Kangweon-Kyungki Math. Jour. 5 (1997), No. 2, pp. 185–193

COMPLEX BORDISM OF CLASSIFYING SPACES OF THE DIHEDRAL GROUP

JUN SIM CHA AND TAI KEUN KWAK

ABSTRACT. In this paper, we study the BP_* -module structure of $BP_*(BG) \mod (p, v_1, \cdots)^2$ for non abelian groups of the order p^3 . We know $grBP_*(BG) = BP_* \otimes H(H_*(BG); Q_1) \oplus BP^*/(p, v_1) \otimes ImQ_1$. The similar fact occurs for BP_* -homology $grBP_*(BG) = BP_*s^{-1}H(H_*(BG); Q_1) \oplus BP_*/(p, v)s^{-1}H^{odd}(BG)$ by using the spectral sequence $E_2^{*,*} = Ext_{BP^*}(BP_*(BG), BP^*) \Rightarrow BP^*(BG)$.

0. Introduction

Let G be a finite group. By G-U-manifold we mean a weakly complex manifold with a free G-action preserving its weakly complex structure. The group of bordism classes of closed G-U-manifolds is isomorphic to the complex bordism group $M_*(BG)$ of the classifying spaces BG. If S is a Sylow p-subgroup of G, the inclusion map induces a splitting epimorphism $MU_*(BS) \Rightarrow MU_*(BG)$. Hence we need know first for p-group G. Moreover Quillen isomorphism $MU_*(-)_{(p)} \cong$ $MU_{*(p)} \otimes_{BP_*} BP_*(-)$ shows that we need to know only $BP_*(BG)$. When G is a cyclic or quaternion group, giving dimensional filtration the graded group $grBP_*(BG) = BP_* \otimes H_*(BG)$ since $H_{even}(BG) = 0$ [M]. By Johnson-Wilson [3], $grBP_*(BG)$ is given for an elementary abelian p-groups using arguments to generalize Kunneth formula. In this paper we determine BP_* -module structure of $grBP_*(BG)$ mod $(p, v_1, \cdots)^2$ for non abelian groups of the order p^3 . For p = 2, the new

Received June 27, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 55N15.

Key words and phrases: Dihedral group, Complex Bordism and Cobordism, Atiyah-Hirzebruch spectral sequence, Cartan-Serre spectral sequence, Kudo's transgression theorem, Milnor-Primitive operation.

The first author was partially supported by Kyung Hee University while the second author was partially supported by Dae Jin University

group is the dihedral group D_4 . The bordism group $grBP_*(BD_{2q})$, $q :\neq 2$, was studied by Kamata-Minami [5]. Recall the Milnor primitive operation $Q_0 = \beta$, $Q = p^1\beta - \beta p^1 (= S_q^2 S_q^1 - S_q^1 S_q^2$ for p = 2). For the above group, we can extend the operation Q_1 on $H_*(BG)$ so that $Q_1|H^{even}(BG) = 0$. By Tezuka-Tagita [7], we know $grBP_*(BG) =$ $BP^* \otimes H(H_*(BG); Q_1) \oplus BP^*/(p, v_1) \otimes ImQ_1$ since $d_{2p-1} = v_1 \otimes Q_1$ is the only non zero differential in the Atiyah-Hirzebruch spectral sequence. The similar fact occurs for BP_* -homology $grBP_*(BG) =$ $BP_*s^{-1} \otimes H(H^*(BG); Q_1) \oplus BP_*/(p, v_1)s^{-1}H^{odd}(BG)$ where s^{-1} is the descending degree one map, by using the spectral sequence $E_2^{*,*} =$ $Ext_{BP^*}(BP_*(BG), BP^*) \Rightarrow BP^*(BG)$. In particular, generators and relations are given explicitly for $BP_*(BD)$ in the last section.

1. Bordism and cobordism

Assume always that G is a p-group. Let us write by H^* (resp. $H\mathbb{Z}/p^*$, H^{even} , H^{odd}) the cohomology $H^*(BG)$ (resp. $H^*(BG;\mathbb{Z}/p)$, $H^{even}(BG)$, $H^{odd}(BG)$). In this section we consider only groups which satisfy the following assumption.

