난황으로 부터 항총치 항체의 분리 및 그 톡성

손동화 • 노정해 • 김영붕 • 한찬규 • 성기승 • 이남형
한국식품개발연구원

Properties of Anti-S. mutans IgY Separated from Egg Yolk

Dong-Hwa Shon, Jeong-Hae Rho, Young-Boong Kim, Chan-Kyu Han, Ki-Seong Sung and Nam-Hyung Lee
Korea Food Research Institute

Abstract

Chick antibodies (IgY) raised against Streptococcus mutans (serotype c) were separated from egg yolk and their properties were investigated. The purity of IgY extracts prepared by the method of λ-carrageenan, gammaYolk ${ }^{\mathrm{TM}}$, and EGGstract ${ }^{\mathrm{TM}}$ was $20 \%, 46 \%$, and 48%, respectively, and the yields of IgY extracts from a gram yolk were 11 . $3 \mathrm{mg}, 1.7 \mathrm{mg}$, and 1.8 mg , respectively. Quantitative immunoprecipitation test showed that specific IgY content of crude IgY prepared by λ-carrageenan method was 12.2%, which means that 0.85 g of crude IgY from an egg yolk (15 g) contains about 100 mg of specific IgY. When the reactivity of the specific IgY towards 3 cariesinducing strains (serotype: b, c, f) was examined, the strains cultured in sucrose-added medium showed higher reactivity (the orders were $\mathrm{c}(+), \mathrm{f}(+), \mathrm{b}(+)$) than those cultured in sucrose-free medium. Heat and pH stability of specific IgY was good, for crude IgY contained 50% of antibody activity after heat treatment at $70{ }^{\circ} \mathrm{C}$ for 5 min and they were stable at $\mathrm{pH} 4 \sim 8$.

Key words: yolk immunoglobulin (IgY), Streptococcus mutans, IgY, properties

서 론

난황 중의 항체는 포유류의 IgG (immunoglobulin G)에 해당되나 단백질 화학적 성질이 약간 다르고 난 황에서 얻어짐으로 IgY (imunoglobulin yolk)라고도 부른다. 또한 IgY가 어미닭으로 부터 알에 이행되는 성질을 이용하여 면역한 산란계의 난황에서 특이항체 (specific antibody)를 얻을 수 있다 ${ }^{(1-3)}$.

난황에서 특이항체를 언는 방법은 기존 방법에 비 하여 여러가지의 잇점이 있다 ${ }^{(4)}$. 즉, 채란이 용이함, 간 단한 처리로 항체의 분리가 가능합, 생산비용이 저렴 함, 시스템화된 면역이 가능함, 섭취시 안전성이 높음, 포유동물유래의 항원에 대하여는 포유동물의 경우보 다 산란계에서 우수한 항체를 얻을 수 있음 등이다. 특히 산란계 한 마리가 1년간 생산하는 난황에서 약 40 g 의 IgY 가 얻어지며, 그 생산성은 토끼의 경우보다 약 120 배 높은 것으로 보고되었다 ${ }^{(5)}$.

한편, 충치는 최근 발중빈도가 더욱 높아지고 있는

[^0]데, 대한치과의사협회(1992)는 우리나라 아동의 90% 이상이 치아우식을 경험했으며 성인들의 80% 이상이 잇몸병을 갖고 있다고 보고하였다. 충치 유발균으로 는 Streptococcus mutans와 S. sobrinus 등이 보고되고 있으며, 설탕성분의 존재시에 이들 균이 치아표면에 단단히 들러붙어서 식이로 부터의 가종 당류를 발효 하여서 산을 발생시키므로서 충치가 유발된다 ${ }^{(6)}$.

충치에 대응하는 방안의 하나는 충치유발 균에 대 한 항체를 수동면역하는 것이다 ${ }^{(0,9)}$. 따라서 대표적인 충치유발균주인 S, mutans에 대한 특이항체를 계란에 서 대량생산하고 분리하여 이를 치아의 표면에 도포 하거나 유제품, 빙과류, 제과류에 첨가합으로써 충치 예방용 기능성소재로 활용하기 위한 연구를 수행하였 다. 본보에서는 생산된 IgY 를 분리하고 그 분리효율 및 항체의 특이성과 안정성을 조사하였다.

