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PETTIS INTEGRABILITY

Hui Lim

Abstract. In this paper, we have some characterizations of Pettis

integrability of bounded weakly measurable function f : Ω −→ X∗

determined by separable subspace of X∗.

1. Introduction

The theory of integration of functions with values in a Banach space
has long been a fruitful area of study. Since the invention of the Pettis
integral over forty years ago, the problem of recognizing the Pettis
integrability of a function has been much studied.

In this paper we are going to study Pettis integrability of bounded
weakly measurable function f : Ω −→ X∗ determined by separable
subspace of X∗.

We will show that if f : Ω −→ X∗ is a bounded weakly measur-
able function determined by a separable subspace of X∗ that has the
WRNP, then {f(·)x : ‖x‖ ≤ 1} is weakly precompact in L∞(µ).

2. Notation and Preliminaries

Let (Ω,Σ, µ) be a finite measure space and X be a Banach space
with dual X∗. If f : Ω → X∗ is bounded weakly measurable, then it
can easily be shown that for every E ∈ Σ, there exists xE

∗ ∈ X∗ such
that for every x ∈ X,

xE
∗(x) =

∫
E

x̂ · fdµ
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and for every E ∈ Σ, there exists xE
∗∗∗ ∈ X∗∗∗ such that for every

x∗∗ ∈ X∗∗,

xE
∗∗∗(x∗∗) =

∫
E

x∗∗ · fdµ.

The element xE
∗ is called the weak∗ integral of f over E, denoted

by w∗ −
∫

E
fdµ, and xE

∗∗∗ is called the Dunford integral of f over E,
denoted by D −

∫
E

fdµ.
In the case that D −

∫
E

fdµ ∈ X∗ for each E ∈ Σ, then f is called
Pettis integrable and we write P −

∫
E

fdµ instead of D −
∫

E
fdµ to

denote the Pettis integral of f over E.
A subset K of X is called a weak Radon-Nikodym set if for every

finite measure space (Ω,Σ, µ) and every bounded linear operator S :
L1(µ) −→ X for which S(χE/µ(E)) belongs to K for each E ∈ Σ
with µ(E) 6= 0, the operator S is represented by a Pettis integrable
function with values in K. A Banach space X is said to have the weak
Radon-Nikodym property(WRNP) if its closed unit ball, BX , is a weak
Radon-Nikodym set.

The following theorem proved in Riddle, Saab and Uhl[4].

Theorem 1. Each of the following statements about an operator
T : X −→ Y implies all the others:

(a) The set T (BX) is weakly precompact.
(b) The operator T factors through a Banach space that contains

no copy of l1.
(c) The set T ∗(BY ∗) is a weak Radon-Nikodym set.
(d) The adjoint operator T ∗ factors through a Banach space with

the weak Radon-Nikodym property.

If F is a finite set in Banach space X and ε > 0, let

K(F, ε) = {x∗ ∈ X∗ : ‖x∗‖ ≤ 1 and |x∗(x)| ≤ ε for every X in F}.

In [3], Huff shows that if f : Ω −→ X is a weakly measurable
function and the operator T : X∗ −→ L1(µ) defined by T (X∗) = x∗f ,
then the following statements are equivalent:

(a) f is Pettis integrable.
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(b) T is weakly compact operator and {0} = ∩{T (K(F, ε)) : F ⊂
X, F is finite and ε > 0}.

(c) T is weak∗ - to - weak continuous.

3. Main results

We define a bounded weakly measurable function f : Ω −→ X to be
determined by a subspace G of Banach space X if for each x∗ ∈ X∗,
x∗ restricted to G equals zero the x∗f equals zero almost everywhere.

Proposition 2. Let f : Ω −→ X be a bounded weakly measurable
function determined by a separable subspace of X. Then f is Pettis
integrable.

Proof. Define T : X∗ −→ L1(µ) by T (X∗) = x∗f . Then T is
weakly compact, by the boundedness of f . By corollary 4. of [3], if
h ∈ ∩(F,ε)T (K(F, ε)), then h = 0 almost everywhere. � �

Let (Ω,Σ, µ) be a measure space, let E be a measurable set and let
f : Ω −→ X∗ be a bounded function we define the w∗-core of f over
E, denoted by Corf

∗(E), to be that subset of X∗ given by

Corf
∗(E) = ∩w∗ − Co{f(E\A) : µ(A) = 0, A ∈ Σ}.

In [1] Andrews show that for each E ∈ Σ,

Corf
∗(E) = w∗ − Co{

w∗ −
∫

B
fdµ

µ(B)
: B ⊂ E,B ∈ Σ, µ(B) > 0}.

Theorem 3. Let f : Ω → X∗ be a bounded weakly measurable
function determined by a separable subspace of X∗. If Corf

∗(Ω) is
a weak Radon-Nikodym set, then f is weak∗ equivalent to a Pettis
integrable function that takes its value in Corf

∗(Ω).

Proof. By Proposition 2, f is Pettis integrable. Define a measure
ν : Σ → X∗∗ by ν(E) = w∗ −

∫
E

fdµ for all E in Σ. Then

{ν(E)
µ(E)

|E ∈ Σ, µ(E) > 0} ⊂ Corf
∗(Ω).



198 Hui Lim

Since Corf
∗(Ω) is a weak Radon-Nikodym set, the measure ν has a

Pettis integrable derivative g whose range lies in Corf
∗(Ω).

Hence, P −
∫

E
gdµ = ν(E) = P −

∫
E

fdµ. � �

Theorem 4. Let f : Ω −→ X∗ be a bounded weakly measurable
function determined by a separable subspace of X∗. If X∗ has the
WRNP, then the set {f(·)x : ‖x‖ ≤ 1} is weakly precompact in L∞(µ).

Proof. By Proposition 2, f is Pettis integrable. Define an operator
T : X −→ L∞(µ) by T (x) = f(·)x. Then the adjoint operator T ∗ is
weak∗ - to - weak∗ continuous and maps the unit ball of L∞(µ)∗ onto
a weak∗ compact convex subset of k(BX∗), which certainly is a weak
Radon-Nikodym set by Theorem 1 of [5].

Hence, by Theorem 1, the set {f(·)x : ‖x‖ ≤ 1} is weakly precom-
pact in L∞(µ). � �
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