Computed Tomography에 의한 절편영상의 추정

Estimate for Sliced Images by Computed Tomography

박미경(M. K. Park) 영상정보처리연구실 박사후연구원
이의택(E. T. Lee) 영상정보처리연구실 책임연구원, 실장

CT스캔(Computed Tomography)은 다양한 분야에서 효과적으로 응용되고 있고, 특히 의학 영상에서 비침범 진단, 수술 계획 등에 허다란 영향을 미쳤다. 이 글에서는 여러 가지 CT스캔의 종류, 그 수행적인 원리와 기본적인 평행 광선(parallel beam)을 이용한 영상의 재구축 알고리즘, 데이터의 추정과 문제점 그리고 그 개선 방향에 대해 논한다.

1. 서론

CT(computed tomography)에서 tomography는 절편(slice) 또는 단층 영상이라는 뜻이다. 그 중심 아이디어는 데이터의 평면 적분(planar integral)을 이용해 물체를 재구축(reconstruction)하는 것이다. n차원의 세계에서는, 데이터를 지나는 n-1차원의 초평면(hyper-plane)의 적분으로 물체를 재 구축한다. 2차원에서의 초평면상의 적분은 선적분(line integral)이다. 이 그레프는 주로 2차의 경우에 대해서만 이야기하고 3차의 경우는 cone-beam CT의 설명에서 잠깐 언급한다.

3차의 물체는 다음 두 가지 방법에 의해서 검사할 수 있다:

• 2차 절편을 쌓아 불률화하여 물체를 가시화
• 물체의 자연스러운 3차 표현에서 검사(3D스캔)

2차 CT에서 여러 가지 기하학적인 방법이 발달되었다. 원래의 CT이론은 평행 광선기(beam geometry)를 위해 개발되었고, 제2세대 스케
너에는 부채살광선기(fan beam geometry)가 쓰
였다. 이런 스케너에서 광선의 detector는 직선이
거나 원호(an arc of a circle)이고, 광선의 source-
detector의 조합은 물체의 주변을 회전한다. 제3세
대의 스케너에서 광선의 detector는 완전히 원이
고, source가 물체의 주변을 회전한다. 제4, 즉 현
세대의 스케너는 나선형(spiral or helical) 기술을
쓴다[4].

(그림 1) 평행 광선 X-선 CT스캔 시스템

3차의 스케너는 몇 가지가 이미 개발되었
고(© Mayo Clinic의 DSR, Imatron Inc.의 Electron
Beam CT) 전망이 어부이지만 아직 실용화되고
있지는 않고, 의의 스케너들도 정확한 3차 스케
너라고 할 수는 없다.

이 글에서는 여러 가지 CT스캔의 종류와, CT스
캔의 수학적인 원리와 기본적인 평행광선(parallel
beam)을 이용한 영상의 재구축 알고리즘, 데이터의
추정과 문제점 그리고 그 개선 방향에 대해 논한다.

II. CT스캐너의 종류

1. 평행 광선 CT스캐너

평행광선(parallel beam) CT스캔의 구조는 (그
림 1)과 같이 간단히 나타낼 수 있다. source에서
나온 양은 두께의 평행의 X선이 인체(object)를 통
과한 후 detector에 투영(projection)된다. source-
detector의 시스템을 각 θ만큼 회전하며 projection을 얻고 다시 회전하고 하는 것을 되풀이하여
얻은 projection들을 이용하여 data를 재구축한다.

2. 부채살 CT스캐너

평행광선 CT스캔에서 X선의 각 θ에 대해
source와 detector가 이동해야 하고, 그런 source-
detector 시스템을 개발하기가 쉽지 않으며, 스케
너 시간이 길고 따라서 방사선에 노출되는 시간도
길어진다. 부채살(fan beam) CT스캐너는 그런 단
점은 약간 보완했다고 할 수 있다. 이 방법은 시름
기(collimator)라는 기구를 X선 source앞에 놓
어서 얻은 평면의 부채살광선을 물체(인체)를 통과
한 후 detector에 모으는. 이 때 각 source위치에서
나온 부채살 광선이 물체(인체)를 완전히 덮을 수
있게 넓게 나아도록 한다. detectors는 크게 두 가지
의 종류가 있다:

• 동각(equiangular) fan-beam: detector가 원호
나 완전한 원 위에 놓여 있고, 인접한 2 detector
의 각이 모두 같은 경우. detector가 원
호에 놓여 있는 경우는 제2세대의 스펜서라고 할 수 있고, 제3세대의 스펜서는 detector가 완전한 원 위에 고정되어 있고, source가 원형의 레도를 움직인다. 이런 경우의 장점은 가벼운 X선 source와 그 시준기(collimator)만을 움직임으로 움직이기가 쉽고 따라서 스펜서 시간을 줄일 수 있는 것과 원형의 detector에서 있던 원형의 artifact를 줄일 수 있다는 것 등이다.