재료 및 방법

충치 유발균주의 배양

생명공학연구소 유전자은행에서 분양받은 충치 유 발균주 Streptococcus rattus KCTC 3294 (serotype, b),
S. mutans KCTC 3300 (serotype, c), S. mutans KCTC 3306 (serotype, f)를 Otake 둥 ${ }^{(9)}$ 의 방법에 따라 설탕 5% 를 첨가한 brain-heart infusion (BHI) broth (Difco) 에서 $37^{\circ} \mathrm{C}, 24$ 시간 혐기배양하였다. 필요에 따라 설탕 무첨가 배지에서도 배양하였다. 배양이 긑난 액은 원 심분리하고 균체를 회수하여 넝동보관하면서 사용하 였다.

항 S. mutans 항체의 생산

S. mutans (serotype, c)의 균체를 Freund's complete adjuvant (Sigma)와 함께 $1: 1$ 유탁액을 만들어 28 주령 산란계의 근육에 최초면역하였다. 이때 면역한 균체는 마리당 $10^{8} \mathrm{cfu}$ 를, 유탁액의 부피는 1 mL 을 사용하였 다. 이후 같은 방법으로 2주간격으로 5차례의 추가면 역을 실시하였다. 단 adjuvant는 Freund's incomplete adjuvant (Sigma)를 사옹하였다. 항체의 분리를 위하여 사용한 계란은 특이항체의 활성이 높게 나타난 37~ 47 주령의 산란계에서 채취하였다. 산란계는 경기도 용 인군 원삼면 소재 덕이농장으로부터 구입한 Hy-Line Brown 7수를 사용하였으며, 사료는 상업적인 표준양 계용을 사용하였다.

난황으로부터 항체($\lg Y$) 의 분리

λ-Carrageenan을 이용한 분리: 난황을 같은 양(w/v) 의 증류수와 함께 잘 섞은 후 수분간을 방치하였다. 난 황의 4 배 분량 (w/v)의 $0.1 \% \lambda$-carrageenan (Sigma)을 섞 은 후 상온에서 30 분간 방치한 다음 $10,000 \times \mathrm{g}, 15$ 분 간 원심분리하였다. 침전물은 대부분 인지질이므로 제 거하고 수용성단백질인 상징액을 Whatman \#2 여과지 로 여과하였다. 장기 보관하면서 사용하기 위하여 동 결건조하였으며 이를 조난황 항체로 칭하였다.

GammaYolk ${ }^{\text {TM }}$ 를 이용한 분리: GammaYolk ${ }^{\text {TM }}$ kit (Pharmacia Biotech)의 제품 설명서에 따라 분리하였다. 간단히 설명하면, 10 g 의 난황을 5 mL PBS $(\mathrm{pH} 7.4)$ 를 넣고 섞은 다음 separation reagent 1 을 1.5 mL 넣고 $10.000 \times \mathrm{g}, 15$ 분간 원심분리하였다. 상징액 (부피, x mL)을 동량의 buffer solution 2 와 섞은 후 15 분간 방치 하고 separation reagent 3 을 $2 \times \mathrm{mL}$ 섞었다. 다시 15 분 간 방치한 후 $10.000 \times \mathrm{g}, 15$ 분간 원심분리하고 침전물 을 x mL 의 tris buffer ($\mathrm{pH} 9.0 \sim 9.5$)에 녹였다. 순도를 높일 경우 침전물을 x mL 물에 녹인 후 separation reagent 3에 의한 단계를 반복하였다.

EGGstract ${ }^{\text {TM }}$ 를 이용한 분리: EGGstract ${ }^{\text {TM }}$ kit (Promega) 의 제품 설명서에 따라 분리하였다. 간단히 설명하면, 난황 10 g 에 solution A 를 30 mL 넣고 5분간 섞은 후
$10.000 \times \mathrm{g}, 10$ 분간 원심분리하였다. 상징액(부패, x mL)을 4겹의 겨즈로 여과하고 solution B 를 $1 / 3 \times \mathrm{mL}$ 넣고 5 분간 섞었다. 다음으로 $10,000 \times \mathrm{g}, 10$ 분간 원심 분리후 침전물을 10 mL 의 $\operatorname{PBS}(\mathrm{pH} 9.0 \sim 9.5)$ 에 녹였 다. 순도를 높일 경우 침전물을 x mL 물에 녹인 후 solution B 에 의한 단계를 반복하였다.

