COMPLEX BORDISM OF CLASSIFYING SPACES OF THE DIHEDRAL GROUP

Jun Sim Cha and Tai Keun Kwak

Abstract

In this paper, we study the $B P_{*}$-module structure of $B P_{*}(B G) \bmod \left(p, v_{1}, \cdots\right)^{2}$ for non abelian groups of the order p^{3}. We know $\operatorname{gr} B P_{*}(B G)=B P_{*} \otimes H\left(H_{*}(B G) ; Q_{1}\right) \oplus B P^{*} /\left(p, v_{1}\right) \otimes$ $\operatorname{Im} Q_{1}$. The similar fact occurs for $B P_{*}$-homology $\operatorname{gr} B P_{*}(B G)=$ $B P_{*} s^{-1} H\left(H_{*}(B G) ; Q_{1}\right) \oplus B P_{*} /(p, v) s^{-1} H^{o d d}(B G)$ by using the spectral sequence $E_{2}^{*, *}=\operatorname{Ext}_{B P^{*}}\left(B P_{*}(B G), B P^{*}\right) \Rightarrow B P^{*}(B G)$.

0. Introduction

Let G be a finite group. By G - U-manifold we mean a weakly complex manifold with a free G-action preserving its weakly complex structure. The group of bordism classes of closed G - U-manifolds is isomorphic to the complex bordism group $M_{*}(B G)$ of the classifying spaces $B G$. If S is a Sylow p-subgroup of G, the inclusion map induces a splitting epimorphism $M U_{*}(B S) \Rightarrow M U_{*}(B G)$. Hence we need know first for p-group G. Moreover Quillen isomorphism $M U_{*}(-)_{(p)} \cong$ $M U_{*(p)} \otimes_{B P_{*}} B P_{*}(-)$ shows that we need to know only $B P_{*}(B G)$. When G is a cyclic or quaternion group, giving dimensional filtration the graded group $\operatorname{gr} B P_{*}(B G)=B P_{*} \otimes H_{*}(B G)$ since $H_{\text {even }}(B G)=0$ [M]. By Johnson-Wilson [3], $\operatorname{gr} B P_{*}(B G)$ is given for an elementary abelian p-groups using arguments to generalize Kunneth formula. In this paper we determine $B P_{*}$-module structure of $\operatorname{gr} B P_{*}(B G) \bmod$ $\left(p, v_{1}, \cdots\right)^{2}$ for non abelian groups of the order p^{3}. For $p=2$, the new

[^0]group is the dihedral group D_{4}. The bordism group $\operatorname{gr} B P_{*}\left(B D_{2 q}\right)$, $q: \neq 2$, was studied by Kamata-Minami [5]. Recall the Milnor primitive operation $Q_{0}=\beta, Q=p^{1} \beta-\beta p^{1}\left(=S_{q}^{2} S_{q}^{1}-S_{q}^{1} S_{q}^{2}\right.$ for $\left.p=2\right)$. For the above group, we can extend the operation Q_{1} on $H_{*}(B G)$ so that $Q_{1} \mid H^{\text {even }}(B G)=0$. By Tezuka-Tagita [7], we know $\operatorname{gr} B P_{*}(B G)=$ $B P^{*} \otimes H\left(H_{*}(B G) ; Q_{1}\right) \oplus B P^{*} /\left(p, v_{1}\right) \otimes \operatorname{Im} Q_{1}$ since $d_{2 p-1}=v_{1} \otimes Q_{1}$ is the only non zero differential in the Atiyah-Hirzebruch spectral sequence. The similar fact occurs for $B P_{*}$-homology $\operatorname{gr} B P_{*}(B G)=$ $B P_{*} s^{-1} \otimes H\left(H^{*}(B G) ; Q_{1}\right) \oplus B P_{*} /\left(p, v_{1}\right) s^{-1} H^{\text {odd }}(B G)$ where s^{-1} is the descending degree one map, by using the spectral sequence $E_{2}^{*, *}=$ $\operatorname{Ext}_{B P^{*}}\left(B P_{*}(B G), B P^{*}\right) \Rightarrow B P^{*}(B G)$. In particular, generators and relations are given explicitly for $B P_{*}(B D)$ in the last section.

