CERTAIN DISCRIMINATIONS OF PRIME ENDOMORPHISM AND PRIME MATRIX

Soon-Sook Bae

Abstract In this paper, for a commutative ring R with an identity, considering the endomorphism ring $\text{End}_R(M)$ of left R-module RM which is (quasi-)injective or (quasi-)projective, some discriminations of prime endomorphism were found as follows: each epimorphism with the irreducible(or simple) kernel on a (quasi-)injective module and each monomorphism with maximal image on a (quasi-)projective module are prime. It was shown that for a field F, any given square matrix in $\text{Mat}_{m \times n}(F)$ with maximal image and irreducible kernel is a prime matrix, furthermore, any given matrix in $\text{Mat}_{m \times n}(F)$ for any field F can be factored into a product of prime matrices.

1. Introduction

Let R be a commutative ring with an identity and let R^n be the direct product of n-copies of R, for any natural number n.

From the elementary linear algebras, it is well-known that there is an R-linear mapping between the set $\text{Mat}_{m \times n}(R)$ of all $m \times n$-matrices and the set $\text{Hom}_R(R^n, R^m)$ of all linear mappings from R^n into R^m, where $n, m \in N$ are any natural numbers. In this paper the fact that between $\text{Hom}_R(R^n, R^m)$ and $(\text{Mat}_{m \times n}(R))^t$ there is an R-linear mapping too, where t stands for the transpose operator is mostly used. In other words, for an element $(r_1, r_2, \ldots, r_n) \in R^n,$
\[
(r_1 \ r_2 \ \cdots \ r_n) \begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1m} \\
 a_{21} & a_{22} & \cdots & a_{2m} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nm}
\end{pmatrix} = (r_1, r_2, \cdots, r_n)f
\]

Let \((a_{ij})_{n \times m}\) act on the right side of \(R^n\) for the associated matrix \((a_{ij})_{n \times m}\) with \(f\), denoted by \(Mat(f)\). A module \(RM\) is said to be \(R-\text{quasi-projective}(R-\text{quasi-injective}, \text{resp.})\) if for each epimorphism \(g : RM \to RN\) (for each monomorphism \(f : RK \to RM\), resp.) and for each homomorphism \(\gamma : RM \to RN(\gamma : RK \to RM, \text{resp.})\) there is an \(R-\text{homomorphism such that } \gamma : RM \to RM\) such that \(\gamma = \bar{\gamma}g(\gamma : RM \to RM\text{ such that } \gamma = f\bar{\gamma}, \text{resp.).}\)

Recall that \(R^k\) is an \(R-(\text{quasi-})\text{injective and (quasi-)projective module}\) for any natural number \(k \in \mathbb{N}\). Because we are studying left \(R-\)modules \(RM\), conveniently let the compositions of all mappings be written by the reverse order, in the order as follows:

\[
gh : RK \xrightarrow{g} RM \xrightarrow{h} RN
\]

Lemma 1.1. Every monomorphism on any left \(R-(\text{quasi-})\text{injective module } RM\) is right invertible in \(\text{End}_R(M)\).

Proof. In the definition of an \(R-(\text{quasi-})\text{injective, replacing } RK\text{ by } RM\text{ and } \gamma\text{ by the identity on } RM\), the proof is established immediately.

Lemma 1.2. Every epimorphism on any left \(R-(\text{quasi-})\text{projective module } RM\) is left invertible in \(\text{End}_R(M)\).

Proof. In the definition of an \(R-(\text{quasi-})\text{projective, replacing } RN\text{ by } RM\text{ and } \gamma\text{ by the identity on } RM\), the proof is established immediately.

For the reason of the following definition, it will be answered partly in Remark 2.7.

An endomorphism \(g\) is said to be left \(\text{retractable in } \text{End}_R(M)\) if there is an endomorphism \(g' \in \text{End}_R(M)\) such that the restriction \(g'g|_{\text{Img}}\) of the composition \(g'g\) of \(g'\) and \(g\) to the image \(\text{Img}\) of \(g\) is the identity of the image of \(g\), that is, \(g'g|_{\text{Img}} = 1_{\text{Img}}\) the identity endomorphism on \(\text{Img} \leq M\).
DEFINITION 1.3. For a non-unit endomorphism \(p \) of the endomorphism ring \(S = \text{End}_R(M) \), \(p \) is said to be prime if \(p = fg \) for \(f, g \in S \), then \(f \) is right invertible or \(g \) is left retractable in \(\text{End}_R(M) \).