단백질정량 및 전기영동

각 난황 항쳬 분리물의 단백질 함량은 280 nm 에서 용액의 홉광도 $\left(\mathrm{A}_{280}\right)$ 를 측정하고 여기에 홉광계수 $(\mathrm{E}=$ 13.3)를 나눈 $\%$ 값으로 구하였다. IgY 의 순도를 분석 하기 위한 SDS-PAGE는 Laemmli의 방법 ${ }^{(10)}$ 을 참고하 여 비환원조건하에서 SDS로 처리한 시료를 phastgel 4-15에 건 다음 PhastSystem ${ }^{\text {TM }}$ (Pharmacia Biotech)을 이웅하여 행하였다. 여기서 얻어진 각 band의 밀도를 Laser Densitometer (Pharmacia Ultroscan XL)를 이용 하여 633 nm 에서 측정하고 그 수치로 부터 순도를 구 하였다. IgY의 표준품은 Sigma사 제품을 사용하였다.

특이항체의 활성측정

효소면역측정법 (enzyme-linked immunosorbent assay; ELISA)으로 특이항체의 활성을 측정하고 그 홉 광도로서 활성을 나타내었다. 즉, coating buffer (0.02 M Tris, $0.15 \mathrm{NaCl}, \mathrm{pH} 9.0$)에 분산한 S. mutans ($\mathrm{A}_{\text {6sv }}=$ 0.05) 균체액 $100 \mu \mathrm{~L}$ 를 microplate (Nunc, \#446612)의 well에 분주후 $4^{\circ} \mathrm{C}$ 에서 하룻밤 방치하였다. 각 well을 washing buffer (0.02 M Tris, $0.15 \mathrm{M} \mathrm{NaCl}, 0.05 \%$ Tween20, pH 7.4) $150 \mu \mathrm{~L}$ 로 3회 세척후 washing buffer 에 희석한 항제(Ig Y) 용액 $100 \mu \mathrm{~L}$ 씩 넣고 상온에 서 1 시간 처리하였다. 3 회 세척후 washing buffer에 $1 /$ 10,000 로 희석한 2차항체(rabbit anti-chick IgY antibodyHRP conjugate, Sigma)를 $100 \mu \mathrm{~L}$ 씩 상온에서 1 시간 처리하였다. 3회 세척후 상기의 기질용액 $(0.01 \% \mathrm{TMB}$, 0.05 M citric acid-phosphate buffer, pH $5.0,0.02 \% \mathrm{H}_{2} \mathrm{O}_{2}$ 를 사용 직전에 첨가)을 100 uL 씩 첨가하고 상온에 서 30 분간 반응시켰다. 반웅정지액 $\left(2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}\right)$ 을 50 $\mu \mathrm{L}$ 씩 첨가하고 microplate reader (Molecular Devices, THERMOmax ${ }^{\text {PM }}$)를 사용하여 450 nm 에서의 홉광도를 측정하였다.

특이항체의 함량분석

λ-Carrageenan으로 분리한 조난황 항체 중 항 S. mutans 항체의 함랑을 면역침강반응으로 구하였다 ${ }^{(1)}$. 조난황 항체 용액 0.5 mL 씩에 S. mutans 균체분산액 $\left(\mathrm{A}_{\text {6601 }}=2.3\right)$ 을 각가 $0,0.2,0.4,0.6,0.8,1.0 \mathrm{~mL}$ 씩 혼합

하고 여기에 PBS buffer를 첨가하여 1.5 mL 로 조절하 였다. $37^{\circ} \mathrm{C}$ 에서 1 시간 처리한 후 $4^{\circ} \mathrm{C}$ 에서 하롯밤 방치 하여 면역복합체(Ag-Ab complex)를 형성시켰다. 이때 균체분산액에서 유래하는 가용성 물질의 영향을 배제 하기 위하여 IgY 용액 대신 PBS를 사용하여 위와 같 이 처리한 것도 함께 준비하였다. 이들을 $3,000 \times \mathrm{g}$ 에 서 원심 분리하여 면역복합체를 제거하였다. 각 상징 액의 홉광도 $\left(\mathrm{A}_{280}\right)$ 를 측정하고 각기 그 값에서 항원 무 첨가 처리군의 홉광도를 뺀 수치를 균체밀도에 대하 여 plot하여 최저 홉광도를 구하였다. 이때, 홉광도는 3.0 이하의 범위에서 난황 항체용액의 농도에 정비례 함을 확인하였으므로 이를 상대적인 단백질 농도로 간주하였다. 용액의 전체 단백질 중 특이항체의 함량 비를 다음식으로 구하였다.