1. Bordism and cobordism

Assume always that G is a p-group. Let us write by H^{*} (resp. $\left.H \mathbb{Z} / p^{*}, H^{\text {even }}, H^{\text {odd }}\right)$ the cohomology $H^{*}(B G)\left(\right.$ resp. $H^{*}(B G ; \mathbb{Z} / p)$, $\left.H^{\text {even }}(B G), H^{\text {odd }}(B G)\right)$. In this section we consider only groups which satisfy the following assumption.

Assumption 1.1. $p H \mathbb{Z} / P^{\text {odd }}=0$ hence $H^{\text {odd }} \subset H \mathbb{Z} / P^{\text {odd }}$, moreover $Q_{1} / H^{\text {odd }}$ is injective.

Since $Q_{1} \mid H^{\text {odd }}$ is injective, we can define $Q_{1} \mid H^{\text {even }}=0$.
Lemma 1.2. $\operatorname{gr} B P^{*}(B G) \cong B P^{*} \otimes H\left(H^{*} ; Q_{1}\right)+B P^{*} /\left(p, v_{1}\right) \otimes$ $\operatorname{Im} Q_{1}$.

Proof. Consider Atiyah-Hirzebruch spectral sequence

$$
E_{2}^{*, *}=H^{*}\left(B G ; B P^{*}\right)=B P^{*} \otimes H \Longrightarrow B P^{*}(B G) .
$$

The first nonzero differential is $d_{2 p-1}=v_{1} \otimes Q_{1}$, hence we get that $E_{2 p}$ is isomorphic the righthandside of the module in the lemma. Since $\operatorname{Ker} Q_{1}=\operatorname{Im} Q_{1}+H\left(H^{*} ; Q_{1}\right)$ is even dimensionally generated, and so is $E_{2 p}^{*, *}$. Therefore $E_{2 p} \cong E_{\infty}$.

Given $\mathbb{Z}_{(p)}$-module A, let us write by $F A$ the $\mathbb{Z}_{(p)}$-free module generated by $\mathbb{Z}_{(p)}$-module generators of A. Let $F(x)$ be a generator which corresponds x in A.

Theorem 1.3. There is a $B P^{*}$-module isomorphism

$$
B P^{*}(B G) \cong B P^{*} \otimes\left(F H\left(H^{*} ; Q_{1}\right)+F \operatorname{Im} Q_{1}\right) / R
$$

where R is generated, modulo $\left(p, v_{1}, \cdots\right)^{2}, \sum_{n=0} v_{n} F\left(Q_{n} Q_{i}^{-1}(x)\right)=0$ for $i=0,1$, and $x \in \operatorname{Ker} Q_{1}$.

Proof. If $\overline{x_{1}} \in \operatorname{Im} Q_{1}$, then there is a relation $v_{1} x_{1}+v_{2} x_{2}+\cdots=0$ form Lemma 1.2, for $\rho\left(x_{1}\right)=\overline{x_{1}}$ where $\rho: B P \rightarrow H Z_{(p)}$ is the Thom map. From Lemma 2.1 there is $y \in H Z / p^{*}$ such that $Q_{n}(y)=\rho\left(X_{n}\right)$, and $y=Q_{1}^{-1} x_{1}$. Since $B P^{*}(B G) \otimes_{B P^{*}} \mathbb{Z}_{(p)}=H^{\text {even }}$ we have the relation in the lemma. For $x_{0} \in \operatorname{Im} Q_{0}$, we also have the relation by the same arguments.

Now we consider the bordism theory. We also write by H_{*} the homology $H_{*}(B G)$. Since H_{*} is torsion module, there is an isomorphism

$$
H_{*-1} \cong s^{-1} H^{*}, \quad \text { for } * \geqq 2 .
$$

where s^{-1} is the operation descending degree one. Note that if $p x=0$, $s^{-1} x=Q_{0}^{-1} x$ for $x \in H^{*}$.

Consider the spectral sequence

$$
\begin{equation*}
E_{*, *}^{2}=H_{*}\left(B G ; B P_{*}\right) \Longrightarrow B P_{*}(B G) \tag{1.4}
\end{equation*}
$$

LEmma 1.5. $E_{*, *}^{2 p} \cong B P_{*} s^{-1} H\left(H^{*} ; Q_{1}\right)+B P_{*} /\left(p, v_{1}\right) s^{-1} H^{\text {odd }}$.
Proof. First note $H \mathbb{Z} / P_{*}=\operatorname{Hom}\left(H \mathbb{Z} / p^{*} ; \mathbb{Z} / p\right)$. Hence we can define the dual operation $Q_{1 *}$ in $H \mathbb{Z} / p_{*}$. Since $Q_{1} Q_{0}=-Q_{0} Q_{1}$. We see easily

$$
Q_{1 *} s^{-1}\left(\operatorname{Im} Q_{1}\right)=s^{-1} H^{o d d} .
$$

The first non zero differential in (1.4) is $d_{2 p-1}=v_{1} \otimes Q_{1 *}$. Hence we get the lemma.