Two endomorphisms \(f, g \in \text{End}_R(M) \) are said to be similar if \(\text{Im}f = \text{Im}g \leq M \). This definition of the similarity of two \(f, g \in \text{End}_R(M) \) (with an \(n \)-dimension vector space \(F \cdot M \) over a field \(F = R \) having a fixed basis) is not the same as the similarity of two associated matrices \(\text{Mat}(f), \text{Mat}(g) \) in \(\text{Mat}_{n \times n}(R) \) with \(f, g \) by \(\text{Mat} : \text{End}_R(M) \rightarrow \text{Mat}_{n \times n}(R) \), i.e., not the same as the similarity of matrices in many general Linear Algebra books. Two endomorphisms \(f, g \in \text{End}_R(M) \) are said to be cosimilar if \(\ker f = \ker g \leq M \).

2. Results

Any commutative ring \(R \) with an identity and \(_RR^n \) are (quasi-)injective (quasi-)projective module for any natural number \(n \). By Lemmas 1.1 and 1.2, the following Theorems 2.1 and 2.2 are obtained easily.

Theorem 2.1. All non-unit epimorphisms on any left \(R- \) (quasi-)projective module \(_RM \) are prime.

Theorem 2.2. All non-unit monomorphisms on any left \(R- \) (quasi-)injective module \(_RM \) are prime.

A submodule \(N \leq M \) is said to be irreducible (simple) if \(N \) has no non-zero submodule.

Proposition 2.3. For a left (quasi-)projective module \(_RM \), if a monomorphism \(f \) in \(\text{End}_R(M) \) has the maximal image \(\text{Im}f \leq M \), then \(f \) is prime.

Proof. Suppose that \(f = gh \) for some endomorphisms \(g, h \in \text{End}_R(M) \). Then the maximal submodule \(\text{Im}f = \text{Im}gh \leq \text{Im}h \) implies that \(\text{Im}h = M \) or \(\text{Im}f = \text{Im}h \). If \(\text{Im}h = M \), then \(h \) is left invertible in \(\text{End}_R(M) \) since \(M \) is (quasi-)projective. Hence \(h \) is left retractable. If \(\text{Im}f = \text{Im}h \), then \(h = sf \) and \(f = th \) for some \(s, t \in \text{End}_R(M) \) since \(M \) is (quasi-)projective. Thus \(f = gh = gsf \) and \((1_M - gs)f = 0 \) follow, where \(1_M \) denotes the identity mapping on \(M \). Hence \(\text{Im}(1_M - gs)f = 0 \).
0 and $\text{Im}(1_M - gs) \leq \ker f = 0$ implies that $\text{Im}(1_M - gs) = 0$ and $1_M - gs = 0$. Hence g is right invertible in $\text{End}_R(M)$. Therefore f is prime. □

Let a prime monomorphism denote a monomorphism with the maximal image on a (quasi-)projective module.

Proposition 2.4. For any left (quasi-)injective R-module R^M, if an epimorphism f in $\text{End}_R(M)$ has the irreducible kernel $\ker f \leq M$, then f is prime.

Proof. By the dual proof of the Proposition 2.3, it is proved.

Let a prime epimorphism denote an epimorphism with the irreducible
(simple) kernel on an (quasi-)injective module.

Corollary 2.5. For an endomorphism g and for any prime monomorphism $f_\alpha \in \text{End}_R(M)$ with the (quasi-)projective module R^M, if $\text{Im}g \leq \cap_\alpha \text{Im}f_\alpha$, then f_α divides g for each α.

Proof. Suppose that $\text{Im}f \leq \cap_\alpha \text{Im}f_\alpha$ for some indexed $\{f_\alpha\}_\alpha$. Then the fact $\text{Im}f \leq \text{Im}f_\alpha$, for each α implies that $f = s_\alpha f_\alpha$ for some $s_\alpha \in \text{End}_R(M)$ and for each α since R^M is (quasi-)projective.

Corollary 2.6. For an endomorphism f and for any prime epimorphism $f_\alpha \in \text{End}_R(M)$ with (quasi-)injective module R^M, if $\ker f \geq \sum_\alpha \ker f_\alpha$, then f_α divides f for each α.

Remark 2.7. The definition of prime endomorphism (quasi-)injective
and
(quasi-)projective module R^M if $\text{End}_R(M)$ is commutative is the same as the definition of irreducible or prime elements of commutative rings.

Precisely, on a (quasi-)injective and (quasi-)projective module R^M each prime endomorphism f with $f = gh$ implies that g is a unit in $\text{End}_R(M)$ or h is left retractable.

For a right invertible factor g of f, there is an $s \in \text{End}_R(M)$ such that $gs = 1_M$. To show that $sg = 1_M$, let's consider the following
diagram including monomorphism g and epimorphism s with the condition $gs = 1_M$:

\[
\begin{array}{ccccccc}
M & \rightarrow & M \\
\alpha \downarrow & & \downarrow g \\
0 & \rightarrow & M & \rightarrow & M & \rightarrow & 0 \\
\downarrow s & & \downarrow \beta & & \downarrow s \\
M & \rightarrow & M & \rightarrow & M & \rightarrow & M
\end{array}
\]

then there are endomorphisms $\alpha, \beta \in \text{End}_R(M)$ such that $g = \alpha s$ and $s = g\beta$ since RM is (quasi-)injective (quasi-)projective. Clearly $\beta\alpha = 1_M$. And hence $sg = (g\beta)(\alpha s) = g(\beta\alpha)s = gs = 1_M$ follows. Therefore g is a unit. Thus if $\text{End}_R(M)$ is commutative, and if a prime endomorphism f has a product $f = gh = hg$, then one of g and h is at least a unit in $\text{End}_R(M)$.

