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A High Speed Vision Algorithms for Axial Motion Sensor
Stephane. MOUSSET*, Pierre. MICHE, Abdelaziz. BENSRHAIR*,. Sang-Goog LEEx*,

ABSTRACT

In this paper, we present a robust and fast method that enables real-time computing of axial motion

component of different points of a scene from a stereo images sequence. The aim of our method is to

establish axial motion maps by computing a range of disparity maps. We propose a solution in two

steps. In the first step we estimate motion with a low ievel computing for an image point by a

detection estimation-structure. In the second step, we use tie neighbourhood information of the image

point with morphology operation. The motion maps are established with a constant computation time

without spatio—temporal matching.

1. Introduction

The determination of 3-D motion is an area of
very active researches. This is explained by the fact
that it is an important task in mobile robot control
and car driving assistance.

Most of approaches consist in two main steps: at
first, objects of the scene are isolated ; then, their

i : 1213
motion components are estimated "'

B show that motion

Sabata and Aggarwal
transformation has a well defined structure in terms
of various components. When computing a motion
transformation, this structure has to be taken into
account and all physical constraints have to be
satisfied. In general case, these constraints are
non-linear. Hence, motion estimation wsually tumns
out to be a non-linear optimisation problem. The
solution to such constrained non-linear optimisation

problem is not simple. Sabata and Aggarwal propose
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a decoaposition of motion parameter computation in
four sieps:
1 - <elsecting the feature to be used for the task,
2 - representing the motion transformation
3 representing the feature,
i 1sing the representation to compute the

-vansformation.

Ser ral researchers has investigated the possibility
vering the 3-D motion without point to point

al[SI

corre -hondence.  Lin et present  some
eiger: tructure-based algorithms for estimating the
motr  parameters of a rigid object from scaled

ortho. raphic projections. Li and Duncan 16! present a
meth: d to determine 3-D motion and 3-D structure
in c& » of a motion restricted to a translation. They
suggested a  two-step procedure applied to a
seqﬁence of stereoscopic images. In the first step,
tran<'itional motion parameters are determined in an
independent way in the two images. In the second
step. the binocular flow information is used to find

matching correspondence.
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The specificity of our approach lies in two points:
first, objects are not isolated before motion analysts,
the axial motion

and then, we only consider

transformation.

In a first section, we present the special stereo
image system. Then we study the determination of
the axial motion component of points. In a third
section, we explain the method to compute the axial
motion map from a disparity map sequence. Then,
we present some problems concerning
spatio—temporal object tracking and noise. In the last
section we present some experimental results and

conclusion.

II. Configuration of stereo image system

To obtain the three-dimensional information, at
first we need a dual camera model. In most cases,
the modelling of two camera implies to solve a set
of non-linear equations involving a lot of
coefficients. So, in order to simplify the problem of
camera calibration as well as feature extraction and
feature matching, we chose a spatial stereo svstem
which allows the stereo process to be quicker and
the algorithms to be reduced to a one-dimensional
problem.

RX,.Y, Z,)
a z

Figure 1. Spatial camera configuration

In this configuration (figure 1), we suppose that the
two cameras have paralle]l optical axes with equal
focal lengths and the baseline is horizontal and

parallel to the scan lines of images. Furthermore the

Z-axis is coplanar with the optical axes of the
cameras, so all epipolar lines are parallel to the
baseline and they are confused with horizontal scan

lines of images.

Given this camera model, we search the possible
matching feature points in only one dimension, i. e.
only in two image lines (right and left) having the
same Y-axis value, rather than in the whole image.
The calculation formulas of an object point P(Xp,

Yp, Zp) are :

X, - _ oe - X
Y, - wé - Y (1)
with  Xp Ye X, Y, the local coordinates

respectively in the left and in the right images, e
the length of the baseline, f the focal length of the
and d- the equal to

two  cameras, diparity

8, = X~ X

Using this configuration, we have developed original
stereovision algorithms [7] [8] to compute in a short
time disparity maps . The motion analysis that we
present below, is based on a sequence of such

disparity maps.

lll. Axial motion determination

The aim of this section is to estimate the axial
motion component of a tracked point from a long

sequence of stereo images.

III-1. Axial motion relation

Consider a point at distances ZP (t) and ZP (t+t)
respectively at times t and t+t. The axial motion
component is given by a Taylor's development to

the first order of the depth value.