ASSUMPTION 1.1. $pH\mathbb{Z}/P^{odd} = 0$ hence $H^{odd} \subset H\mathbb{Z}/P^{odd}$, moreover Q_1/H^{odd} is injective.

Since $Q_1|H^{odd}$ is injective, we can define $Q_1|H^{even} = 0$.

LEMMA 1.2. $grBP^*(BG) \cong BP^* \otimes H(H^*;Q_1) + BP^*/(p,v_1) \otimes ImQ_1.$

Proof. Consider Atiyah-Hirzebruch spectral sequence

$$E_2^{*,*} = H^*(BG; BP^*) = BP^* \otimes H \Longrightarrow BP^*(BG).$$

The first nonzero differential is $d_{2p-1} = v_1 \otimes Q_1$, hence we get that E_{2p} is isomorphic the righthandside of the module in the lemma. Since $KerQ_1 = ImQ_1 + H(H^*; Q_1)$ is even dimensionally generated, and so is $E_{2p}^{*,*}$. Therefore $E_{2p} \cong E_{\infty}$.

Given $\mathbb{Z}_{(p)}$ -module A, let us write by FA the $\mathbb{Z}_{(p)}$ -free module generated by $\mathbb{Z}_{(p)}$ -module generators of A. Let F(x) be a generator which corresponds x in A.

187

THEOREM 1.3. There is a BP^* -module isomorphism

$$BP^*(BG) \cong BP^* \otimes (FH(H^*;Q_1) + FImQ_1)/R$$

where R is generated, modulo $(p, v_1, \dots)^2$, $\sum_{n=0} v_n F(Q_n Q_i^{-1}(x)) = 0$ for i = 0, 1, and $x \in KerQ_1$.

Proof. If $\overline{x_1} \in ImQ_1$, then there is a relation $v_1x_1 + v_2x_2 + \cdots = 0$ form Lemma 1.2, for $\rho(x_1) = \overline{x_1}$ where $\rho : BP \to HZ_{(p)}$ is the Thom map. From Lemma 2.1 there is $y \in HZ/p^*$ such that $Q_n(y) = \rho(X_n)$, and $y = Q_1^{-1}x_1$. Since $BP^*(BG) \otimes_{BP^*} \mathbb{Z}_{(p)} = H^{even}$ we have the relation in the lemma. For $x_0 \in ImQ_0$, we also have the relation by the same arguments. \Box

Now we consider the bordism theory. We also write by H_* the homology $H_*(BG)$. Since H_* is torsion module, there is an isomorphism

$$H_{*-1} \cong s^{-1}H^*, \qquad \text{for } * \ge 2.$$

where s^{-1} is the operation descending degree one. Note that if px = 0, $s^{-1}x = Q_0^{-1}x$ for $x \in H^*$.

Consider the spectral sequence

(1.4)
$$E_{*,*}^2 = H_*(BG; BP_*) \Longrightarrow BP_*(BG)$$

LEMMA 1.5. $E_{*,*}^{2p} \cong BP_*s^{-1}H(H^*;Q_1) + BP_*/(p,v_1)s^{-1}H^{odd}.$

Proof. First note $H\mathbb{Z}/P_* = Hom(H\mathbb{Z}/p^*;\mathbb{Z}/p)$. Hence we can define the dual operation Q_{1*} in $H\mathbb{Z}/p_*$. Since $Q_1Q_0 = -Q_0Q_1$. We see easily

$$Q_{1*}s^{-1}(ImQ_1) = s^{-1}H^{odd}.$$

The first non zero differential in (1.4) is $d_{2p-1} = v_1 \otimes Q_{1*}$. Hence we get the lemma. \Box

We use here arguments by Ravenel and Johnson-Wilson [3]. Recall the universal coefficient spectral sequence

