Biochemical Characterization of 1-Aminocyclopropane-1-Carboxylate Oxidase in Mung Bean Hypocotyls

  • Jin, Eon-Seon (Department of Biology, College of Science, Yonsei University) ;
  • Lee, Jae-Hyeok (Department of Biology, College of Science, Yonsei University) ;
  • Kim, Woo-Taek (Department of Biology, College of Science, Yonsei University)
  • Published : 1998.01.31

Abstract

The final step in ethylene biosynthesis is catalyzed by the enzyme 1-aminocyclopropane-1-carboxylate (ACC) oxidase. ACC oxidase was extracted from mung bean hypocotyls and its biochemical characteristics were determined. In vitro ACC oxidase activity required ascorbate and $Fe^{2+}$, and was enhanced by sodium bicarbonate. Maximum specific activity (approximately 20 nl ethylene $h^{-1}$ mg $protein^{-1}$) was obtained in an assay medium containing 100 mM MOPS (pH 7.5), $25\;{\mu}M$ $FeSO_4$, 6 mM sodium ascorbate, 1 mM ACC, 5 mM sodium bicarbonate and 10% glycerol. The apparent $K_m$ for ACC was $80{\pm}3\;{\mu}M$. Pretreating mung bean hypocotyls with ethylene increased in vitro ACC oxidase activity twofold. ACC oxidase activity was strongly inhibited by metal ions such as $Co^{2+}$, $Cu^{2+}$, $Zn^{2+}$, and $Mn^{2+}$, and by salicylic acid. Inactivation of ACC oxidase by salicylic acid could be overcome by increasing the $Fe^{2+}$ concentration of the assay medium. The possible mode of inhibition of ACC oxidase activity by salicylic acid is discussed.

Keywords