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ABSTRACT

Stereo cameras are the most widely used sensing svstems for automated machines including robots to
interact with their three-dimensional(3D) working environments. The position of a target point in the
3D world coordinates can be measured by the use of stereo cameras and the camera calibration is an
important preliminary step for the task. Existing camera calibration techniques can be classified into two
large categories - linear and nonlinear techniques. While linear techniques are simple but somewhat
inaccurate, the nonlinear ones require a modeling process to compensate for the lens distortion and a
rather complicated procedure to solve the nonlinear equations. In this paper, a method emploving a
neural network for the calibration problem is described for tackling the problems arisen when existing
techniques are applied and the results are reported. Particularly, it is shown experimentally that by
utilizing the function approximation capability of multi-layer neural networks trained by the
back-propagation(BP) algorithm to learn the error pattern of a linear technique, the measurement
accuracy can be simplv and efficiently increased.

1. INTRODUCTION

The- use of sensors allows robots and other

« Q78 ABENEE (School of Computer automatic machines to interact with their target
& Communication Engineering, Taegu University) objects and surroundings. This interaction can be
<AFdzt 119983 9¥ 20¥> performed by contacting or noncontacting ways
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endowing robots with flexibility. A camera is the
most widely used noncontacting sensing device for
robots thanks to its versatility. Visual perception
using cameras has been studied since the early
stage of robotics research(1] and its applications has
been expanded from simple 2D tasks to sophisticated
spatial manipulations in unstructured environments.
Sen_sing the 3D world reliably in real time is thus of
growing importance.

3D information can be acquired by employing
stereo cameras. The real world and corresponding
stereo images can be related if the optical and
geometrical parameters of the two cameras are
known. Camera calibration is the process of
determining the intrinsic parameters (such as focal
and extrinsic

length and optical image centre)

parameters (such as geometric position and
orientation) of a camera implicitly or explicitly for
establishing the projection or back-projection relation
between the 3D world and 2D image(2].

Most  existing calibration techniques may be
classified into two large categories: linear and
nonlinear techniquesf3]. In the techniques belong to
the former[4,5], parameters are usually determined
analytically based on the ideal pin-hole camera
geometry. Simple and fast processing is the major
merit of the approach. However, since the imaging
process by most off-the-shelf camera systems is
high accuracy may not be

somewhat nonlinear,

expected. To increase the accuracy, the nonlinearity

due mainly to the lens distortion has been modeled

and corrected(6-8].
belong to the latter[9,10], the unknown parameters of

When using the techniques
a camera are determined by iterative optimization.
The solutions are relatively accurate but dependent
upon initial .guess for the iterative search and the
system equations used are rather complicated.

We have tried to find an easy and accurate
method

in utilizing existing techniques.

practical
As a

result, neural networks are employed for the stereo

calibration
difficulties

overcoming  the

calibration. There are several encouraging facts in
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using neural networks for the problem including the
nets’ capabilities of nonlinear mapping, model-free
learning, and function approximation[11,12). When
stereo cameras are used for 3D positional
measurement, implicit calibration[2] is enough and
this can be an additional advocating fact of using a
neural net for the problem. We start from the
previous research where neural networks are trained
to learn the unknown part of camera model[13] and
to localize a camerall4]. However, in this paper,
neural networks are employed for the stereoscopic
3D position measurement rather than modeling or
calibrating a single camera. Two ways of neural
solution are studied and compared; a neural network
for direct stereo-to-world mapping and neural
learning the error pattern of a linear stereo model.
This paper organized as follows. In Section 2, a
method for stereoscopic 3D position measurement is
briefly described. Then, the techniques of employing
feedforward neural networks are presented in Section
3, The experimental results are presented in Section

4 and conclusions are followed in Section 5.