(1.6)
$$E_2^{*,*} = Ext_{BP_*}(BP_*(BG), BP^*) \Longrightarrow BP^*(BG).$$

Given BP_* -filtration in $BP_*(BG)$, we can construct spectral sequence

(1.7)
$$G_2^{*,*} = Ext_{BP_*}(grBP_*(BG), BP^*) \Longrightarrow E_2^{*,*}.$$

Then it is easily seen

LEMMA 1.8 [3, LEMMA 6.5]. $Ext_{BP_*}(BP_*/(p^k), BP^*) \cong sBP^*/(p^k),$ $Ext_{BP_*}(BP_*/(p, v_1), BP^*) \cong s^{2p}BP_*/(p, v_1).$

Therefore from Lemma 1.2, Lemma 1.5 and Lemma 1.8, we get

(1.9)
$$Ext_{BP_*}((E_{*,*}^{2p} \text{ in Lemma 1.5}), BP^*) \cong grBP^*(BG).$$

If $E^{2p} \neq E_{\infty} = grBP_*(BG)$ in (1.4), there is an element in $grBP^*(BG)$ which does not correspond G_{∞} and G_2 , and this makes a contradiction to (1.6). Hence (1.6), (1.7) and E^{2p} in (1.4) all collapse.

THEOREM 1.10. There is a BP_* -module isomorphism

$$BP_*(BG) \cong BP_* \otimes Fs^{-1}(H(H^*;Q_1) + H^{odd})/R$$

where the relation R is generated, modulo $(p, v_1, \dots)^2$, by

$$\sum v_n s^{-1} Q_0 F(Q_{n*} Q_{i*}^{-1} s^{-1}(x)) = 0$$

for $i = 0, 1, x \in (H(H^*; Q_1) + H^{odd}).$

2. Q_2 -operation

We give examples 2.1 - 2.3 satisfying Assumption 1.1.

2.1. $G = \mathbb{Z}/p \times \mathbb{Z}/p$. The cohomology $H^{even} = \mathbb{Z}/p[y_1, y_2]$ and $H^{odd} = H^{even}e$ where $|y_i| = 2, |e| = 3$ and $Q_1e = y_1^p y_2 - y_1 y_2^p$.

2.2. *G* is a non abelian *p*-group of the order p^3 . Then *G* is isomorphic to one of D, Q, E, M (see Lewis [6] or [7]). The cohomology H^{even} is generated by elements $c_1, \dots, c_2, y_1, y_2$, and H^{odd} is generated as an H^{even} -module by *e* (resp. $0, d_1$ and d_2, e) for *D* (resp. Q, E, M). Then we can take ring generators such that the Q_1 -operation is given by $Q_1e = c_2y_2$ (resp. $0, Q_1d_i = c_2y_i, Q_1e = c_py_2^p$). Hence Assumption 1.1 is satisfied for these cases.

2.3. The semi-dihedral groups SD_2 . $H\mathbb{Z}/2^*$ is detected by (D, Q) (see [2]). Hence we get the assumption.

Complex Bordism of classifying spaces of the dihedral group

3. Description of $BP_*(BD)$

In this section we write down $BP_*(BD)$ more explicitly. Recall $D = \langle a, b | a^4 = b^2 = 1, [a, b] = a^2 \rangle$. The cohomology is given (1, 6, 8).

(3.1)
$$H^{even} = (\widetilde{\mathbb{Z}}/2[y_1, y_2]/(y_1^2 + y_1y_2)) \otimes \widetilde{\mathbb{Z}}/4[C_2]$$
$$H^{odd} = (\mathbb{Z}/2[y_1, y_2, c_2]/(y_1^2 + y_1y_2)e$$
$$H\mathbb{Z}/2^* = \mathbb{Z}/2[x_1, x_2, u]/(x_1^2 + x_1x_2)$$

Where $\widetilde{\mathbb{Z}}/s[x]$ means $\mathbb{Z}[x]/(sx)$ and where $x_i^2 = y_i, C = u^2$ and $e = x_2u$ in $H\mathbb{Z}/2^*$. Since $Q_0u = ux_2, Q_1e = y_2c_2$. Hence we get

(3.2)
$$H(H^*;Q_1) = (\widetilde{\mathbb{Z}}/2[y_2] \oplus \widetilde{\mathbb{Z}}/4[c_2]) \otimes \wedge (y_1).$$

