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PZT5 spherical hydrophone simulation using a coupled FE-BE method

Soon Suck Jarng

Abstract

This paper describes the application of a coupled finite element-boundary element method to obtain the

steady-state response of a hydrophone. The particular structure considered is a flooded piezoelectric spherical

*shell. The hydrophone is three-dimensionally simulated to transduce an incident plane acoustic pressure onto

the outer surface of the sonar spherical shell to electrical potentials on inner and outer surfaces of the shell.

The acoustic field formed from the scattered sound pressure is also simulated. And the displacement of the

shell caused by the externally incident acoustic pressure is shown in temporal motion. The coupled FE-BE

method is described in detail.

1. Introduction

Most of hydrophones have the structure of a thin
shell sphere. It is because we usually want to have
omnidirectivity in its pressure-sensitive

characteristics. Because of its simple type of
structure, the behaviour of the spherical hydrophone
is well known in analysis. Even so, any numerical
method for simulating the hvdrophone is often
required because the numerical method could be
further extended

structure for better performance. Since a hvdrophone

to other complicated types of
is used in water, modelling of the hydrophone must
satisfy both internal mnaterialistic transduction and
externally radiating condition. In these aspects the
finite element method (FEM) and the  boundary
element method (BEM) is perhaps the most suitable
numerical techniques for the solution. Both methods
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were developed for the numerical solution of partial
equations (PDE)  with
conditions. Since both methods solve the PDEs by

differential boundary
numerically elemental integration, they are compatible
each other and therefore they can be coupled

together [1,2]

Different types of in-air piezoelectric transducers
have been simulated by the FEM [3-5]. And also
modified FEMs such as the mixed FE perturbation
method [6] or the mixed FE plane-wave method (7]
have been developed in order to simulate an array of
transducers or composite sonar transducers. Further
developments have been made so as to include the
effects of infinite fluid loading on transducer surface.
For example, Bossut et. al. [8] and Hamonic et. al.
[9] used fluid finite elements as an extension to
structural finite elements with the condition that
of the

outer boundary fluid elements represents
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Others used fluid
elements for infinite acoustic radiation [10,11]. The

continued radiation. "infinite’
BEM is‘ probably accepted as the most suitable
method for the radiation problem because the BEM
directly solves the Helmholtz PDE with the radiation

condition [1,2].

The main aim of this paper is to develope a

coupled FE-BEM program and to simulate the

structural behaviour of the flooded piezoelectric
spherical shell when the sonar shell is driven by
external incident acoustic pressure. The directivity
pattern of the scattered acoustic pressure is shown
in temporal motion and compared with that of a

rigid steel sphere.
2. Numerical Methods
2.1 Finite Element Method (FEM)

The

formulation of the niezoelectric equations:

following equation (1) is the integral

(R +{F} =K., & +[K 41{$
— o I M{ &+l Rl{ ) ()
—{Q =[K sula + K 41 )

where

{F} Applied Mechanical Force

{F1} Fluid Interaction Force

{Q} Applied Electrical Charge

{a} Elastic Displacement

{0} Electric Potential

(K] Elastic Stiffness Matrix

[Kued Piezoelectric Stiffness Matrix
[Ko) = [Kuol'

[Kos) Permittivity Matrix

M] Mass Matrix

[R] Dissipation Matrix

7} Angular Frequency

The isoparametric formulation for 3-dimensional

2 A7
T

structural elements is well documented by Allik H.
et. al. [3]. Each 3-dimensional finite element is
composed of 20 quadratic nodes and each node has
nodal displacement (ax, ay, a;) and electric potential
(®) variables (Fig. 1). In local coordinates the finite
element has 6 surface planes (*xy, *yz *£zx)
which may be exposed to external fluid environment.
The exposed surface is used as a boundary element

which is composed of 8 quadratic nodes.
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Figure 1 Each finite element is composed of 20

quadratic nodes. Each surface
boundary has 8 quadratic nodes.

2.2 Boundary Element Method (BEM)

For  sinusoidal  steady-state  problems, the

Helmholtz equation, vig + Py = 0, represents
the fluid mechanics. & is the acoustic pressure with

time variation, e™ and k(=w/c) is the wave
number. In order to solve the Helmholtz equation in
an infinite fluid media, a solution to the equation

must not only satisfy structural surface boundary

condition (BC), % = py w? a,, but also the
radiation condition at infinity,

: OF | wun2 o _0
[];}n:]oo 9§S( a3y +R0)°dS = 0. 5, represents

the

boundary. ©y and a, are the fluid density and the

differentiation along the outward normal to

normal displacement on the structural surface. The
Helmholtz integral equations derived from Green's
such a solution for

second theorem provides

radiating pressure waves;
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where Gi(p, @) = e4ﬂr , r=l|p—dql

p is any point in either the interior or the exterior
and g is the surface point of integration. B(p) is the

exterior solid angle at p.