- 동거리(equidistance) fan beam: detector가 직선상에 놓여있고 서로 같은 거리만큼 떨어져 있다. 이것은 source-detector를 움직이는 것보다 물체를 움직이는 것 속 산업용 CT에 많이 쓴다.

3. 나선형 CT스캐너

전통적인 fan-beam 스펜서에서 일련의 영상 절편을 얻기 위해서는 환자를 몇 mm씩 계속 옮겨야 하는데 이것은 시간을 너무 많이 소모한다(한 절편 영상을 얻는데 1초, 다음 절편을 준비하는데 10초가 소요된다[4]). 그래서 어떤 운용에서는 적합하지 않을 만큼 깨끗하지 못한 영상이 얻어지고(환자가 숨을 오랫동안 참아야 하는데 그리지 못하는 경우), 불필화를 얻을 때 Z방향으로의 샘플링이 (X, Y) 평면에서의 샘플링과 달라 큰 에러가 생기는데 나선형(spiral or helical) CT스캐너 (그림 2)는 X선 source와 detector가 인체를 중심으로 나선형으로 계속 회전하며 인체를 없이 놓은 반점대는 Z방향으로 움직여 이 문제를 해결하였다.

4. 원뿔형 CT스캐너

3차원에서의 Radon transform은 면 적분을함으로써 얻을 수 있다. 원뿔형cone-beam의 얇은 면의 X선을 CT의 source에서 내어 보내고, 물체를 동파시킨 후, source의 반대쪽에 2차의 array의 detector로 선적분 값을 모으는. source-detector array 시스템이 어떤 캐릭터를 지나면서 project 데이터를 얻을 수 있는데, 이 캐릭터는 “완전”하면 물체를 완전히 재구축할 수 있게 된다.

III. 평행 CT스캔의 수학적인 원리

X-선과 같은 방사선 물질은 인체를 통과할 때, 인체의 조직의 종류에 따라 그 감쇠량(attenuation)이 다르다. CT스캔은 이 사실을 이용해, X-선이 인체를 통과할 때의 감쇠 상수(attenuation coefficient)의 분포를 가시화함으로써 인체의 단층 영상을 재구성한다.

이미지의 일련의 사영(a series of projections)으로부터 원래의 이미지를 재구축(reconstruction)하는 기본 아이디어는 유명한 수학자 J. Radon[1]에 의해 1917년에 처음으로 거론되었고,

1. Radon transform

\[w(x, y, z) \]을 3차원에서의 물체(인체)라고 하고 고정된 \(z \)-값 \(z_0 \)에 대해 \(f(x, y) = w(x, y, z_0) \)라고 하면, \(f(x, y) \)는 물체의 단층 절편을 나타낸다. \(z \)-값을 달리 하면, 다른 절편을 얻을 수 있다. 이 절편들을 차례로 정렬하고 빼아 물체의 3차원적인 표현(volume data)을 얻을 수 있다. 각 절편의 두께는 무한히 작은 것이 이상적이지만 실질적인 스캐너에서는 그 렇지 못하고 어떤 범위 내에서 조정이 가능하다. 반 약 2절편 사이의 물체의 값이 필요하면 인접 절편 값과 여러 가지 보간법을 이용해 그 값을 추정한다.

고정된 \(z \)-값 \(z_0 \)에 대해, 절편 \(f(x, y) \)와 그 물체를 통과하는 평행 선들을 생각해 보자. (그림 3)에서 보듯이 \(x \)-축에서 \(\theta \)-만큼 기울어진 선에 수직이고 원점에서 \(r \)-만큼의 거리에 있는 선들을 \(M_{\theta, r} \)라고 하면, 각 선 \(M_{\theta, r} \)에 대한 선 적분은

\[P_{\theta}(t) = \int_{M_{\theta, r}} f(x, y) \, ds \]

로 표현되는데 이것은 \(f(x, y) \)에 대한 Radon transform이라고 한다. 여기서 \(s \)는 \(M_{\theta, r} \) 방향의 선(line)이다. 고정된 \(\theta \)-값에 대해 \(P_{\theta}(t) \)는 1차원의 신호이고, \(\{P_{\theta}(\theta) | \theta \in [0, \pi] \} \)는 \(f(x, y) \)의 1차 projection들의 완전한 집합이다. \(M_{\theta, r} \)를 각 게인으로 나타내면 \(x \cos \theta + y \sin \theta = r \)이므로, dirac delta 함수를 쓸 때,

\[P_{\theta}(t) = \int_{R^2} f(x, y) \delta(x \cos \theta + y \sin \theta - t) \, dx \, dy \]

가 된다. 우리의 목표는 \(P_{\theta}(t) \)에서 \(f(x, y) \)를 재구축(reconstrucion)하는 것이다.