From Lemma 1.5 and Theorem 1.10, we have

(3.3)
$$grBP_*(BD) = BP_*\{1\} \oplus BP_*/2s^{-1}\{y_1^i, y_2^i, y_1c_2^j\}$$

 $+ BP/4s^{-1}\{c_2^j\} \oplus BP_*/(2, v_1)s^{-1}\{y_1^is_2^je, y_2^ic_2^je\}.$

We will construct D-U-manifolds which represent elements in (3.3). Before doing this, we see how these generators in $H\mathbb{Z}_*$ are defined. Consider the extension

$$(3.4) \qquad \qquad 0 \to < a >= \mathbb{Z}/4 \to D \to < b >= \mathbb{Z}/2 \to 0$$

and induced spectral sequence (see Lewis p.510 [6]). The action b^* on $H^*(B\mathbb{Z}/4) \cong \widetilde{\mathbb{Z}}/4[u]$ is given by $b^*u = 3u = -u$. Let us write $T = (1 - b^*)$ and $N = (1 + b^*)$. Then

$$E_{0,*}^{2} = H_{*}/ImT = \begin{cases} \mathbb{Z}/4\{s^{-1}u^{i}\} & \text{if } i|2\\ \mathbb{Z}/2\{s^{-1}u^{i}\} & \text{otherwise} \end{cases}$$

(3.5)

$$E_{2j+1,*}^{2} = KerT/ImN = \begin{cases} \mathbb{Z}/2\{s^{-1}u^{i}\} & \text{if } i|2\\ \mathbb{Z}/2\{s^{-1}2u^{i}\} & \text{otherwise} \end{cases}$$
$$E_{2j+2,*}^{2} = KerN/ImT = \begin{cases} \mathbb{Z}/2\{s^{-1}2u^{i}\} & \text{if } i|2\\ \mathbb{Z}/2\{s^{-1}u^{i}\} & \text{otherwise} \end{cases}$$

By the universal coefficient theorem and (3.1) this spectral sequence collapses (confer Lewis p.510).

The elements $s^{-1}u$, $s^{-1}u^2 \in E_{0,*}^2$ corresponds s^1y_1 , $s^{-1}c_2$, the element $s^{-1}2u \in E_{1,1}^2$ corresponds $s^{-1}e$, and $s^{-1}u \in E_{2j,2}^2$ corresponds $s^{-1}(y_1y_2^j)$. Moreover $1 \in E_{2j-1,0}^2$ corresponds $s^{-1}y_2^j$.

We define a D-U-manifold

(3.7)
$$X(j,i) = (S^{2j-1} \times D / \langle a \rangle) \times_{\langle b \rangle} S^{2i-1}$$

where D acts on $S^{2j-1} \times D / \langle a \rangle$ by

$$\begin{cases} a(z,0) = (iz,0) \\ a(z,1) = (-iz,1) \end{cases} \begin{cases} b(z,0) = (z,1) \\ b(z,1) = (z,0) \end{cases}$$

identifying $(z, n) \in S^{2j-1} \times \mathbb{Z}/2 \subset C^j \times \mathbb{Z}/2$, and where b acts on S^{2i-1} by b(z) = (-z) in C^i . Then we get the map

(3.8)
$$\xi: X(j,i)/D \longrightarrow BD.$$

The fibering

$$S^{2j-1}/ < a > \longrightarrow X(j,i)/D \longrightarrow S^{2i-1}/ < b >$$

induces the spectral sequence

$$(3.9) H_*(S^{2i-1}/ < b >; H_*(S^{2j-1}/ < a >)) \Longrightarrow H_*(X(j,i)/D).$$

The map ξ in (4.8) induces the map of spectral sequences (3.9) to (3.5). Then the fundamental class of X(j,i) is represented in E_{∞} in (3.9) by the nonzero element of right up side. Hence we know that $X(2j,0) = s^{-1}c^{j}$, $X(2j-1,0) = s^{-1}y_{1}c_{2}^{j-1}$, $X(0,i) = s^{-1}y_{2}^{i}$, and for ij > 0, $X(2j,i) = s^{-1}ec_{2}^{j-1}y_{1}y_{2}^{i-1} = s^{-1}ec_{2}^{j-1}y_{1}^{i}$, $X(2j-1,i) = s^{-1}ec_{2}^{j-1}y_{2}^{i-1}$.

