\right]\left[\gamma ; g_{3}\right] \sim\left[\beta ; g_{2}\right]\left[\alpha ; g_{1}\right]\left[\gamma ; g_{3}\right]
$$

then

$$
R(\varphi, \psi)=\left|\operatorname{Coker}\left(1-(\varphi, \psi)_{\bar{\sigma}}\right)\right|
$$

Proof. Let $\eta_{\bar{\sigma}}: \bar{\sigma}\left(X, x_{0}, G\right) \rightarrow \operatorname{Coker}\left(1-(\varphi, \psi)_{\bar{\sigma}}\right)$ be the natural projection. It is sufficient to prove that the epimorphism $\eta_{\bar{\sigma}} \theta_{\sigma}$ induces a monomorphism between the set of $(\varphi, \psi)_{\sigma}$-equivalent classes $\sigma\left(X, x_{0}, G\right)^{\prime}(\varphi, \psi)_{\sigma}$ and $\operatorname{Coker}\left(1-(\varphi, \psi)_{\bar{\sigma}}\right)$, that is, if $\eta_{\bar{\sigma}} \theta_{\sigma}\left(\left[\alpha ; g_{1}\right]\right)=$ $\eta_{\bar{\sigma}} \theta_{\sigma}\left(\left[\alpha^{\prime} ; g_{1}^{\prime}\right]\right)$, then $\left[\alpha ; g_{1}\right] \sim\left[\alpha^{\prime} ; g_{1}^{\prime}\right]$.
(1) By the assumption of Theorem,

$$
\begin{aligned}
& {\left[\alpha ; g_{1}\right]\left[\beta ; g_{2}\right]\left(\left[\alpha ; g_{1}\right]^{-1}\left[\beta ; g_{2}\right]^{-1}\left[\gamma ; g_{3}\right]\right)} \\
& \sim\left[\beta ; g_{2}\right]\left[\alpha ; g_{1}\right]\left(\left[\alpha ; g_{1}\right]^{-1}\left[\beta ; g_{2}\right]^{-1}\left[\gamma ; g_{3}\right]\right) \\
& =\left[\gamma ; g_{3}\right] .
\end{aligned}
$$

(2) Since $\theta_{\sigma}\left(\left[\gamma ; g_{3}\right]\right)=\theta_{\sigma}\left(\left[\gamma^{\prime} ; g_{3}^{\prime}\right]\right)$ means $\left[\gamma^{\prime} ; g_{3}^{\prime}\right]\left[\gamma ; g_{3}\right]^{-1} \in \operatorname{ker} \theta_{\sigma}$, $\left[\gamma^{\prime} ; g_{3}^{\prime}\right]\left[\gamma ; g_{3}\right]^{-1}$ is a product of commutators. Applying (1) again, we have $\left[\gamma ; g_{3}\right] \sim\left[\gamma^{\prime} ; g_{3}^{\prime}\right]$.
(3) Suppose that $\eta_{\bar{\sigma}} \theta_{\sigma}\left(\left[\alpha ; g_{1}\right]\right)=\eta_{\bar{\sigma}} \theta_{\sigma}\left(\left[\alpha^{\prime} ; g_{1}^{\prime}\right]\right)$. From the natural projection $\eta_{\bar{\sigma}}$, there exists $\overline{[\mu ; g]} \in \bar{\sigma}\left(X, x_{0}, G\right)$ and $\left[\gamma ; g_{3}\right] \in \theta_{\sigma}^{-1}(\overline{[\mu ; g]})$ such that

$$
\begin{aligned}
\theta_{\sigma}\left(\left[\alpha^{\prime} ; g_{1}^{\prime}\right]\right)-\theta_{\sigma}\left(\left[\alpha ; g_{1}\right]\right) & =\left(1-(\varphi, \psi)_{\bar{\sigma}}\right)(\overline{(\overline{[\mu ; g]})} \\
& =\overline{[\mu ; g]}-(\varphi, \psi)_{\bar{\sigma}}(\overline{[\mu ; g]}) .
\end{aligned}
$$

Consider the following commutative diagram ;

$$
\begin{aligned}
& \text { Since }(\varphi, \psi)_{\bar{\sigma}}(\overline{[\mu ; g]})=(\varphi, \psi)_{\bar{\sigma}} \theta_{\sigma}\left(\left[\gamma ; g_{3}\right]\right)=\theta_{\sigma}(\varphi, \psi)_{\sigma}\left(\left[\gamma ; g_{3}\right]\right), \\
& \qquad \begin{aligned}
\theta_{\sigma}\left(\left[\alpha^{\prime} ; g_{1}^{\prime}\right]\right) & =\theta_{\sigma}\left(\left[\alpha ; g_{1}\right]\right)+\theta_{\sigma}\left(\left[\gamma ; g_{3}\right]\right)-\theta_{\sigma}\left((\varphi, \psi)_{\sigma}\left(\left[\gamma ; g_{3}\right]\right)\right) \\
& =\theta_{\sigma}\left(\left[\gamma ; g_{3}\right]\left[\alpha ; g_{1}\right](\varphi, \psi)_{\sigma}\left(\left[\gamma ; g_{3}\right]^{-1}\right)\right) .
\end{aligned}
\end{aligned}
$$