We use here arguments by Ravenel and Johnson-Wilson [3]. Recall the universal coefficient spectral sequence

$$
\begin{equation*}
E_{2}^{*, *}=\operatorname{Ext}_{B P_{*}}\left(B P_{*}(B G), B P^{*}\right) \Longrightarrow B P^{*}(B G) . \tag{1.6}
\end{equation*}
$$

Given $B P_{*}$-filtration in $B P_{*}(B G)$, we can construct spectral sequence

$$
\begin{equation*}
G_{2}^{*, *}=\operatorname{Ext}_{B P_{*}}\left(g r B P_{*}(B G), B P^{*}\right) \Longrightarrow E_{2}^{*, *} \tag{1.7}
\end{equation*}
$$

Then it is easily seen

Lemma 1.8 [3, Lemma 6.5]. $\operatorname{Ext}_{B P_{*}}\left(B P_{*} /\left(p^{k}\right), B P^{*}\right) \cong s B P^{*} /\left(p^{k}\right)$, $\operatorname{Ext}_{B P_{*}}\left(B P_{*} /\left(p, v_{1}\right), B P^{*}\right) \cong s^{2 p} B P_{*} /\left(p, v_{1}\right)$.

Therefore from Lemma 1.2, Lemma 1.5 and Lemma 1.8, we get

$$
\begin{equation*}
\operatorname{Ext}_{B P_{*}}\left(\left(E_{*, *}^{2 p} \text { in Lemma 1.5 }\right), B P^{*}\right) \cong g r B P^{*}(B G) . \tag{1.9}
\end{equation*}
$$

If $E^{2 p} \neq E_{\infty}=\operatorname{gr} B P_{*}(B G)$ in (1.4), there is an element in $g r B P^{*}(B G)$ which does not correspond G_{∞} and G_{2}, and this makes a contradiction to (1.6). Hence (1.6), (1.7) and $E^{2 p}$ in (1.4) all collapse.

Theorem 1.10. There is a $B P_{*}$-module isomorphism

$$
B P_{*}(B G) \cong B P_{*} \otimes F s^{-1}\left(H\left(H^{*} ; Q_{1}\right)+H^{o d d}\right) / R
$$

where the relation R is generated, modulo $\left(p, v_{1}, \cdots\right)^{2}$, by

$$
\sum v_{n} s^{-1} Q_{0} F\left(Q_{n *} Q_{i *}^{-1} s^{-1}(x)\right)=0
$$

for $i=0,1, x \in\left(H\left(H^{*} ; Q_{1}\right)+H^{\text {odd }}\right)$.

2. Q_{2}-operation

We give examples $2.1-2.3$ satisfying Assumption 1.1.
2.1. $G=\mathbb{Z} / p \times \mathbb{Z} / p$. The cohomology $H^{\text {even }}=\mathbb{Z} / p\left[y_{1}, y_{2}\right]$ and $H^{\text {odd }}=H^{\text {even }} e$ where $\left|y_{i}\right|=2,|e|=3$ and $Q_{1} e=y_{1}^{p} y_{2}-y_{1} y_{2}^{p}$.
2.2. G is a non abelian p-group of the order p^{3}. Then G is isomorphic to one of D, Q, E, M (see Lewis [6] or [7]). The cohomology $H^{\text {even }}$ is generated by elements $c_{1}, \cdots, c_{2}, y_{1}, y_{2}$, and $H^{\text {odd }}$ is generated as an $H^{\text {even }}$-module by $e\left(\right.$ resp. $0, d_{1}$ and $\left.d_{2}, e\right)$ for $D($ resp. $Q, E, M)$. Then we can take ring generators such that the Q_{1}-operation is given by $Q_{1} e=c_{2} y_{2}$ (resp. $0, Q_{1} d_{i}=c_{2} y_{i}, Q_{1} e=c_{p} y_{2}^{p}$). Hence Assumption 1.1 is satisfied for these cases.
2.3. The semi-dihedral groups $S D_{2} . H \mathbb{Z} / 2^{*}$ is detected by (D, Q) (see [2]). Hence we get the assumption.