2. STEREOSCOPIC 3D POSITION
MEASUREMENT

Most camera calibration algorithms are based on
the simple pin-hole camera model(15]. As shown in
Figure 1, an image point at (1,v) can be related to a
ray through a 3D world point P(X,Y,Z). The
projection model can be described by the following

two equations:

u= (P —C, H/P—C, A)
(P —-C VP -C A)

(la)
(1.b)

where C(Cx,Cv,Cz), H(Hx,Hv,Hz), V(Vx,Vy,Vz),
A(Ax,Av,Az) are the positional, horizontal, vertical,
aiming vectors of the camera respectively and
(M,N) is the scalar product of the vectors M and
N. The derivation of the equations and the detail
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meanings of the parameters are described in
{4,15,16].
Using n number of control points and their image

coordinates, eq.(1) can be rewritten as

XmttmAx + YotumAy + ZptwAz — Xalx

(2.a)
- Y,"Hy - ZmHZ b u,,,CA + Cl{ = 0
XomAx + YAy + ZyvnAz — XuVx b)
— YnVy — ZuVz — 02Ca + Cy = 0 '
where m=1,..n, Cyp = (C,H), Cy= (CW),

Cs = (C,A). In the case of n>6, the twelve
parameters are over-determined by Zn equations and
can be found by standard least-squares techniques.
Once one of the stereo cameras is calibrated,
rearranging eq.(2) for a certain 3D point P yields

the followings:

(uAxy — H)X + (uAy — H)Y + (uA; — H)Z

(3.a)
= uCs — Cy

(vAxy — VX + (vAy — VY + (vA; — V2 3b)
= oCy — Cy

As two additional equations can be obtained using
the other camera calibrated by the same way, four
equations for three unknown positional coordinates
are available. The unknowns, X,Y, and Z, can then
be computed using the least squares. '

Only linear equations are to be solved if the
technique described so far is used. However, due to
the nonlinearity practically existing in imaging
process of a camera, the technique may not be
accurate enough for some tasks especially in precise
inspection and measurement. Assuming the
nonlinearity comes mainly from the distortion by the
lens, the distortion is tried to be approximated as

the followings[6-8]:

u= up + up(by?) + H(A + 2u5) + 2hupyp da)

v = vp + ok P) + 2upvn + KA + 205 @b)

image

plane

camera :
frame V-~ H iP

Figure 1. Imaging geometry

where wup,vp are distorted image coordinates,

r = (ub + vH)Y2, k is one term radial

distortion coefficient, # and £ are two-term
tangential distortion coefficients of a lens. One
problem of this nonlinearity compensation method is
that there are still some parts not included in the
Wen and Schweizer[13] tried to
approximate the part remained outside of the model

model.  So,

using a neural network. In this paper, however, we
employed neural networks in different ways; for the
direct stereo-to-world mapping and learning the
error patterns of linear stereo vision model as

described in the next section.

3. THE USE OF NEURAL NETWORKS FOR
THE STEREO CALIBRATION

Multilayer feedforward neural networks are known
to be capable of approximating any arbitrary
continuous function[11,12]; if a neural net has n
input units, m output units and at least one hidden

layer whose nodes have sigmoid activation function,
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the net can approximate a continuous mapping from
n-dimensional Euclidean space to m-dimensional
Euclidean space.

An efficient and probably the most widely used
training algorithm for. multilayer feedforward neural
nets is the BP algorithm. Neural nets trained by the
BP algorithm have many tempting features to be
useful for the problem stated in this paper. First,
since the BP is a supervised learning algorithm, it
similarity ~ with  traditional

has a fundamental

calibration techniques, where the mapping error
between control points and their stereo images are
tried to be minimized. Second, an interconnection of
nonlinear neurons can be helpful to overcome the
limit of linear techniques. Particularly, increased
accuracy and noise insensitivity are expected. Third,
the massively parallel nature of a neural net makes
it potentially fast for any computation task. Thus,
the major advantage of linear system may not be
hurt by employing a neural net. Finally, using a
neural network is basically a model-free approach.
Most existing techniques have tried to improve the
accuracy by reflecting the real physical nature more
precisely and usually required more complex model.
For example, Tsai(7] tried to correct symmetric lens
and Toscanil6]

corrected even asymmetric lens distortion for higher

distortion and Faugueras later
accuracy. Neural nets, in comparison, have much

larger adaptability and generality.