2. Radon Transform의 역변환

여기서는 \(P_{\theta}(t) \)에서 \(f(x, y) \)를 재구축(reconstruction)하는 방법인 Fourier transform method와 filtered back-projection에 대해 논한다.

가. Fourier 변환에 의한 방법

\(f(x, y) \)의 Radon transform \(P_{\theta}(t) \)의 중요한 성질 중 하나는 \(f(x, y) \)의 2차 Fourier transform \(F(u, v) \)와의 관계이다. \(f(x, y) \)의 2차 Fourier transform \(F(x, y) \)는

\[F(u, v) = \int_{R^2} f(x, y) e^{-i(ux+vy)} \, dx \, dy \]

이고 \(P_{\theta}(l) \)의 1차 Fourier transform을 \(S_{\theta}(\omega) \)라고 하면

\[S_{\theta}(\omega) = \int_{R} P_{\theta}(l) e^{iol} \, dl \]
이므로, $S_{\theta,0}(\omega) = F(u, 0)$이고, Fourier transformation의 절편 정리(slice theorem)

$$S_{\theta}(\omega) = F(\omega \cos \theta, \omega \sin \theta)$$

을 얻는다. 이 식으로부터 모든 θ에 대해 $P_\theta(l)$의 1 차 Fourier transform $S_\theta(\omega)$를 구하면, $f(x, y)$의 2차 Fourier transform $F(u, v)$를 추정할 수 있다. $F(u, v)$를 inverse Fourier transform하면 $f(x, y)$를 얻는다.

아래의 그림과 위에서 말한 Fourier transformation의 절편 정리(slice theorem)에서 보듯이 (u, v) 평면에서 모든 각 θ에 대해 방사선의 선 $S_\theta(\omega)$로 $F(u, v)$값을 추정할 수 있고, 이것이 절편의 재구축을 위한 최선의 방법으로 보이지만 $F(u, v)$값을 사각형(rectangle or square)의 좌표로 보간(interpolate)해야 하는데, 그 오차가 상수가 아니다. 즉, 원점 부근 즉 frequency가 낮은 곳에는 샘플이 많고, frequency가 높은 곳에는 샘플이 적어, 보간에 따른 오차가 커져 물체의 가장자리 등 frequency가 높은 곳에서 영상 $f(x, y)$가 일그러진다.

또한 가장 적합한 보간법의 선택도 분명하지 않아 filtered back-projection이 더 많이 쓰이고 있다.

나. Filtered Back-Projection

2차원에서 inverse Radon transform은

$$f(x, y) = \frac{1}{2\pi} \int_0^{\pi} \int_{-\infty}^{\infty} \frac{1}{x \cos \theta + y \sin \theta - 1} \frac{\partial P_\theta(l)}{\partial l} \, dl \, d\theta$$

이다[6]. principal value를 이용하고, $\frac{\partial P_\theta(l)}{\partial l}$가 존재하고 연속이라고 가정하면,

$$f(x, y) = \frac{1}{2\pi^2} \int_0^{\pi} \lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} P_\theta(l) H_\varepsilon(x - \theta - l) \, dl \, d\theta$$

이 된다. 여기서 $H_\varepsilon(l)$은

$$|l| < \varepsilon \text{ 면 } H_\varepsilon(l) = \frac{1}{\varepsilon^2}, \quad |l| \geq \varepsilon \text{ 면 } H_\varepsilon(l) = -\frac{1}{l^2}$$

로 정의한다. $H_\varepsilon(l)$은 high-pass filter의 역할을 한다. 위의 적분은 $f(x, y)$를 얻기 위해, 각 θ에 대해 $Q_\theta(l) = P_\theta(l) * H_\varepsilon(l)$을 (x, y) 평면으로 “짓놀러 넣는 것”이라고 할 수 있는데, 이것을 filtered back-projection을 이용한 재구축이라고 한다.