The acoustic pressure for the i" global node,

P(p,), is expressed in discrete form [12]:
(1 <7< ng)
B(pz) w(pz) - w‘inc(pi) =

~§( 0 L G 02D as,

(3a)
_ 2 f (w( ) 060, @) aG(p,,q) —Glp, )aa@)ds
g=S,
(3b)
=2 [ Znor, G0
~ Gl 0 B N5 ) as,
(3c)

= 3 i(f NG as) v,

m=1]1j

—o o 3 B [ N0 Clo omdS ),
(3d)

nt 8
= X XA, (%)
P
@

where nt is the total number of surface elements

and a ,; are three dimensional displacements.

Equation (3b)

discretizing integral surface. And equation (3c) is

is derived from equation (3a) by

derived from equation (3b) since an acoustic

pressure on an integral surface is interpolated from

adjacent & quadratic nodal acoustic pressures
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corresponding the integral surface. Then - equation
(3d) is derived from equation (3c) by swapping
integral notations with summing notations. Finally
the parentheses of equation (3d) is expressed by
upper capital notations for simplicity.

assembled, the

When equation (3e) is globally

discrete Helmholtz equation can be represented as

(LAI-ALID{T)

:—{—pf a)z[B]{Cl } - {winc}

)

where [A] and [B] are square matrices of (ng by

ng) size. ng is the total number of surface nodes.

Where the impedance matrices of equation (4), [A]
and [B], are computed, two types of singularity arise
{13]. One is that the
equation, Gx(p;, @),

Green's function of the

becomes infinite as q

approaches to pi. This problem is solved by mapping

such rectangular local coordinates into triangular
local

coordinates [14]. The other is that at certain wave

coordinates and again into polar local
numbers the matrices become ill-conditioned. These
wave numbers are corresponding to eigenvalues of
the interior Dirichlet problem [15]. One approach to
overcome the matrix singularity is that [A] and [B]
of equation (4) are modified to provide a unique
solution for the entire frequency range [16-19]. The
modified matrix equation referred to as the modified
Helmholtz (HGF) [19] is

obtained by adding a multiple of an extra integral

gradient formulation

eque_ltion to equation (4).

([A]-Bl N CH{T}

=+p; &*([BI®al DD {a } - (W,,,(GDa & ie )

(5)
where

a =

(T

k- ( Number of surface elements adjacent a surface node)
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(C] and (D] are rectangular matrices of (nt by ng)

size. nt is the total number of surface elements. P
indicates that the [C],[D]
corresponding to surface elements adjacent a surface

symbol rows of

node are added to the row of [A][B] corresponding
to the surface node, that is,

> 3 aG)=

t"_l ]”_1 7, 7, S(s)

gl ng(i'j)-'_ gl gl( mi:la/ Clm, )
3 3 BljH=

"_l ]"_1 1 7, S(2)

gl }2;13(:’])—’_ ii;l Ji;l( mi=la D(m,]))

(6)

where S(i) is the number of surface element
adjacent a surface node. The derivation of the extra
[C],[D] described by

Equation (6) may be reduced in its

matrices
D.T.IL[19].

formulation using superscript @ for convenience;

are  well Francis

A%TY = +0;0'B®a} - ¥8,

where

([A]-ANDPe[C]) = A®
([B1Dd D)

dJ winc _
( winc@aa_nﬂ) = weiic

f
oy
®©

Equation (7) can. be written as

{(#}= +0,0"(A®) "'B¥a) ®)
— (A% "ol

2.3 Coupled FE-BE Method
The acoustic fluid loading on the solid-fluid
interface generates interaction forces. These forces
can be related to the surface pressures by a

coupling matrix [L}] [2,12];

{(F}) = — [LK T 9
where [L]_= anNdS. N is a matrix of

surface shape functions and n is an outward normal
vector at the surface element. N' is the transposed
form of N matrixss.

Equations (8) and (9) indicate that the interaction
force can be expressed by functions of elastic
This
relationship can be applied to equation (1) when the

displacement instead of acoustic pressure.

sonar transducer model is submerged into the

infinite fluid media:

(A+[L]1(A®) 19,
=K  Ja +[o; o’ IL1(A®) 'B®)( g
+ [K 48 — o IM{a) + julR){a}

Q=K uHd+[K s H)
(10)

Since the present sonar transducer is modelled as
a hydrophone, the internal force vector, {F}, and the
applied electrical charge vector, {Q}, of equation (10)
are removed. The only applied BC for the equation

[L1(A®) ~'g2.