3D world
coordinates

stereo image 1
coordinates

ur

vr

uz

vz

Figure 2. A neural net for stereo-to-world mapping

An intuitive neural net implementation for the

problem given is in the architecture of Figure 2. The
elements of input vector are four stereo image
coordinates and those of output vector are three
world coordinates. Nonlinear activation function such
as sigmoid function employed for the neurons in
hidden and/or output layers may be helpful for
approximating the nonlinear mapping. The network
can be trained using a number of control points and
their stereo observations. For the generalization
performance test after learning the mapping, some
world points and their corresponding stereo images
which are not used for the training are also needed.
in the

architecture of Figure 2 may have several problems

Practically, however, a neural network
as we have found in our experimental study. One of
them is that the performance of a network depends
severely on its training data. Both the number and
the properties of the data affect the performance. In
existing camera calibration techniques, around twenty
or more number of noncoplanar control points are
enough to get reasonably accurate results. However,
when the neural network are trained with this
number of points, the accuracy is far worse than
those obtainable by even the simplest linear method
(as shown later in Section 4). Since collecting
accurate control points and their stereo observations
is not easy job, the requirement of a large number
of data for the learning certainly is a hmiting factor
of using the network. Another practical difficulty is
that the network may have very slow convergence
rate. Although it is known that a neural networks
with sufficient number of hidden neurons driven by
the BP algorithm can approximate any continuous
multivariate function to any desired degree of
accuracy, it is not practically useful if the desired
accuracy can not be obtained within reasonable time.
One cause of the slow convergence, when applied
is that the

error values we wish to meet are much less than

into the back-projection applications,
the absolute output values. The convergence of

network output is also dependent on network

parameters such as learning rate, momentum, and
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size of hidden layer. It is, however, difficult to
decide them optimally and the optimality varies
depending on data set even for the same problem
domain.

By the reasons stated till now another way of
neural net implementation is searched. We start with
several observations; (a) linear techniques suffer
from accuracy problem but they are fast and simple
practically, (b)

continuous nonlinear functions and camera systems

neural networks can learn any

are somewhat nonlinear, (¢} neural networks
converge very slowly when used for the stereoscopic
measurements and a large number of data are
required for the generalization.

A paradigm devised from these observations is

shown in Figure 3, where E is the estimate of

error between real 3D coordinates and those

computed by a linear technique, and P is the
estimated position after being corrected by the
neural network. The network is used here to learn
technique using

the error pattem of a linear

network’s nonlinear function learning capability.

Muttilayer feedforward
neural network for error vector
error_correction T
stereo image near ique +
i for i 3D position
uvLunvz 3D measurement + ?

Figure 3. A neural net for correcting linear
stereoscopic vision model

4. EXPERIMENTAL RESULTS

The performance of a feedforward neural network
having the structure of Figure 2 is tested by an
experiment. Real data of three calibration planes are
used for the experiment: Points of two planes at
near and far distances from the camera system and
their stereo images are used for training and those
of the middle plane are used for generalization
performance test. The distance between the middle
plane and cameras is about 2300([mm); hereafter all

)

o] &3 B

o
e

lengths are expressed in millimeters) and the planes

are placed at intervals of 200.

® .

10 26 36 40 B0___e0 718 40 0
Oete Numaar

Figure 4. Approximation by a stereo-to-world

mapping network; data are scaled between

0.05 and 0.95, 30000 iterations, number of

hidden nodes=16

(a) learning with 60 training data,

(b) testing for generalization performance
with 96 data

(c) testing for generalization performance
with data defined in a rotated world
frame

Figure 4 shows a test result. As shown in the
Figure 4(a) the network can be trained to learn the
world

mapping between the stereo and the

coordinates of given points. However, the
approximation error of the Z coordinate is much
larger than those of X and Y coordinates in a
generalization performance test as shown in Figure