3. Description of $B P_{*}(B D)$

In this section we write down $B P_{*}(B D)$ more explicitly. Recall $D=<a, b \mid a^{4}=b^{2}=1,[a, b]=a^{2}>$. The cohomology is given $(1,6$, 8).

$$
\begin{align*}
H^{\text {even }} & =\left(\widetilde{\mathbb{Z}} / 2\left[y_{1}, y_{2}\right] /\left(y_{1}^{2}+y_{1} y_{2}\right)\right) \otimes \widetilde{\mathbb{Z}} / 4\left[C_{2}\right] \tag{3.1}\\
H^{\text {odd }} & =\left(\mathbb{Z} / 2\left[y_{1}, y_{2}, c_{2}\right] /\left(y_{1}^{2}+y_{1} y_{2}\right) e\right. \\
H \mathbb{Z} / 2^{*} & =\mathbb{Z} / 2\left[x_{1}, x_{2}, u\right] /\left(x_{1}^{2}+x_{1} x_{2}\right)
\end{align*}
$$

Where $\widetilde{\mathbb{Z}} / s[x]$ means $\mathbb{Z}[x] /(s x)$ and where $x_{i}^{2}=y_{i}, C=u^{2}$ and $e=x_{2} u$ in $H \mathbb{Z} / 2^{*}$. Since $Q_{0} u=u x_{2}, Q_{1} e=y_{2} c_{2}$. Hence we get

$$
\begin{equation*}
H\left(H^{*} ; Q_{1}\right)=\left(\widetilde{\mathbb{Z}} / 2\left[y_{2}\right] \oplus \widetilde{\mathbb{Z}} / 4\left[c_{2}\right]\right) \otimes \wedge\left(y_{1}\right) \tag{3.2}
\end{equation*}
$$

From Lemma 1.5 and Theorem 1.10, we have

$$
\begin{align*}
g r B P_{*}(B D) & =B P_{*}\{1\} \oplus B P_{*} / 2 s^{-1}\left\{y_{1}^{i}, y_{2}^{i}, y_{1} c_{2}^{j}\right\} \tag{3.3}\\
& +B P / 4 s^{-1}\left\{c_{2}^{j}\right\} \oplus B P_{*} /\left(2, v_{1}\right) s^{-1}\left\{y_{1}^{i} s_{2}^{j} e, y_{2}^{i} c_{2}^{j} e\right\} .
\end{align*}
$$

We will construct D - U-manifolds which represent elements in (3.3). Before doing this, we see how these generators in $H \mathbb{Z}_{*}$ are defined. Consider the extension

$$
\begin{equation*}
0 \rightarrow<a>=\mathbb{Z} / 4 \rightarrow D \rightarrow=\mathbb{Z} / 2 \rightarrow 0 \tag{3.4}
\end{equation*}
$$

and induced spectral sequence (see Lewis p. 510 [6]). The action b^{*} on $H^{*}(B \mathbb{Z} / 4) \cong \widetilde{\mathbb{Z}} / 4[u]$ is given by $b^{*} u=3 u=-u$. Let us write $T=\left(1-b^{*}\right)$ and $N=\left(1+b^{*}\right)$. Then

$$
\begin{gather*}
E_{0, *}^{2}=H_{*} / \operatorname{Im} T= \begin{cases}\mathbb{Z} / 4\left\{s^{-1} u^{i}\right\} & \text { if } i \mid 2 \\
\mathbb{Z} / 2\left\{s^{-1} u^{i}\right\} & \text { otherwise }\end{cases} \\
E_{2 j+1, *}^{2}=\operatorname{Ker} T / \operatorname{Im} N=\left\{\begin{aligned}
\mathbb{Z} / 2\left\{s^{-1} u^{i}\right\} & \text { if } i \mid 2 \\
\mathbb{Z} / 2\left\{s^{-1} 2 u^{i}\right\} & \text { otherwise }
\end{aligned}\right. \tag{3.5}\\
E_{2 j+2, *}^{2}=\operatorname{Ker} N / \operatorname{Im} T=\left\{\begin{aligned}
\mathbb{Z} / 2\left\{s^{-1} 2 u^{i}\right\} & \text { if } i \mid 2 \\
\mathbb{Z} / 2\left\{s^{-1} u^{i}\right\} & \text { otherwise }
\end{aligned}\right.
\end{gather*}
$$

By the universal coefficient theorem and (3.1) this spectral sequence collapses (confer Lewis p.510).