The acoustic pressure in the far field is determined

is external incident pressure,

by B(p)=1 for given values of surface nodal pressure
and surface nodal displacement;

nt 8 .
Pp)= 2 zlAzm,jgfm.j

m=1 j=
2 nt 8 i ® _1w®
— Py w m2=1 jngm,/'a m/_(A ) inc

(1)
3. Results

The coupled FE-BE method has been programmed
with Fortran language running at a supercomputer
Cray C90. Calculation is done with double precision
and the program is made for three dimensional
structures. Because each structural node has 4 DOF,
the size of the globally assembled coefficient
matrices of the matrix equation are 4*ng by 4*ng.

The particular structure considered is a flooded
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piezoelectric (PZT5) spherical shell. Fig. 2 shows a
part of the whole shell The inner and the outer
radii of the shell are 35cm and 4cm, respectively.
The shell has been divided into 128 isoparametric
elements. The figure shows only 8 elements as a
slide which are rotationally symmetrical to Z-axis.
Global node numbers are attributed at 20 nodes of
each element. It is desired to have more elements

representing  smaller local regions for higher
' frequency analysis. However, calculation with more
number of nodes cost more time. Therefore meshing
of elements depends on the maximal limit of interest

frequency.

Table 1 shows the material properties of the PZT5
piezoelectric ceramic. The actual ceramic shell is
radially polarized and therefore the electrode is
coated radially on inner and outer surfaces. Hence,
the axially polarized property values of Table 1 is to
be converted to its radial polling direction by the

tensor theory [20].

Table 1. Material Properties of PZT5 (Axially
Polarized Properties, Dielectric coefficients
at 100 KHz)

Unit Unit
T TOA0EE0 |
7700 Kg/m'| C% N/m’
e o/ Col o sopgpeg] V™
N 0o NP O N/
*| 1poagmeg | [ Cra TN iy
75179E+10 . (N/m?),
Cc* N/m’| el | -5.3512
s | SiLootgse |V | Cr2 7w
o | TOMENIO | T T )
. 3.
Z| 10021E+9 | |62 (V/m)
T 1.20%5E+11 NN Nm
e N/m? | e 69474
G -11.6042E+9 /m € (V/m)
| 75000E+10 ‘ N/m’)
) 2 22X
N 6.9474
C| Lioowmsg |V (V/m)
e | VISR T T TR |
B m
2| 4779E+9 | % ilsa3E-10

o] 2A0SSES10 T TR |
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Fig{lre 2 A structure is discretized into finite

structural elements. A piezoelectric shell can

be divided into either 128 elements.

/ Scattered
< Sound Pressure

Figure 3 The acoustic pressure in the far field
i1s calculated along the circle with the

directivity angle 4.

The present modelling of the SONAR transducer
So, the
simulated  to

is a pressure sensitive hydrophone.

hydrophone is three-dimensionally
transduce an incident plane acoustic pressure onto
the outer surface of the sonar spherical shell to
electrical potentials on inner and outer surfaces of
the shell. This

piezoelectric  shell as a

acoustical energy drives the

receiver. The incident
acoustic pressure is of course scattered forwardly
and backwardly after it is struck on the outer

surface of the shell sphere. From equation (11) the
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acoustic pressure in the far field is calculated arcund
6 (Fig. 3.

After normalizing the far field pressure, the averaged

the circle with the directivity angle

value of the pressure is calculated. This normalized
and averaged value of the far filed pressure is then
used the of the

omnidirectional directivity.

as quantitative  degree

h) 3
3

-2

Figure 4 Normalized directivity pattern of scattered
acoustic press of a solid steel sphere (a)
In polar form (b) In rectangular form,
IR=0cm, OR=4cm, 128 elements, ka=1.

Fig. 4 shows the directivity pattern of a solid
steel sphere in polar form (a) and in rectangular
form (b) for 185150 Hz input frequency which is
to ka=n {(4cm}). This
particular figure is often used to confirm the
calculation of the coupled FE-BEM algorithm to be
correct [21]. Fig. 5 shows the directivity patterns of
the PZTS5 spherical shell for the same ka=n. The
inner and outer surfaces of the PZT5S shell has been
electroded. The electroding of the PZTS shell is
simply done by manipulating the global coefficient

equivalent (a is radius

matrix [21). The potential difference between inner
and outer surfaces of the excited PZT5 shell is
0652 [mV] 185150 Hz. This

potential difference value is in fact the same as

in magnitude at

hydrophone sensitivity because the amplitude of the
incident plane pressure wave was 1 [Pa]. Theoretical
sensitivity value of the present shell-typed
hydrophone is about 0412 [mV] below 27593Hz
resonant frequency [22]. Fig. 6 shows the frequency

A
W

A1
~

response of the hydrophone sensitivity.