Zt+4t) = Z(H+7Zp(8) + At+o(41) 2)
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where 3 = (H—4)—0

Assuming the axial velocity to be constant during
Dt and using the relation (1), then, it can be

expressed by:

- K | S |
2 = At( 8.(t+4) Sz(t)) ©

where K is a parameter which depends on the

characteristics of the image acquisition system.

For a long sequence, assuming the motion is
constant, the estimation of axial motion component
Wittn) is determined by the following recurring

relation:
Wet+dt, n+1) =Wt n)+Ko(Zt+40— Wt n) (4)

where n is the length of the sequence and Kj is

the ratio of correction due to the observation at the
instant (¢+48).

K:=0.5. For the first measure we using this

For our configuration we have

initial condition:
We0)=2,(H (5)

With the relations (4) and (5), the axial motion
component may be write in a other form:

W) = et
+ 2;02”“ <2 t—1 - Af)

-Zp(t-n 'At) (6)

This
component is very fast and the estimation converge

compute of estimation of axial motion

rapidly to the correct value.

II-2. Convergence of relation

Consider the difference Wit,n) - W(tn-1). When
n tends to infinity, this difference is maximised by
o( 4, n, €) as defined by equation (7):

_ K L
olt,n e = At( 2" X t—n 'At)—é‘)) "

where is the error on disparity. The convergence of
established by the fact that

o(t, n, €) approaches zero when n tends to infinity.

relation (6) s

II-2. Error analysis

Errors in axial motion component W(tn) are due
to the following causes:

- 1inaccurate calibration,

~ disparity error.
On one hand, inaccurate calibration involves many
complicated factors whose effects are very difficult
to analyse rigorously. However, experiments with
real image sequences (presented below), show that
On the

other hand, disparity error causes an error in axial

our method limits miscalibration effects.

motion 4Zp which can be modelised by an

additional white Gaussian noise with a null mean.
For a constant axial motion component, the following

relation is verified:
lim 3 AZ(t=i- ) = 0 ®

The uncertainty of recurrent relation (6) can be

maximised by the one of Zp for the last acquisition

time:
dp _ () +8i+4D) - 48 ©
7 X - Xt+4H

where 46 is set to 1. The uncertainty of axial

motion decreases as disparity increases.

IV. Axial motion map computation

VI-1. Implementation of the motion algorithm
The aim of our method
motion maps with a range of disparity
obtained with fast and
self-adaptive algorithms from a stereo image pairs.

is to establish axial
maps.
Disparity maps are

We assumed that the disparity maps are determined

-

in real-time with a frequency of 5 images by

second. These images are computed on a pipeline
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structure as described by
below.

the figure presented

axal motion
computation

disparity map
at instant t0

axial motion
p at instant 0,

axial motion
p at instant i,

at instant 12

Figure 2. Structure of the algorithm

In this figure, the "rebuilding 3-D scene” bloc is the
compute of the distance of characteristic point in
The first

extraction for each image, the second stage is the

two stage [9). stage is a contour
stereo matching.

The "axial motion computation” bloc consists of two
steps. In the first step, we estimate motion with a
image-point by a

low-level computing for an

detection-estimation structure presented in figure
3.The aim of this procedure is to compute axial
motion without region matching. In the second step,
the neighbourhood
image-point for the morphology operation described
chapter. The

neighbourhood information is about grey-level, axial

we use information of the

in spatio-temporal tracking

motion component, state of tracking of the
neighbourhood points.
; !
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Figure 3. Axial motion computation structure

VI-2. Detection-Estimation Structure

This structure is constructed on the principle of
with  defined
constraints. The estimation module is defined with

detection-estimation criterion  and

the constraint that axial motion of objects are
described by (6).
define a maximum value of

constant as The a priori
information module
axial acceleration for all image-paints. The. criterion
defines the maximum value of axial motion. It is

computed for the whole motion map.

VI-3. Detection module

The detection module is the pivot of this
structure. Its problematics can be summed up by:

1 - correct tracking of image point,

2 - appearance of object,

3 - disappearance of object,

4 - con_’upted data presence.
These different issues are processed hierarchically in
Thus,

appearance of an object is processed in priority. We

an order implied by security reasons.
assumed that the context of the observed scene and
evolution of object motion are known. Then the
tracking evolution possibilities are limited. We can
describe this tracking evolution by an automaton as

following:

Sieady tracking
of the same object

¥

Yes / correct tracking \ No State no detevmined
with new mweasure (same object)
|
Y
Yes “corrupted data at "\ No New object detect:
previous instant but not confirmed

Yes /tracking correct of \ No
this new obj

Figure 4. tracking evolution

There are tree possible states @ correct tracking,
state no determined and new object. For a pixel, the

appearance or the disappearance of a object is a
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identical problem. For the state no determined, we
assume in first time the data is bad. So the compute

of axial motion component uses previous data.