The elements $s^{-1} u, s^{-1} u^{2} \in E_{0, *}^{2}$ corresponds $s^{1} y_{1}, s^{-1} c_{2}$, the element $s^{-1} 2 u \in E_{1,1}^{2}$ corresponds $s^{-1} e$, and $s^{-1} u \in E_{2 j, 2}^{2}$ corresponds $s^{-1}\left(y_{1} y_{2}^{j}\right)$. Moreover $1 \in E_{2 j-1,0}^{2}$ corresponds $s^{-1} y_{2}^{j}$.

We define a D - U-manifold

$$
\begin{equation*}
X(j, i)=\left(S^{2 j-1} \times D /<a>\right) \timesS^{2 i-1} \tag{3.7}
\end{equation*}
$$

where D acts on $S^{2 j-1} \times D /<a>$ by

$$
\left\{\begin{array} { l }
{ a (z , 0) = (i z , 0) } \\
{ a (z , 1) = (- i z , 1) }
\end{array} \quad \left\{\begin{array}{l}
b(z, 0)=(z, 1) \\
b(z, 1)=(z, 0)
\end{array}\right.\right.
$$

identifying $(z, n) \in S^{2 j-1} \times \mathbb{Z} / 2 \subset C^{j} \times \mathbb{Z} / 2$, and where b acts on $S^{2 i-1}$ by $b(z)=(-z)$ in C^{i}. Then we get the map

$$
\begin{equation*}
\xi: X(j, i) / D \longrightarrow B D \tag{3.8}
\end{equation*}
$$

The fibering

$$
S^{2 j-1} /<a>\longrightarrow X(j, i) / D \longrightarrow S^{2 i-1} /
$$

induces the spectral sequence

$$
\begin{equation*}
H_{*}\left(S^{2 i-1} /; H_{*}\left(S^{2 j-1} /<a>\right)\right) \Longrightarrow H_{*}(X(j, i) / D) \tag{3.9}
\end{equation*}
$$

The map ξ in (4.8) induces the map of spectral sequences (3.9) to (3.5). Then the fundamental class of $X(j, i)$ is represented in E_{∞} in (3.9) by the nonzero element of right up side. Hence we know that $X(2 j, 0)=$ $s^{-1} c^{j}, X(2 j-1,0)=s^{-1} y_{1} c_{2}^{j-1}, X(0, i)=s^{-1} y_{2}^{i}$, and for $i j>0$, $X(2 j, i)=s^{-1} e c_{2}^{j-1} y_{1} y_{2}^{i-1}=s^{-1} e c_{2}^{j-1} y_{1}^{i}, X(2 j-1, i)=s^{-1} e c_{2}^{j-1} y_{2}^{i-1}$.

The only element which is not expressed by $X(j, i)$ is $s^{-1} y_{1}^{j}$ for $j \geqq 2$. Note that there is a homomorphism λ in D such that $\lambda: b \leftrightarrow a b$, $\lambda: a \leftrightarrow a^{3}$. Then $s^{-1} y_{2}=s^{-1} y_{2}+s^{-1} y_{1}$. Take $\left.X^{\prime}(0, i)=M /<a b\right\rangle$ $\times S^{2 i-1}$ and this manifold represents $s^{-1} y_{1}^{i}+s^{-1} y_{2}^{i}$.

Next consider relations $\sum v_{n} Q_{n *} Q_{k *}^{-1}(x)=0$. First consider the case $x=X(0, i)$. Since $s^{-1} y_{2}=Q_{0 *} y_{2}$, we see $Q_{0 *}^{-1} s^{-1} y_{2}^{i}=y_{2}^{i}$. The $Q_{n *}$-operation acts

$$
\begin{aligned}
Q_{n *} y_{2}^{i} & =\sum<y_{2}^{i}, Q_{n} x_{2} y_{2}^{k}>x_{2} y_{2}^{k}, \quad \text { where recall } \quad x_{2}=y_{2} \\
& =\sum<y_{2}^{i}, y_{2}^{p^{n}+k}>x_{2} y_{2}^{k}=x_{2} y_{2}^{1-p^{n}} .
\end{aligned}
$$

Therefore we have

$$
\begin{equation*}
\sum v_{n} X\left(0, i-p^{n}+1\right)=0, \quad \sum v_{n} X^{\prime}\left(0, i-p^{n}+1\right)=0 \tag{3.10}
\end{equation*}
$$

This relation is well known and also given by the relation in $B P_{*}(B Z / 2)$ and [2] the product of the formal group law in $B P_{*}$-theory (for example, see [4], [5]).