Specific $\operatorname{Ig} Y=$

$$
\frac{\mathrm{A}_{280} \text { of blank - minimal } \mathrm{A}_{280}}{\mathrm{~A}_{280} \text { of blank }} \times 100(\%)
$$

특이항체의 균주특이성 조사

ELISA에 의하여 혈청형이 서로 다른 충치 유발균 주에 대한 특이항체의 반응성을 조사하였다. 각 균주 배양액으로 부터 회수한 균체를 coating buffer에 분산 한 액 ($\mathrm{A}_{\text {son }}=0.05$), $100 \mu \mathrm{~L}$ 를 microroplate의 well에 $4^{\circ} \mathrm{C}$, 하룻밤 코팅하였다. 이후의 과정은 앞에서 서술한 ELISA방법과 같이 행하였다. 다만, 이차항체는 원액 을 $1 / 2,000$ 에서 $1 / 500,000$ 까지 희석배율을 달리하여 처리하였다. 최소홉광도의 50% 를 나타내는 희석배율 을 구하고 이로 부터 각 균주에 대한 특이항체의 반웅 율을 구하였다.

항체의 안정성 시험

조난황 항체 중 IgY 의 열안정성을 시험하기 위하여 우선 동결건조한 수용성 단백질을 증류수에 용해하여 1% 및 5% 의 용액을 준비하였다. 이를 $60 \sim 90^{\circ} \mathrm{C}$ 수욕 조에서 5 분간 가열하고 냉각한 후 앞의 방법에 따라 특이항체의 할성을 측정하였다. 또한, pH 안정성을 조 사하기 위하여 $\mathrm{pH} 5 \sim 9$ 의 인산나트륨 옹액 및 완충액 과 여기에 인산용액을 첨가하여 $\mathrm{pH} 2 \sim 4$ 로 조절한 용

액 $(0.05 \mathrm{M})$ 에 수용성단백질을 1% 및 5% 로 용해하여 $37^{\circ} \mathrm{C}, 4$ 시간 방치하였다. 그후 인산나트륨 용액으로 pH 를 7.2 로 조절하고 특이항체의 활성을 측정하였다.

겹과 및 고찰

난황항체의 분리효율 비교

면역시킨 산란계의 난황은 특이항체를 함유하고 있으므로 난황을 직접 소재로서 사용핲 수도 있다. 그 러나, 난황 내의 지질은 항체의 항원에 대한 작용을 방해할 수 있어 항체를 난황으로부터 분리하여 사용 하는 것이 바람직하다. 이를 위하여 본 연구에서 는 natural gum인 λ-carrageenan을 이용한 분리방법, gammaYolk ${ }^{\mathrm{TM}}$ 에 의한 방법과 EGGstract ${ }^{\mathrm{TM}}$ 에 의한 방법 으로 난황 항체를 각각 분리하고 그 효율성을 비교하 였다.

난황 10 g 으로 부터 항체를 분리하였을 때, 각 방법 에 따라 얻은 최종용액의 단백질농도, 순도, 부피는 Table 1과 같다. 비환원상태하의 SDS-PAGE 전기영동 도에서 표준품 IgY 는 분자량 220 kDa 부근에서 나타났 으므로 이를 기준으로 scanning하여 순도를 구하였다 (Fig. 1). 한원 상태하의 SDS-PAGE에서 heavy chain

Fig. 1. Non-reducing SDS-PAGE patterns of IgY solutions on $\mathbf{4 - 1 5 \%}$ gradient Phastgel. Lane 1, Solution by gammaYolk ${ }^{\text {TM }}$ method; lane 2, Solution by EGGstract ${ }^{\text {TM }}$ method; lane 3, Water soluble fraction by λ-carrageenan method; lane 4 , Standard IgY; lane M, Molecular weight marker.