4(b). One
distribution along Z axis is not diverse - points only

probable reason is that the data

two Z coordinates are used for the training.
Although this difficulty méy be avoided if we use
the points well distributed along the all three axes,
it is also practically common to use only limited
number of calibration planes because of difficulties in

precisely measuring the control points. We thus
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rotate the world frame so that the calibration data
can be represented evenly along the three axes
without losing generality. By this simple process the
accuracy can be improved from (average error,
(4143, 88.05) to (37.20, 57.09).
Table 1 presents the summarized results of the

maximum error) =

experiment. These results are obtained after 20000

iterations with feedforward neural nets having
different number of training points and nodes in a
hidden layer. Sigmoid function is used for both
hidden and output nodes. It is shown that the
generalized mapping accuracy obtained is far worse
than that of solving the linear equations described in
Section 2. The error is defined as the average
distance between the computed position and real

position of 3D points as

1n 32 (- X+ (Ve T+ (ZymZ0)" (6)

where n is the number of testing points, ( X, ¥, 2)
is the computed value for the real position (X,Y,2).

f
nur.n?aer 0 . 20 60
traiming ponts | B S
method lxne?r neural net lmeér neural net
solution solution
number of :
8 24 8 X
hidden nodes
average error | 554 5828 5502 475 6833 3b.71
MAXIMAM | 4075 7505 7187 1011 8433 5289
error

Table 1. The error of 3D position computation by
neural network compared with the results
by solving linear equations

The learning of neural network for the error
pattern of the linear system is also  experimented.
The desired output of the network is the error
vector between the real coordinates of the training
data and the actual solution of the linear system.
After the leamning, the network computes the error
pattern for the generalization performance testing
data and the pattern is added to the output of the

3, 548 47

linear system to estimate the real coordinates of the
test data. Figure 5 shows an example of the net's
error learning. Experimental results with different
number of hidden nodes and training data are
presented in Table 2. Significant reduction of error

is noticed compared with the results of Table 1.

nur'nl.)er of ' 20 60
training points
nflmber of g o8 o8-
hidden nodes v

average error 143 173 0.76 0.83
maximum error 688 686 2.38 260

Table 2. The error of 3D position computation by

linear solution and neural correction

—E— generalization error
S .
: \
¥
#10°
a , /
” learning error
A‘
10 o 05 1 15 2
Number of iterations x10*
(a)
10
£o
-
w
) E) © 60 (3] oo, T
10. by neural net
s
m: 0 | __ error of
L) linear soluts
o 20 40 60 0 Ao
0,
£ o
o
[} 20 40 60 80 100
DOata Number

(b}

Figure 5. Neural correction for the error of linear 3D
position measurement
(a) error plot: 60 control points for training
data, 8 hidden nodes
(b) error of linear system solution and
approximation by neural net for 96
generalization performance

data

checking
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5. CONCLUSIONS

The problem of stereoscopic 3D  position
measurement has been dealt with. We first discussed
the practical problems of existing camera calibration
techniques. A neural network is then introduced to
the problem as a method to tackle the problems.
Training a neural network for direct stereo-to-world
mapping is simple in concept but difficult to obtain
high accuracy within reasonable training time. So,
the neural stereo-to-world mapper can only be used
for limited applications where simplicity is more
important than the accuracy; for example, the world
modeling of a autonomous navigator. Learning the
error pattern of linear stereo model is another
studied. Using

capability of nonlinear function approximation, the

approach the neural network’'s

drawbacks of linear techniques can be largely
overcome without introducing ‘complex physical or
mathematical modeling process. Since a neural
network is in parallel computation architecture, the
major advantages of using linear techniques, the
simple and fast processing, are reduced only little
when corrected by the network. As the demand for
real-time stereo machine is very high, the paradigm

proposed in this paper can be practically useful.

REFERENCES

[1} APugh (ed.), Robot Vision, IFS, Bedford, 1983.