3. Discrete Filtered Back-Projection

위에서 projection을 연속적으로 얻는 것으로 재구축했지만, 실질적으로는 오직 유한 번의 projection만을 얻을 수 있으므로, discrete화 된 $Q_\theta(l)$값만을 얻을 수 있다. N개의 projection이 있고, projection각이 $[0, \pi]$사이에서 같은 간격으로 주어졌다면, $Q_\theta(l)$는 $[0, N-1]$에서 l번째의 filtered projection이고, $\theta = \pi N$일 때 back-projection 공식을 다음과 같이 추정할 수 있다:
또한 detector의 개수도 유한하므로, projection 데이터를 샘플링해야 한다. detector의 두께가 무시할 수 있을 만큼 작고, 샘플링 간격이 작은 값 T라고 가정하고, \(P_0(t) \), \(Q_0(t) \)을 샘플링한 것을 각 각 \(p_i(k) \), \(q_i(k) \) 하면, \(p_i(k) \)로부터 \(q_i(k) \)를 얻기 위해 \(H_e(t) \)도 샘플링해야 한다. \(H_e(t) \)를 샘플링하기 위해, Ram-Lak kernel, Shepp-Logan kernel과 Horn kernel들을 쓰는데, 장단점이 있으므로 각 목적에 따라 가장 적합한 것을 쓸 수 있다[7, 8].

또 projection의 수가 충분히 많지 않을 경우 작은 물질을 back projection하면 (그림 6)에서 보는 경우와 같이 별 모양의 원하지 않는 미세한 artifact가 생길 수 있다.

(1)에서 filtered back-projection으로 \(f(x, y) \)를 추정할 때 (그림 7)에서 보는 것과 같이 \(Q_0(t) \)여기서 \(t = x \cos \theta + y \sin \theta \)를 선분 \(ML \)상의 모든 점에 같은 값을 준다. \(t \)가 불규칙 \(ML \)의 길이가 짧아지면, back-projection할 때 주어진 각 \(\theta_i \)에 대해, \((i, j)\)-픽셀의 값이 filter된 샘플링 값 \(q_i(j - 1) \)과
(그림 8) 보간

$q_i(j)$ 사이에 있으므로, 보간(interpolation)이 필요하다. $f(x, y)$의 특성, 특정 응용에 실험적으로 쓸 수 있는 계산량과 특정 보간법에 따른 영상의 질 등을 고려해, 0차 보간, 선형 보간, spline이나 Lagrange 방법 등의 보간법을 이용할 수 있다. 선형 보간법이라면 희미하거나, 각셀보다 작은 모서리 등을 추정할 때는 3차 spline이나 다른 곡선을 이용한 보간법 등이 효과적이다. 그 외에도 sub-sampling, super-sampling과 pre-sampling [7-9] 등의 Signal Processing 기술을 쓸 수 있는 데, 이 방법은 전통적인 보간법보다 더 효율적이다.

여기서 우리는 광행 CT스캔의 수학적 원리를 알아 보았다. Fan beam CT스캔의 경우는 광선 사이의 각도에 따라 해상도가 달라지며, 이 경우에도 근본적인 Radon transform에 의한 원리는 같다.

IV. 데이터 추정의 몇 가지 문제점과 해결 방향

여기서 우리는 2차와 3차의 절편 영상(Tomography)의 재구축에 대해 살펴 보았다. 재구축하는 과정에서 샘플링과 알리아싱(aliasing) 문제, 유한 detector 구명에 의한 문제, beam hardening 문제 등을 해결하기 위해 여러 방향의 개선 방법을 생각할 수 있고 또 그를 위한 연구가 활발히 진행되고 있다.

또 위에서 본 것 같이 CT스캔의 기존의 재구축(reconstruction) 방법에서 그것이 filtered back-projection에 의한 것이든지 Fourier transform을 이용한 주파수 공간(frequency domain)에서의 방법이든지 2차의 공간을 사각형의 픽셀로 tessellation함으로써 경계에 따라 원하지 않는 무늬(artifact)가 생기거나, 보간에 의한 오차가 상수 가 아니므로 생기는 문제도 있다. 그래서 이미지 화면이 사각형이 아닌 다른 다각형으로 tessellation된 경우도 생각해볼 필요로 생겨서 빈한 문제가 보완 하여 이미지의 질을 향상시키는 시도를 해 볼 수도 있었다.

(그림 9) 평면의 여러 가지 tessellation

같은 모양의 다각형으로 평면을 완전히 tessellation하는 몇 가지 경우의 예는 (그림 9)와 같다.
V. 결론

X선 스캔의 여러 종류와 평행 광선 스캐너의 Radon transform을 이용한 영상 재구축의 수학적 원리와 그 문제점, 특히 일반적인 사각 픽셀의 경우의 문제점을 제시하고, 그 해결 방향을 제시하기 위해 평면의 여러 가지 tessellation방법을 보여주었다.

참고 문헌