Table 1. Efficiency of IgY separation by several methods
$\left.\begin{array}{lcccccc}\hline \text { Method } & \begin{array}{c}\text { Protein conc. } \\ (\mathrm{mg} / \mathrm{mL})\end{array} & \begin{array}{c}\text { Purity } \\ (\%)\end{array} & \begin{array}{c}\text { IgY conc. } \\ (\mathrm{mg} / \mathrm{mL})\end{array} & \begin{array}{c}\text { Final vol. } \\ (\mathrm{mL})\end{array} & \begin{array}{c}\text { Total IgY } \\ (\mathrm{mg})\end{array} & \begin{array}{c}\text { IgY yield } \\ (\mathrm{mg} / \mathrm{g}\end{array} \\ \text { yolk })\end{array}\right]$
(약 70 kDa)과 light chain (약 50 kDa)으로 나눠진 IgY band는 다른 불순물과 중복되어 나타남으로써 정량에 부적합하였다(data 생략). Fig 1에서 상업적인 IgY 분 리키트인 gammaYolk ${ }^{\text {TM }}$ 와 EGGstract ${ }^{\text {TM 를 이용한 경우 }}$ 에 IgY 순도가 각각 $46,48 \%$ 로 높게 나타났으며, 순도 를 높이기 위하여 설명서에 따라 한차례 더 추출단계 를 반복한 경우에는 81% 와 73% 를 각각 나타내었다. 반면에 λ-carrageenan방법의 경우 IgY 순도는 20% 로 낮았다(Fig. 1).

그러나, 단백질농도 및 부피를 고려한 IgY 회수율은 난황 1 g 당 각각 $1.7,1.8,11.3 \mathrm{mg}$ 으로 나타났으며 (Table 1), 분리시간은 각각 1 시간이상, 35 분, 20 분 가 량씩 소요되었다. 따라서 λ-carrageenan방법이 다른 두 방법보다 IgY 분리순도는 낮지만 경제성, 간편성, 효 율성에서 우수하여 많은 양의 난황항체를 처리할 때 유용한 것으로 밝혀졌다. 따라서, 이후의 연구에서는 λ-carrageenan방법으로 분리한 수용성 단백질 획분을 동결 건조하고 조난황 항체로서 사용하였다.

전체 $\lg Y$ 중에서 특이항체의 함량 분석

조난황 항체를 여러 농도의 S. mutans와 반응시켜 면역 복합체를 형성시킨 후 원심분리로 이를 제거하 고 상징액중에 잔존하는 단백질의 양을 280 nm 에서 측정하여 Fig. 2 와 같은 결과를 얻었다. 여기에서 상대 적인 항원의 농도가 1.0 일 때 상징액의 홉광도는 거의 바닥값을 나타내어 S. mutans에 대한 톡이항체는 거의 제거되었음을 알 수 있다. 따라서 방법에 명시한 식에

Fig. 2. Quantitative immunoprecipitation of specific $\mathbf{I g Y}$ and S. mutans. The results were shown as the absorbance of the supernatants after removal of the immune complexes.

의하여 수용성 단백질중 특이항체의 비율은 다음의 계산과 같이 12.2% 임을 알 수 있었다.
$[(2.113-1.855) / 2.113] \times 100=12.2(\%)$
또한, 조난황 항체의 IgY 순도는 20% 이므로(Fig. 1 , Table 1), 난항항쳬(IgY)중에 함유된 특이항체의 비율 은 다음의 계산과 같이 61% 으로 나타났다.

$$
(12.2 / 20) \times 100=61(\%)
$$

그러므로 전체적으로 계란 하나로 부터 얻어지는 조난황 항체와 이에 포함된 IgY 의 양은 다음과 같다. 계란 65 g 에서 난황 15 g 을 얻고, 이를 λ-carrageenan 처리하여 수용성 단백질(조난황 항체) 0.85 g 을 얻을 수 있다. 조난황 항체 중 20% 인 170 mg 이 난황 항체 (IgY) 이고, 이중 61% 인 104 mg 이 특이항체이다.

특이함체의 균주특이성 조사

특이항체의 균주특이성을 세 종류의 충치유발균주 (혈청형 b, c, f)에 대하여 조사하였다. Fig. 3의 ELISA결 과와 같이 특이항체와 반응성이 가장 뛰어난 균주는 설탕 배지에서 배양한 혈청형 c (이하 $\mathrm{c}(+)$ 로 표시)이 었으며 다음으로 $\mathrm{f}(+), \mathrm{f}(-), \mathrm{b}(+), \mathrm{c}(-)$ 였으며, $\mathrm{b}(-)$ 는 시 험한 균주 중 다른 균주에 비하여 현저하게 낮은 반응 성을 나타내었다. 그림에서 최고 홉광도인 2.8 의 $1 / 2$ 값에 해당하는 홉광도인 1.4 를 나타낼 때의 항체 희석 배율을 구하고 그 수치를 비교하여, 톡이항체의 각 균 주에 대한 반응성을 Table 2에 나타내었다. 본 연구에 서 생산한 특이항체는 $\mathrm{c}(+)$ 에 대한 것이므로 $\mathrm{c}(+)$ 에 대

Fig. 3. Reactivity of specific IgY to Streptococcus strains at various dilution ratio.