{21 G-QWei and S.DMa,
camera calibration: theory and experiments,”
IEEE Trans. Pattern Analysis and Machine
Intelligence, Vol.16, No.5, pp.469-480, 1994.

3] Mlto, “Robot
modelling and camera calibration,” Advanced
Robotics, Vol5(3), pp.321-337, 1991.

[4] Y.Yakimovsky and R.Cunningham, “A system

"Implicit and explicit

vision modelling - camera

for extracting three-dimensional measurements
from a stereo pair of TV cameras,” Computer
Vol7,

and Image  Processing,

pp.195-210, 1978.

Graphics

[5] S.Ganapathy, “Decomposition of transformation
matrices for robot vision,” in Proc IEEE Int.
Conf.- Robotics and Automation, pp.130-139,
1984.

[6] O.D.Faugueras and G.Toscaﬁi, “The calibration
problem for stereoscopic vision,” in Sensor
Devices and Systems for Robotics (A.Casals,
ed.), NATO ASI Vol F52,
Springer-Verlag, Berlin, pp.195-213, 1989.

(71 RYTsa, “A

technique for high accuracy 3d machine vision

Series,

versatile camera calibration
metrology using off-the-shelf TV cameras and
lenses,” IEEE JRobotics & Automation, Vol.
RA-3, Nod4, pp.323-344, 1987. .

(8] HBacakoglu and M.SKamel, "A three-step

method,” IEEE Trans.
Instrumentation and Measurement, Vol.46, No.5,
pp.1165-1172, 1997.

9] LW Faig,
grammetric system: mathematical formulation,”

camera calibration .

“Calibration of close-range photo-

Photogrammetric  Engineering and Remote
Sensing, Vol41, No.12, pp.1479-1486, 1975.

(10] K.W.Wong,
digital analysis in close-range photogrammetry”

“Mathematical formulation and
Photogrammetric  Engineering and Remote
Sensing, Vol4l, No.11, pp.1355-1373, 1975.

{111 K-1Funahashi, "On the approximate realization
of continuous mapping by neural networks,”
Neural Networks, Vol.2, pp.183-192, 1989.

{12) KM.Hornik et al, "Universal approximation of
an unknown mapping and its derivatives using
multilayer  feedforward networks,” Neural
Networks, Vol.3, pp.551-560, 1990.

{131 JWen and G.Schweitzer, "Hybrid calibration of
CCD cameras using artificial neural nets,” Int.
Joint Conf Neural Networks, pp.337-342, 1991.

[14 D-HChoi and S-Y.Oh,

network based camera

"Real-time neural
localization and its
Int. ]

Neural Systems, Vol.8, No.3, pp.279-293, 1997.
[15] AM.Thompson, "Camera geometry,” in Robotics

extension to mobile robot control,”

— 424 -



=4, oldh

Age;, In the Beginning (C.T.Helmers, ed.),
Hayden, Hasbrouck Heights, pp.102-109, 1983.
[16]

L.AGerhardt and WIKwak, "An imporved
adaptive  stereo  ranging  method  for
three-dimensional measurements,” in Proc

IEEE Conf. Computer Vision and Pattern
Recognition, pp.21-26, 1986.

#HHBE (Yongtae Do)
AR AP 455 =F 95-4-4-07, pM4

A Tt ZREATEY Fus

# KM (Dae-Sik Lee)

1960 59 5¢ A, 1982 A&
ot AzF e (FEAL, 1934
KAIST A7t % dAAFgH (F
844}, 1991d KAIST #7] %
AAZ g (FEEA), A b7
Wt HHFANFEE Fag,

Aol 458 % 2838

BAEk A%

F ®E B N

Al
al

, FHE 49

Ao 98 2

Wit (Seog-Hwan Yoo)

1956 1€ 344, 1975 A2
A71EEs (FFAh, 19799 M
o A7 Zata (B4}, 1989
University of Florida #7]2%3
(PhD), 84 d7ddn gl
TEE RIF BARoL AAA

o, Azxg % 2RI

~ 425 -