When $x=X(2 j, 0)$, the fact $Q_{0 *}^{-1} s^{-1}\left(c_{2}^{j}\right)=0$ induces only trivial relation. As for $x=X(2 j-1,0)$, the formula

$$
Q_{n *} c_{2}^{j} y_{1}=\sum<c_{2}^{j} y_{1}, Q_{n} c_{2}^{k} x_{1}>c_{2}^{k} x_{1}=0 \quad \text { for } \quad n \geqq 1
$$

follows the relation

$$
\begin{equation*}
2 X(2 j-1,0)=0 . \tag{3.11}
\end{equation*}
$$

At last we consider the case $i j>0$. Since $s^{-1} y_{2}^{i} c_{2}^{j} e=c_{2}^{j} y_{2}^{i} u$ (see (3.1)), we get

$$
\begin{align*}
Q_{n *} c_{2}^{j} y_{2}^{i} e & =\sum<c_{2}^{j} y_{2}^{i} e, Q_{n} c_{2}^{k} y_{2}^{l} u>c_{2}^{k} y_{2}^{l} u \tag{3.12}\\
& =\sum<c_{2}^{j} y_{2}^{i} e, c_{2}^{k} y_{2}^{l} Q_{n} u>c_{2}^{k} y_{2}^{l} u \\
& =\sum<c_{2}^{j-k} y_{2}^{i-l} e, Q_{n} u>c_{2}^{k} y_{2}^{l} u
\end{align*}
$$

Lemma 3.13. There are polynomials $F_{n}\left(u, y_{2}\right)$ such that $Q_{n} u=$ $f_{n}\left(u, y_{2}\right) u x_{2}$ and $f_{n+1}=u f_{n}^{2}+y_{2} f_{n}^{2}+\left(\partial f_{n} / \partial u\right)^{2} y_{2} u^{2}$.

Proof. At first recall $Q_{0} u=u x_{2}$. Q_{1}-action is

$$
Q_{1} u=S q^{2} Q_{0} u+Q_{0} S q^{2} u=S q^{2}\left(u x_{2}\right)=u^{2} x_{2}+u x_{2}^{3}=u x\left(u+x_{2}^{2}\right)
$$

By the induction on $n \geqq 1$, we see

$$
\begin{aligned}
Q_{n+1} u & =\left(S q^{2^{n+1}} Q_{n}+Q_{n} S q^{2^{n+1}}\right) u \\
& =S q^{2^{n+1}} Q_{n} u=S q^{2^{n+1}}(x u f), \quad \text { where } \quad|x u f|=2^{n+1}+1, \\
& =x u^{2} f^{2}+x^{3} u f^{2}+x^{2} u^{2} S q^{|f|-1} f .
\end{aligned}
$$

If $f_{n}=\sum \lambda_{i} u^{i} y_{2}^{j}$, then

$$
S q^{|f|-1} f_{n}=\sum \lambda_{i} i\left(u x_{2}\right) u^{2(i-1)} y_{2}^{2 j}=u x_{2}\left(\partial f_{n} / \partial u\right)
$$

Therefore $Q_{n+1} u=u x_{2}\left(u f_{n}^{2}+x_{2}^{2} f_{n}^{2}+x_{2}^{2} u^{2}(\partial f / \partial u)^{2}\right)$.
Let us write $f_{n}=\sum f_{n, i} u^{i} y^{j}$. Then we get

$$
\begin{aligned}
Q_{n *} c_{2}^{j} y_{2}^{i} e & =\sum<c_{2}^{k} y_{2}^{\ell} e, \sum f_{n, t} u^{t} y_{2}^{2^{n}-1-t} e>c_{2}^{j-k} y_{2}^{i-1} u \\
& =\sum f_{n, 2 t} c_{2}^{j-t} y_{2}^{i-\left(2^{n}-1-2 t\right)} u
\end{aligned}
$$