Table 2. Cross-reactivity of specific IgY to Streptococcus strains

Serotype (sucrose)	EC_{50} (1/dil. ratio)	Reactivity (\%)
$\mathrm{c}(+)$	29,940	100.0
c (-		11,160
b (+)	14,520	37.3
b (-)	803	48.5
$\mathrm{f}(+)$	24,840	2.7
$\mathrm{f}(-)$	19,100	83.0

1) $\frac{\mathrm{EC}_{50} \text { of strain }}{\mathrm{EC}_{50} \text { of } \mathrm{c}(+)} \times 100$

한 반응율을 100% 로 하였다.
전체적으로 보면 특이항체는 설탕 존재하에서 배양 한 균주와 48% 이상의 반응성을 보여 대체로 양호하 였으나 설탕이 없는 배지에서 배양한 각 균주와의 반 웅성은 낮게 나타났다. 이는 설팅 존재하에 배양할 때 균체의 표면에 생성되는 항원이 특이항체와 잘 반응 하기 때문으로 추측된다. 특히 혈청형 c 균주의 경우 는 설탕첨가에 의하여 특이항체와의 반응성이 37.3% 에서 100% 로 증가한 것으로 미루어 그 효과가 큰 것 으로 생각된다. 한편, 혈청형 b 균주의 경우는 무설팅 배지에서 배양시 특이항체와의 반응성이 3% 이하로 매우 닞았다. 이는 아마도 특이항체의 생산시 면역원 으로 사용한 S. mutans와는 다른 종인 S. ratus이었기 때문으로 생각된다.

난황항체의 안정성

조난황 항체중에 존재하는 특이항체의 열과 pH 안 정성을 조사하고, 그 결과를 특이항체에 의한 ELISA 값 (백분율)으로 나타내었다. 우선 pH 안정성은 3 이하 에서는 매우 불안정하였으며 9에서 다소 불안정하였 으나 4~8사이에서 대체로 안정하였다 (Fig. 4). 항체의 농도에 따른 차이는 심하지 않았다.

다음으로 열안정성은 대체로 온도 의존적으로 $70^{\circ} \mathrm{C}$ 까지 조금씩 감소하여 50% 이상의 활성을 나타내었으 나 $80^{\circ} \mathrm{C}$ 이상에서는 급격히 감소하여 항쳬활성을 거의 상실하였다 (Fig. 5). 난황항체의 첨가 농도별로는 1% 의 경우가 5% 에 비하여 안정하였으며 (Fig. 5) 이보다 훨씬 낮은 농도인 0.001% 의 경우예는 $65^{\circ} \mathrm{C}$ 까지 항체 활성이 거의 감소하지 않았던 점으로 미루어 ${ }^{(2)}$, 낮은 농도에서 열안정성이 높은 것으로 생각된다. $4^{\circ} \mathrm{C}$ 의 저 온에서 난황항체의 항체활성은 수년간 저장하여도 유 의적인 손실이 없어 매우 안정하다고 보조되었다 ${ }^{(4)}$.

본 연구에서 생산한 항 S. mutans 항체가 충치 예방

Fig. 4. pH stability of specific lgY. Water soluble fraction of egg yolk (1% and 5% solution) was pH -treated for 4 hrs and residual activity of specific IgY was assayed by ELISA.

Fig. 5. Heat stability of specific IgY. Water soluble fraction of egg yolk (1% and 5% solution) was heat-treated for 5 min and residual activity of specific IgY was assayed by ELISA.

효과를 나타내기 위해서는 구강내 치아표면 등에 존 재하는 충치 유발균주와의 접촉이 중요하다. 그리고 난황항체를 충치 예방용 식품이나 구강제품에 활용하 는 경우에 제조공정 중 항체활성을 유지하여야 하는 데, 위에서 조사한 바와 같이 난황항체는 열과 pH 에 대한 안정성이 비교적 양호하므로 가공중 고온이나 극심한 pH 처리른 피하면 일반적인 가콩상의 큰 문제 는 없을 것으로 생각뉙다.

