Modification of Hepatic Microsomal Cytochrome P450 2E1 Enzyme by Garlic Powder in Rat Hepatocarcinogenesis

  • Park, Kyung-Ae (Department of Food and Nutrition, Seoul National University) ;
  • Choi, Hay-Mie (Department of Food and Nutrition, Seoul National University)
  • Received : 1996.11.25
  • Published : 1997.01.31

Abstract

This study was designed to investigate the effects of dietary garlic powder on cytochrome P450 enzymes and membrane stability in murine hepatocarcinogenesis initiated by diethylnitrosamine (DEN). Male Sprague-Dawley rats received a single intraperitoneal injection of DEN (200 mg/kg body wt) dissolved in saline. After 2 weeks on a basal diet, animals were fed diets containing 0. 0.5. 2.0. or 5.0% garlic powder for 6 weeks, and were subjected to two-thirds partial hepatectomy. The areas of placental glutathione S-transferase (GST-P) positive foci were inhibited in rats fed with garlic diets. GST-P is the most effective marker for DEN-initiated lesions. Hepatic microsomal lipid peroxidation was significantly decreased in rats fed with 2.0 and 5.0% garlic powder diets compared with that observed in the control animals and hepatic microsomal glucose 6-phosphatase (G6Pase) activity was found to increase significantly in rats fed 0.5 and 2.0% garlic powder diets. Thus as little as 0.5% garlic powder has a positive effect on the stability of hepatic microsomal membranes. p-Nitrophenol hydroxylase (PNPH) activity and the level of cytochrome P450 2E1 protein in the hepatic microsomes from rats fed diets containing 2.0 and 5.0% garlic powder were much lower than those of control microsomes. Rats fed 5.0% garlic powder diets exhibited the lowest P450 2E1 activity and protein levels among groups. Pentoxyresorufin O-dealkylase activity and immunoblot (cytochrome P450 2B1) analyses were not different between groups. However, the levels of cytochrome P450 1A1/2 protein in rats fed 0.5 and 2.0% garlic powder were significantly induced compared to controls. These results suggest that 2.0% garlic powder is effective in inhibiting the areas of GST-P positive foci, modulating certain isoforms of cytochrome P450 enzymes and stabilizing the hepatic microsomal membrane. Thus, the selective modification of cytochrome P450 enzymes and membrane stability by dietary garlic powder may influence areas of GST-P positive foci and chemoprevention of post-initiation of rat hepatocarcinogenesis.