From (2), we obtain

$$
\begin{aligned}
{\left[\alpha^{\prime} ; g_{1}^{\prime}\right] } & \sim\left[\gamma ; g_{3}\right]\left[\alpha ; g_{1}\right](\varphi, \psi)_{\sigma}\left(\left[\gamma ; g_{3}\right]^{-1}\right) \\
& \sim\left[\alpha ; g_{1}\right] .
\end{aligned}
$$

Therefore the proof of this theorem is complete.
Let $(\varphi, \psi)_{\sigma}^{k}$ denote the k-th iterations of $(\varphi, \psi)_{\sigma}$.
Definition 3.3. Let G be an abelian. An endomorphism (φ, ψ) : $(X, G) \rightarrow(X, G)$ will be said to be eventually commutative if there exists a natural number k such that

$$
(\varphi, \psi)_{\sigma}^{k}\left(\left[\alpha ; g_{1}\right]\left[\beta ; g_{2}\right]\right)=(\varphi, \psi)_{\sigma}^{k}\left(\left[\beta ; g_{2}\right]\left[\alpha ; g_{1}\right]\right)
$$

for each $\left[\alpha ; g_{1}\right],\left[\beta ; g_{2}\right] \in \sigma\left(X, x_{0}, G\right)$.
This means that $(\varphi, \psi)_{\sigma}^{k}\left(\sigma\left(X, x_{0}, G\right)\right)$ is a commutative subgroup of $\sigma\left(X, x_{0}, G\right)$.

Theorem 3.4. Let G be an abelian. If $(\varphi, \psi):(X, G) \rightarrow(X, G)$ is eventually commutative, then $R(\varphi, \psi)=\left|\operatorname{Coker}\left(1-(\varphi, \psi)_{\bar{\sigma}}\right)\right|$.

Proof. We want to show that the condition of Theorem 3.2 holds. By the assumption, there exists a natural number k such that

$$
(\varphi, \psi)_{\sigma}^{k}\left(\left[\alpha ; g_{1}\right]\left[\beta ; g_{2}\right]\right)=(\varphi, \psi)_{\sigma}^{k}\left(\left[\beta ; g_{2}\right]\left[\alpha ; g_{1}\right]\right)
$$

From (2) of Lemma 2.3,

$$
\begin{aligned}
{\left[\alpha ; g_{1}\right]\left[\beta ; g_{2}\right]\left[\gamma ; g_{3}\right] } & \sim(\varphi, \psi)_{\sigma}^{k}\left(\left[\alpha ; g_{1}\right]\left[\beta ; g_{2}\right]\left[\gamma ; g_{3}\right]\right) \\
& =(\varphi, \psi)_{\sigma}^{k}\left(\left[\alpha ; g_{1}\right]\left[\beta ; g_{2}\right]\right)(\varphi, \psi)_{\sigma}^{k}\left(\left[\gamma ; g_{3}\right]\right) \\
& =(\varphi, \psi)_{\sigma}^{k}\left(\left[\beta ; g_{2}\right]\left[\alpha ; g_{1}\right]\right)(\varphi, \psi)_{\sigma}^{k}\left(\left[\gamma ; g_{3}\right]\right) \\
& =(\varphi, \psi)_{\sigma}^{k}\left[\left[\beta ; g_{2}\right]\left[\alpha ; g_{1}\right]\left[\gamma ; g_{3}\right]\right) \\
& \sim\left[\beta ; g_{2}\right]\left[\alpha ; g_{1}\right]\left[\gamma ; g_{3}\right] .
\end{aligned}
$$

This completes the proof.

References

1. R. F. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Company, Glenview, Illinois, 1971.
2. B. J. Jiang, Lectures on Nielsen fixed point theory, Contemporary Math., 14 Amer. Math. Soc. Providence, R. I. (1983), 1-99.
3. T. H. Kiang, The theory of fixed point classes, Science Press, Beijing, 1979 (Chinese); English edition, Springer-Verlag, Berlin, New York, 1989.
4. K. S. Park, Generalized Reidemeister number on a transformation group, Kangweon Kyungki Math. Jour. 5 (1997), 49-54.
5. F. Rhodes, On the fundamental group of a transformation group, Proc. London Math. Soc. 16 (1966), 635-650.

Department of Mathematics Education
Kon-Kuk University
Seoul 133-701, Korea
Department of Liberal Arts
DaeYeu Technical College
Sungnam 461-714, Korea
Department of Mathematics
Kangnam University
Yongin 449-702, Korea

