Axial Fatigue Behavior of Structural Cables

구조용 케이블의 축방향 피로거동

  • 서정인 (우석대학교 토목공학과) ;
  • 장승필 (서울대학교 지구환경시스템공학부)
  • Received : 1998.08.28
  • Published : 1998.12.30

Abstract

This study was planned to verify the usefulness of Latin square design method in fatigue tests of cables and to see the axial fatigue behavior of wire ropes being used as hangers in suspension bridges. Three parameters : mean stress, stress range. and specimen length, were adopted for verification. The effects of these parameters are in argument except for stress range. Three classes in each parameter were used. Triple replication was performed in each cell to increase the number of replication (or degree of freedoms). The major cause of fatigue failure was fretting fatigue at trellis contact point. Three chosen parameters were proved to be significant. It was verified that the effect of stress range was in agreement with expectation, but the effect of specimen length was contrary to the expectation. It was also observed that the effect of mean stress depended upon the chosen level. Therefore Latin square design method is effective for verifying the parameters that affect fatigue behaviour under orthogonality conditions.

본 연구는 케이블의 피로실험에서 라틴방격법의 유용성을 입증하고, 현수교에서의 행어로서 사용되는 와이어로프의 축방향 피로거동을 보기 위하여 계획되었다. 평균 응력, 응력범위, 시편의 길이를 실험 인자로 선정하였다. 위에 선정한 인자의 효과는 응력 범위의 효과를 제외하고는 이론이 제기되고 있다. 각 인자에서는 3개의 수준이 사용되었다. 각 셀에서 자유도를 증가시키기 위하여 3번을 반복 수행하였다. 피로파괴의 주요 원인은 격자 접촉점에서의 접촉성 피로(fretting fatigue)였다. 선정된 3개의 인자는 모두 유의하였다. 응력범위의 효과는 예측된 바와 같았으며, 길이효과는 예상과 반대의 결과를 보여주었고, 응력수준의 효과는 채택된 응력수준에 따라 실험결과가 달라질 수 있음을 보여줬다. 그러므로 라틴방격법은 직교성이 갖춰진다면 피로거동에 영향을 미치는 인자들을 규명하는 데에 매우 효과적인 실험 방법임을 알 수 있다.

Keywords

References

  1. Proceedings of the Institution of Civil Engineers, Structures and Buildings v.94 Strengthening and refurbishment of Severn Crossing-Part 5: other background research and development Flint, A.R.;Smith, B.W.
  2. Fatigue of cables, Research Report No. SETEC CE 74-079 for the American Iron & Steel Institute Fleming, J.F.
  3. International Journal of Fatigue The Fatigue of Structural Wire Strands Hobbs, R.E.;Ghavami, K.
  4. Proceedings of IABSE v.66 Tensile fatigue if very short samples of stranded wire rope Chaplin, R.
  5. Journal of Engineering Mechanics v.111 no.7 Effective length of a Fractured wire in a wire rope Chien, C.;Costello, G.A.
  6. Internal damping in 38mm (nominal) specimens, CESLIC Report SC2 Wyatt, T.A.
  7. Axial fatigue of multilayered wire strand Papanikolas, P.
  8. International Journal of Fatigue v.16 Analysis of axial fatigue data for wire ropes Raoof, M.;Hobbs, R.E.
  9. Wire Industry v.56 no.667 Detecting fractures in steel cables Woodward, R.J.
  10. Statistical design of fatigue experiments Little, R.E.;Jebe, E.H.
  11. Applied linear statistical models John, N.(et al.)
  12. Wire Industry v.55 no.653 Fatigue behavior of large diameter wire ropes Casey, N.F.;Waters, D.M.
  13. Proceedings of IABSE v.66 Experimental execution and results of fatigue test with prestressing steel Esslinger, V.
  14. 구조용 로프의 피로거동 서정인