요 약

충치유발균인 Streptococcus mutans（혈청형 c）를 면 역한 산란계의 난황에서 항체를 분리하고 그 특성을 조사하였다．먼저 난황으로 부터 항체의 추출효율을 검 토하였을 매，λ－carrageenan，gammaYolk ${ }^{\text {M }}$ ，EGGstract ${ }^{\text {™ }}$ 의 방법으로 얻은 추출물 중 항체의 순도는 전기영동 에서 각각 $20,46,48 \%$ 로 나타났으며，난황 1 g 에서 얻은 항체의 수율은 각각 $11.3,1.7,1.8 \mathrm{mg}$ 이었다．점 량면역침강반응의 결과，λ－carrageenan방법으로 얻은 조난황 항체 중 특이항체의 비율은 12.2% 이었다．이 로부터 계란 하나분인 15 g 의 난황에서 얻은 0.85 g 의 조난황 항체에는 특이항체가 100 mg 가량 함유되어 있음을 알 수 있었다．세 종류 충치유발균주（혈청형 b， c, f ）에 대한 특이항체의 반응성을 조사하였을 때，설 탕 첨가배지에서 배양한 균주는 $\mathrm{c}(+), \mathrm{f}(+), \mathrm{b}(+)$ 의 순 으로 48% 이상의 높은 반웅성을 나타내었으나 무설탕 배지에서 배양한 균주의 반응성은 각각 이보다 낮게 나타났다．조난황 항체의 열 및 pH 안정성은 양호하여， $70^{\circ} \mathrm{C}$ 까지 50% 이상의 활성을 유지하였고 $\mathrm{pH} 4 \sim 8$ 에서 대체로 안정하였다．

문 헌

1．Polson A．and von Wechmar，M．B．：Isolation of viral IgY antibodies from yolks of immunized hens．Immunol． Commun．，9，475－481（1980）
2．Shimizu，M．，Fitzsimmons，R．C．and Nakai，S．：Anti－E． coli immunoglobulin Y isolated from egg yolk immunized
chickens as a potential food ingredient．J．Food Sci，53， 1360－1366（1988）
3．八田一，赤地重光，金武作：鶡卵抗體の大量生産ちよび産業利用技術の開發。日本農裂化學會誌，68，1457－1462 （1994）
4．Larsson，A．，Balow，R．M．，Linda，T．L．and Forsberg，P． O．：Chicken antibodies；taking advantage of evolution －a review．Poultry Sci．，72，1807－1812（1988）
5．Hatta，H．，Tsuda，K．，Akachi，S．，Kim．M．and Yamamoto， T．：Oral passive immunization effect of anti－human rota－ virus IgY and its behavior against proteolytic enzymes． Biosci．Biotech．Biochem．，57，1077－1081（1993）
6．Hamada，S．and Slade，H．D．：Biology，immunology，and cariogenicity of Streptococcus mutans．Microbiol．Rev．， 44，331－384（1980）
7．Filler，S．J．，Gregory，R．L．，Michalek，S．M．，Katz，J．and McGhee，J．R．：Effect of immune bovine milk on Streptococcus mutans in human dental plague．Arch． Oral Bio．，36，41－47（1991）
8．Hamada，S．，Horikoshi，T．，Minami，T．，Kawabata，S．， Hiraoka，J．，Fujiwara，T．and Ooshima，T．：Oral passive immunization against dental caries in rats by use of hen egg yolk antibodies specific for cell－associated glucosyl－ trasferase of Streptococus mutans．Infect．Immunol．，59， 4161－4167（1991）
9．Otake，S．，Nishihara，Y．，Makimura，M．，Hatta，H．，Kim， M．，Yamamoto，T．and Hirasawa，M．：Protection of rats against dental caries by passive immunization with hen－ egg－yolk antibody（IgY）．J．Dent．Res．，70，162－166 （1991）
10．Laemmli，U．K．：Cleavage of structural proteins during the assembly of the bacteriophage T4．Nature，227， 680－685（1970）
11．日本生化學會 編：免疫生化學研究达：續生化學實驗講座，Vol．5．東京化學同人，東京，Pp．1－83．（1986）
（1998년 7월 2일 접수）

[^0]: Corresponding author: Dong-Hwa Shon, Korea Food Research Institute, San 46-1, Baekhyun-dong, Bundang-gu, Songnam-si, Kyonggi-do 463-420, Korea