Figure 5 Normalized directivity pattern of scattered
acoustic press of a PZT5 spherical shell
(a) In polar form (b) In rectangular form.
The

ceramic

and outer surfaces of the
shell

equipotential surfaces respectively.

inner

are  electroded  for

Sensitivity [V/Pa}

[r—
Theoretical Expectation

we——-—‘A«———é.\f_//

.| FE-BE Result
3 —o

10 10° 10° 3
Freauency [Hz]

Figure 6 Simulated frequency response of hydrophone

sensitivity.

Fig. 7 shows the surface acoustic pressure on the
outer surface of the PZT5 shell at a particular
the
simulation 1s calculated for steady-state frequency

instant phase. Since present  hydrophone

response, its temporal deformation could be figured
the three

dimensional displacement has been exaggerated to

with different phases. In the figure,
emphasize the form of vibration. And Fig. 8 shows
the temporal moving picture of the PZTH shell for
different phases. The input frequency is 185150 Hz.
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And Fig. 9 shows .directivity pattens of the
spherical shell hydrophone at different frequencies.
The figure shows how directivity pattern is changed
with different frequencies.

603
0024
0014
04
-0.01 4
-0.02
-003

Figure 8 Vibrational Modes (at 185150 Hz) for

different phases.

Figure 7 Three dimensional displacement of the

PZT5 shpere at a constant phase. The (a) 185,15 Hz  (b) 55545 Hz  (¢) 925.75 Hz
degree of the gray color intensity (ka=0.01m) (ka=0.03m) (ka=0.051)
indicates the surface pressure on the : '
sphere at 18515Hz.

The surface acoustic pressure on the outer surface

of the PZTS shell at a particular instant phase. The

three dimensional displacement has been exaggerated (d) 18515 Hz  (e) 462875 Hz () 6480.25 Hz
to emphasize the form of vibration. ka=1 (ka=0.17) (ka=0.21) (ka=0.35m)
LTI AT e R . ;’i«f?\;:

: /.,/' (g) 74060 Hz  (h) 87946 Hz (i) 83318 Hz
o o - (ka=0.41) (ka=0.475m) (ka=0.451)

) \E// “ T A \l‘\:,’// v
VS () 92575 Hz (1) 11109 Hz (1) 129605 Hz A
U e (ka=0.5m) (ka=0.61) (ka=0.71)
S A ; ’ ‘\:\\:t/ g
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(m) 16663.5 Hz
(ka=0.97)

(n) 18515 Hz
(ka=n)

(0) 19966.1 Hz
(ka=1.1m)

(p) 23144 Hz
(ka=1.251)

(@) 37030 Hz
(ka=2n)

(r) 46288 Hz
(ka=25n)

(s} 50916 Hz
(ka=2.751)

(t) 55545 Hz
(ka=3m)

(u) 74060 Hz
(ka=4n)

(v) 92575 Hz
(ka=51)

Figure 9 Directivity patterns at different frequencies.
4. Conclusion

A coupled FE-BE method has been developed and
transducer. The
flooded

transducer

applied to simulate a sonar

considered  is
shell. The

simulated to

particular  structure a

piezoelectric  spherical is

three-dimensionally transduce an

incident plane acoustic pressure onto the outer
surface of the shell to electrical potentials on inner
and outer surfaces of the shell. The acoustic field
formed from the scattered sound pressure is also

simulated. And the displacement of the shell caused

by the externally incident acoustic pressure is shown
in temporal motion. The coupled FE-BE method has
been used for predicting the mechanical and the
acoustical behaviour of the spherical shell-typed
sonar transducer. The results of the directivity
patterns of Fig. 9 show the variation of the beam
pattern at different frequencies up to ka=5m.

In general, as the frequency of external loading to
the piezoelectric transducer is increased,. more
number of structural finite elements are necessarily
required. Most of executing time of the coupled
FE-BEM program is spent in matrix solution in
which the size of the matrix is increased to 4ng by
4ng matrix as -the number of global nodes are
increased to ng. Therefore the present numerical
method need to be linked to a faster matrix solver

such as parallel processing for next work.
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