Keywords

References

  1. Methods Enzymatic Anal. v.2 Baginski, E.S.;Foaa, P.P.;Zak, B.
  2. Toxicol. Appl. Pharmacol. v.108 Brady, J.F.;Wang, M.H.;Hong, J.Y.;Yoo, J.S.H.;Ning, S.M.;Lee, M.J.;Fukuto, J.M.;Gapac, J.M.;Yang, C.S. https://doi.org/10.1016/0041-008X(91)90123-V
  3. Methods Enzymol. v.53 Buege, J.A.;Aust, S.D.
  4. World J. Surg. v.19 Cheng, J.Y.;Meng, C.L.;Tzeng, C.C.;Lin, J.C. https://doi.org/10.1007/BF00294738
  5. Carcinogenesis v.13 Dragan, Y.P.;Pitot, H.C. https://doi.org/10.1093/carcin/13.5.739
  6. Cancer Res. v.44 Farber, E.
  7. Cancer Res. v.48 Guengerich, F.P.
  8. Xenobiotica v.24 Haber, D.;Siess, M.H.;Waziers, I.;Beaune, P.;Suschetet, M. https://doi.org/10.3109/00498259409043230
  9. Cancer Res. v.47 Hong, J.Y.;Pan, J.;Dong, Z.;Yang, C.S.
  10. Carcinogenesis v.9 Ito, N.;Tsuda, H.;Tatematsu, M.;Inoue, T.;Tagawa, Y.;Aoki, T.;Uwagawa, S.;Kagawa, M.;Ogiso, T.;Masui, T.;Imaida, K.;Fukushima, S.;Asamoto, M. https://doi.org/10.1093/carcin/9.3.387
  11. Carcinogenesis v.12 Jang, J.J.;Cho, K.J.;Lee, Y.S.;Bae, J.H. https://doi.org/10.1093/carcin/12.4.691
  12. Jpn. J. Pharmacol. v.42 Kagawa, K.;Masutack, H.;Yamaguchi, Y. https://doi.org/10.1254/jjp.42.19
  13. Mol. Pharmacol. v.40 Kim, S.G.;Reddy, J.C.S.;Novak, R.F.
  14. Korean Biochem. J (presently J. Biochem. Mol. Biol.) v.27 Kim, S.K.;Choi, H.
  15. Xenobiotica v.25 Kwak, M.K.;Kim, S.G.;Kim, N.D. https://doi.org/10.3109/00498259509061902
  16. Nature v.227 Laemmli, U.K. https://doi.org/10.1038/227680a0
  17. Carcinogenesis v.13 Liu, J.;Lin, R.I.;Milner, J.A. https://doi.org/10.1093/carcin/13.10.1847
  18. J. Biol. Chem. v.193 Lowry, O.H.;Rosebrough, N.J.;Farr, A.L.;Randall, R.T.
  19. Arch. Biochem. Biophys. v.238 Lubet, R.A.;Mayer, R.T.;Cameron, J.W.;Nims, R.W.;Burke, M.D.;Wolff, T.;Guengerich, F.P. https://doi.org/10.1016/0003-9861(85)90138-9
  20. Biochem. Pathol. v.25 Lucy, R.;Wills, E.D.
  21. Free Radicals, Lipid Peroxidation and Cancer McBrien, D.C.H.;Slater, T.F.
  22. Carcinogenesis v.11 Ogiso, T.;Tatematsu, M.;Tamano, S.;Hasegawa, R.;Ito, N. https://doi.org/10.1093/carcin/11.4.561
  23. J. Biol. Chem. v.239 Omura, T.;Sato, R.
  24. Arch. Biochem. Biophys. v.302 Pan, J.;Hong, J.Y.;Ma, B.L.;Ning, S.M.;Paranawithana, S.R.;Yang, C.S. https://doi.org/10.1006/abbi.1993.1220
  25. Nutr. Cancer v.25 Reicks, M.M.;Crankshaw, D.L. https://doi.org/10.1080/01635589609514448
  26. Drug Metab. Dispos. v.13 Reinke, A.;Moyer, M.J.
  27. Gann v.75 Sato, K.;Kitahara, A.;Satoh, K.;Ishikawa, T.;Tatematsu, M.;Ito, N.
  28. Carcinogenesis v.10 Satoh, K.;Hatayama, I.;Tateoka, N.;Tamai, K.;Shimizu, T.;Shimizu, T.;Tatemasu, M.;Ito, N.;Sato, K. https://doi.org/10.1093/carcin/10.11.2107
  29. Science v.213 Slaga, T.J.;Klein-Szanto, A.J.P.;Triplett, L.L.;Yotti, L.P.;Troko, J.E. https://doi.org/10.1126/science.6791284
  30. Cancer Res. v.50 Sumiyoshi, H.;Wargovich, M.J.
  31. Cancer. Res. v.48 Wargovich, M.J.;Woods, C.;Eng, V.W.S.;Stephens, L.C.;Gray, K.N.
  32. J. Natl. Cancer Inst. v.81 You, W.C.;Blot, W.J.;Chang, Y.S.;Ershow, A.G.;Yang, Z.T.;An, Q.;Henderson, B.;Xu, G.W.;Fraumeni, J.F.;Wang, T.G. https://doi.org/10.1093/jnci/81.2.162
  33. J. Agric. Food. Chem. v.37 Yu, T.H.;Wu, C.M.;Liou, Y.C. https://doi.org/10.1021/jf00087a032