Hence we have the relation

$$
\begin{equation*}
\sum_{n} v_{n}\left(\sum_{t} f_{n, 2 t} X\left(j-t, i+2 t+1-2^{n}\right)\right)=0 . \tag{3.14}
\end{equation*}
$$

Next consider the relation such that $v_{1} X(j, i)+\cdots=0$. If $Q_{1 *} w=$ $c_{2}^{j} y_{2}^{i} u$, then

$$
\begin{aligned}
c_{2}^{j} y_{2}^{i} u & =\sum<w, Q_{1} c_{2}^{k} y_{2}^{\ell} u>c_{2}^{k} y_{2}^{\ell} u \\
& =\sum<w, c_{2}^{k} y_{2}^{\ell} e\left(u+y_{2}\right)>c_{2}^{k} y_{2}^{\ell} u
\end{aligned}
$$

shows $w=c_{2}^{j} y_{2}^{i+1} e$ or $w=c_{2}^{j} y_{2}^{i} e u$. Since $Q_{0 *} c_{2}^{j} y_{2}^{i+1} e=c_{2}^{j} y_{2}^{i+1} u$, the case $w=c_{2}^{j} y_{2}^{i+1} e$ gives a relation such that $2 x(j, i+1)+\cdots=0$, which is contained in (3.14). Hence we need only the case $w=c_{2}^{j} y_{2}^{i} e u$,

$$
\begin{aligned}
Q_{n *} w & =\sum<c_{2}^{j} y_{2}^{i} e u, Q_{n} c_{2}^{k} y_{2}^{\ell} u>c_{2}^{k} y_{2}^{\ell} u \\
& =\sum<c_{2}^{j} y_{2}^{i} e u, f_{n, t} u^{t} y_{2}^{2^{n}-1-t} e>c_{2}^{j-k} y_{2}^{i-1} u \\
& =f_{n, 2 t+1} c_{2}^{j-t} y_{2}^{i-\left(2^{n}-1-2 t-1\right)} u .
\end{aligned}
$$

Therefore we get

$$
\begin{equation*}
\sum_{n} v_{n}\left(\sum_{t} f_{n, 2 t+1} X\left(j-t, i-2^{n}+2 t+2\right)\right)=0 . \tag{3.15}
\end{equation*}
$$

Theorem 3.10. There is a $B P_{*}$-module isomorphism

$$
B P_{*}(B D)=B P_{*}\left\{X(j, i), X^{\prime}\left(0, i^{\prime}\right) \mid j, i \geqq 0, i \geqq 2\right\} / R
$$

where $R=((3.10),(3.11),(3.14),(3.15)) \bmod \left(2, v_{1}, \cdots\right)^{2}$.

References

1. L. Evens, On the chern classes of representations of finite group, Trans. Amer. Math. Soc. 115 (1965), 180-193.
2. L. Evens and Priddy, The cohomology of the semi-dihedral group, Contemporary Math. 37 (1985), 61-72.
3. D. Johnson and S. Wilson, The Brown-Peterson homology of elementary pgroups, Amer. J. Math. 107 (1985), 427-453.
4. D. Johnson and S. Wilson, Projective dimension and Brown-Peterson homology, Topology 12 (1973), 327-353.
5. M. Kamata and H. Minami, Bordism groups of dihedral groups, J. Math. Soc. Japan 25 (1973), 334-341.
6. G. Lewis, The integral cohomology rings of groups order p^{3}, Trans. Amer. Math. Soc. 132 (1968), 501-529.
7. M. Tezuka and N. Yagita, Cohomology of finite groups and Brown-Peterson cohomology, Springer LNM 1370 (1989), 396-408.
8. J. S. Cha, Margolis homology and Morava K-theory for cohomology of the Dihedral group, Kodai Math. Soc. 32 (1995), no. 3, 563-571.

Jun Sim Cha
Department of Mathematics
and Institute of Natural Sciences
Kyung Hee University
Suwon 449-701, Korea
Tai Keun Kwak
Department of Mathematics
Dae Jin University
Pochen 487-800 Korea

[^0]: Received June 27, 1997.
 1991 Mathematics Subject Classification: 55N15.
 Key words and phrases: Dihedral group, Complex Bordism and Cobordism, Atiyah-Hirzebruch spectral sequence, Cartan-Serre spectral sequence, Kudo's transgression theorem, Milnor-Primitive operation.

 The first author was partially supported by Kyung Hee University while the second author was partially supported by Dae Jin University