The only element which is not expressed by X(j,i) is $s^{-1}y_1^j$ for $j \ge 2$. Note that there is a homomorphism λ in D such that $\lambda : b \leftrightarrow ab$, $\lambda : a \leftrightarrow a^3$. Then $s^{-1}y_2 = s^{-1}y_2 + s^{-1}y_1$. Take $X'(0,i) = M/\langle ab \rangle \times S^{2i-1}$ and this manifold represents $s^{-1}y_1^i + s^{-1}y_2^i$.

Next consider relations $\sum v_n Q_{n*} Q_{k*}^{-1}(x) = 0$. First consider the case x = X(0, i). Since $s^{-1}y_2 = Q_{0*}y_2$, we see $Q_{0*}^{-1}s^{-1}y_2^i = y_2^i$. The Q_{n*} -operation acts

$$Q_{n*}y_2^i = \sum \langle y_2^i, Q_n x_2 y_2^k \rangle x_2 y_2^k, \quad \text{where recall} \quad x_2 = y_2$$
$$= \sum \langle y_2^i, y_2^{p^n + k} \rangle x_2 y_2^k = x_2 y_2^{1 - p^n}.$$

Therefore we have

(3.10)
$$\sum v_n X(0, i - p^n + 1) = 0,$$
 $\sum v_n X'(0, i - p^n + 1) = 0$

This relation is well known and also given by the relation in $BP_*(BZ/2)$ and [2] the product of the formal group law in BP_* -theory (for example, see [4], [5]).

When x = X(2j, 0), the fact $Q_{0*}^{-1}s^{-1}(c_2^j) = 0$ induces only trivial relation. As for x = X(2j-1, 0), the formula

$$Q_{n*}c_2^j y_1 = \sum \langle c_2^j y_1, Q_n c_2^k x_1 \rangle c_2^k x_1 = 0 \quad \text{for} \quad n \ge 1$$

follows the relation

$$(3.11) 2X(2j-1,0) = 0.$$

At last we consider the case ij > 0. Since $s^{-1}y_2^i c_2^j e = c_2^j y_2^i u$ (see (3.1)), we get

$$(3.12) Q_{n*}c_2^j y_2^i e = \sum \langle c_2^j y_2^i e, Q_n c_2^k y_2^l u \rangle c_2^k y_2^l u$$
$$= \sum \langle c_2^j y_2^i e, c_2^k y_2^l Q_n u \rangle c_2^k y_2^l u$$
$$= \sum \langle c_2^{j-k} y_2^{i-l} e, Q_n u \rangle c_2^k y_2^l u.$$

LEMMA 3.13. There are polynomials $F_n(u, y_2)$ such that $Q_n u = f_n(u, y_2)ux_2$ and $f_{n+1} = uf_n^2 + y_2f_n^2 + (\partial f_n/\partial u)^2y_2u^2$.

Proof. At first recall
$$Q_0 u = ux_2$$
. Q_1 -action is
 $Q_1 u = Sq^2 Q_0 u + Q_0 Sq^2 u = Sq^2(ux_2) = u^2 x_2 + ux_2^3 = ux(u + x_2^2)$

By the induction on $n \ge 1$, we see

$$Q_{n+1}u = (Sq^{2^{n+1}}Q_n + Q_nSq^{2^{n+1}})u$$

= $Sq^{2^{n+1}}Q_nu = Sq^{2^{n+1}}(xuf)$, where $|xuf| = 2^{n+1} + 1$,
= $xu^2f^2 + x^3uf^2 + x^2u^2Sq^{|f|-1}f$.