This

point-image level. It is fast and independent on the

procedure of tracking operates at the
number of objects in the scene. Otherwise, the
detector initialises the estimator parameters with
regard to the detected case. Thus, when a new

object is detected relation (6) is re-initialised.

VI-4. Spatio-temporal tracking.

In the second step, we do not want to use
spatio-temporal matching in our sequences to respect
our real-time constraint. The frequency of image
acquisition being high, this allows to consider the
hypothesis that object have little displacements
between two acquisitions. Then, object images in
two consecutive depth maps overlaps. The axial

motion component of an object is evaluated in this

overlapping area.

Superposition of deph maps between
two consecutive times

object projection
for the time t
(grey ievel 1)
object projection
for the time t+At
(grey level 2)

overlapping area

background
(grey level bg)

Figure 5. Object overlapping in depth maps

Transformation to obtain the motion map
to the fast time.

|- arrival area of
geodesic linear
dilatation

r—area of object
motion calculation

°
™~ motion of background
(stereo system motion)

Figure 6. Geodesic linear dilation

This result has then to be extended to the totality
of the projected surface of the last time. This

operation is realised using a morphology operation
which is a geodesic linear dilation. This operation is
described in figure 5 and 6.

This procedure does not take into account the
disappearance or appearance of an object. These
problems are studied by the detection-estimation

structure.

VI-5. Computation of motion for far objects.

In the case of far objects, an axial displacement
does not necessarily implies variation of the
disparity between two consecutive acquisitions. To
solve this problem, the time interval used in the
calculation of motion is not constant but is

conditioned by a modification of the disparity.

V. Experimental results

The efficiency of our method is demonstrated by
the following experiments with outdoor scene. This
scene involves a car which is progressing towards
the viewer. In photo 1 and 2, we present an example
of stereo pairs obtained on successive timse.

In photo 3, the corresponding disparity maps are
presented. These maps are presented using a grey
level coding: points of high grey levels correspond to

short distances. In photo 4, the computed axial

Photo 2. Stereo images(left and right) at time t=5.8s
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Photo 4. Axial motion component maps at time
t=5.6s and t=5.8s

In photo 4, the computed axial motion component
maps are shown. These maps present a different
coding: motionless points have a medium grey level,
points moving toward the viewer have higher grey

levels and those moving away have lower grey

levels.

At present, 128X128 pixels stereo images are
processed is less than 05 s on an IPX SUN
workstation.

V-1. Noise analysis
The stereo images are noisy. This noise which
may be considered as gaussian and additive, affects

disparity maps. This implies two tvpes of defaults.

The first

characteristic

default is the non detection of

elements  (feature points). The
computation of 3-D representation for these points is
erroneous. A low-pass filter or a median filter
improves disparity maps as it is the case for the
disparity maps above presented. This corrupted data
problem is processed by the detection-estimation

structure.

The second default introduces an error of one pixel

in feature points location which generates an

inaccurate depth information. Currently, this problem
is overcome efficiently by calculating the speed on a
sequence and by using the

long stereo image

maximum axial motion constraint.

V-2. Speed evolution analysis

During the sequence from which are extracted the
stereo images above presented, the axial speed of
the car have been measured. Results are presented

on figure 7.
12 =
Espeed(mls)

) " axial motion of the car -
[T+ J S S . -
; Pas I AN

W v

~—real axial motion L
©  —e—measured axial motion

Figure 7. Evolution of motion for the car.

For constant motion, we can observe that the

computed speed converges to the real one as
expected by the process.
VI. Conclusion
We have presented an original system to

determine axial motion maps by computing a range
of disparity maps without spatio-temporal matching.
The aim of our solution is in two steps. In the first
step, we estimate axial motion with a low level
computing, in the second step, we use a morphology
operation to recover the structure. At present,
128X128 pixels stereo images are processed is less
than 05 s on an IPX SUN workstation which is
nearly real-time for some robotics applications. For
other applications in car driving assistance, our
system will be soon implemented on a specialised

architecture comprising several DSP.
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