If $f_n = \sum \lambda_i u^i y_2^j$, then

$$Sq^{|f|-1}f_n = \sum \lambda_i i(ux_2)u^{2(i-1)}y_2^{2j} = ux_2(\partial f_n/\partial u).$$

Therefore $Q_{n+1}u = ux_2(uf_n^2 + x_2^2f_n^2 + x_2^2u^2(\partial f/\partial u)^2).$

Let us write $f_n = \sum f_{n,i} u^i y^j$. Then we get

$$Q_{n*}c_2^j y_2^i e = \sum_{k=1}^{\infty} \langle c_2^k y_2^\ell e, \sum_{k=1}^{\infty} f_{n,t} u^t y_2^{2^n - 1 - t} e \rangle c_2^{j-k} y_2^{i-1} u$$
$$= \sum_{k=1}^{\infty} f_{n,2t} c_2^{j-t} y_2^{i-(2^n - 1 - 2t)} u.$$

Hence we have the relation

(3.14)
$$\sum_{n} v_n \left(\sum_{t} f_{n,2t} X(j-t, i+2t+1-2^n) \right) = 0.$$

Next consider the relation such that $v_1X(j,i) + \cdots = 0$. If $Q_{1*}w = c_2^j y_2^i u$, then

$$\begin{aligned} c_2^j y_2^i u &= \sum < w, Q_1 c_2^k y_2^\ell u > c_2^k y_2^\ell u \\ &= \sum < w, c_2^k y_2^\ell e(u+y_2) > c_2^k y_2^\ell u \end{aligned}$$

shows $w = c_2^j y_2^{i+1} e$ or $w = c_2^j y_2^i e u$. Since $Q_{0*} c_2^j y_2^{i+1} e = c_2^j y_2^{i+1} u$, the case $w = c_2^j y_2^{i+1} e$ gives a relation such that $2x(j, i+1) + \cdots = 0$, which is contained in (3.14). Hence we need only the case $w = c_2^j y_2^i e u$,

$$Q_{n*}w = \sum_{k=0}^{\infty} \langle c_2^j y_2^i eu, Q_n c_2^k y_2^\ell u \rangle \langle c_2^k y_2^\ell u \rangle$$

=
$$\sum_{k=0}^{\infty} \langle c_2^j y_2^i eu, f_{n,t} u^t y_2^{2^n - 1 - t} e \rangle \langle c_2^{j - k} y_2^{i - 1} u \rangle$$

=
$$f_{n,2t+1} c_2^{j-t} y_2^{i - (2^n - 1 - 2t - 1)} u.$$

Complex Bordism of classifying spaces of the dihedral group

Therefore we get

(3.15)
$$\sum_{n} v_n \left(\sum_{t} f_{n,2t+1} X(j-t, i-2^n+2t+2) \right) = 0.$$

THEOREM 3.10. There is a BP_* -module isomorphism

$$BP_*(BD) = BP_*\{ X(j,i), X'(0,i') \mid j, i \ge 0, i \ge 2 \}/R$$

where $R = ((3.10), (3.11), (3.14), (3.15)) \mod (2, v_1, \cdots)^2$.

References

- L. Evens, On the chern classes of representations of finite group, Trans. Amer. Math. Soc. 115 (1965), 180–193.
- 2. L. Evens and Priddy, *The cohomology of the semi-dihedral group*, Contemporary Math. **37** (1985), 61–72.
- D. Johnson and S. Wilson, The Brown-Peterson homology of elementary pgroups, Amer. J. Math. 107 (1985), 427–453.
- D. Johnson and S. Wilson, Projective dimension and Brown-Peterson homology, Topology 12 (1973), 327–353.
- M. Kamata and H. Minami, Bordism groups of dihedral groups, J. Math. Soc. Japan 25 (1973), 334–341.
- G. Lewis, The integral cohomology rings of groups order p³, Trans. Amer. Math. Soc. 132 (1968), 501–529.
- M. Tezuka and N. Yagita, Cohomology of finite groups and Brown-Peterson cohomology, Springer LNM 1370 (1989), 396–408.
- J. S. Cha, Margolis homology and Morava K-theory for cohomology of the Dihedral group, Kodai Math. Soc. 32 (1995), no. 3, 563-571.

Jun Sim Cha Department of Mathematics and Institute of Natural Sciences Kyung Hee University Suwon 449–701, Korea

Tai Keun Kwak Department of Mathematics Dae Jin University Pochen 487–800 Korea