From the above Corollaries 2.5 and 2.6 it isn’t told in general that f has a factorization in terms of the prime epimorphisms or the prime monomorphisms. It depends on the first left endomorphism and on the last right endomorphism. In other words, if $f = sp_\alpha$ (or $f = p_\alpha t$) for some prime epimorphism or prime monomorphism p_α. Then we must try to factor out s (or t) and so on, respectively.

Proposition 2.8. For a left (quasi-)injective and (quasi-)projective module RM, if a non-unit endomorphism f has the maximal image $\text{Im}f \leq M$ and the irreducible(simple) kernel $\text{ker} f \leq M$. Then f is prime.

Proof. Suppose that $f = gh$ with $\text{Im}g \cap \text{ker} h \neq 0$ or with $\text{Im}g \cap \text{ker} h = 0$. Then $\ker g \subseteq \ker f = g^{-1}(\ker h)$ the preimage of $\ker h$ under g implies that $\ker g = 0$ from $\text{Im}g \cap \ker h \neq 0$. Or we have a case of $\text{Im}g \cap \ker h = 0$ with $f = gh$. If $\text{Im}p \supseteq \text{Im}h = M$, the retractability of h follows immediately. Hence we assume that $\text{Im}h = \text{Im}p \leq M$ is proper in M.

We have a monomorphism g which is right invertible in $\text{End}_R(M)$ for the first case. For the case of $\text{Im}g \cap \ker h = 0$, if $\ker h \neq 0$ we have a submodule $\text{Im}g \oplus \ker h \leq M$. Then $\text{Im}f \simeq \text{Im}g \simeq \text{Im}h$ follows.
from \(\ker f = \ker g \) and \(\text{Im} h = \text{Im} p \), where the symbol \(\simeq \) denotes the isomorphic. Hence \(h \) is left retractable on \(\text{Im} h \) through the extendable isomorphisms on a left (quasi-)injective and (quasi-)projective module \(R^M \).

If \(\ker h = 0 \), it follows that a monomorphism \(h \) (which is a unit since \(R^M \) is a left (quasi-)injective and (quasi-)projective module) is left retractable on \(\text{Im} h \leq M \). Therefore \(f \) is a prime endomorphism. \(\square \)

3. Applications

Remind that the ring \(R \) is assumed to be a commutative ring with an identity. Here \(R^n = \prod_{i=1}^n R \) denotes the product of \(\{R_i\}_{1 \leq i \leq n} \) with \(R_i = R \) and \(R^{(n)} \) denotes the direct product of \(n \)-copies of \(R \). Recall the linear algebra theory: there is an \(R \)-linear mapping between the set of all linear mappings from an \(n \)-dimensional vector space \(F^U \) into the \(m \)-dimensional vector space \(F^V \) and the set \(\text{Mat}_{n \times m}(R) = (\text{Mat}_{m \times n}(R))^t \) of \(n \times m \)-matrices whose entries are in \(R \) where \(t \) denotes the transpose operator. For any field \(F \) with identity 1, the following should be noticed:

1. Every maximal submodule of \(F^{(n)} \) is the direct product \(F^{(n-1)} \) and every irreducible(simple) submodule of \(F^{(n)} \) is the direct product \(F^{(1)} \).
2. The direct product \(F^{(n)} \) of \(n \)-copies of any field \(F \) is (quasi-)injective and (quasi-)projective for any \(n \), moreover \(F^{(n)} \) is self-generated and self-cogenerated.
3. Hereafter we assume that each \(k \)-dimensional space \(F^k \) has the standard orthogonal basis
\[
\{e_i = (x_1, \ldots, x_k) \mid x_i = 1, x_j = 0, \text{ for } j \neq i, 1 \leq i, j \leq k \}
\]
for each natural number \(k \in \mathbb{N} \).
4. It is important to remember that every monomorphism and every epimorphism from \(F^k \) into itself \(F^k \) are automorphisms for every \(k \in \mathbb{N} \).

Briefly and conveniently, let's replace the associated linear mapping \(L(A) \) by \(A \) properly.

Application 3.1. Let \(A = (a_{ij}) \in \text{Mat}_{n \times n}(F) \) be a matrix with the maximal image \(\text{Im} A = F^{(n-1)} \) and the irreducible(simple) kernel
ker\(A = F^{(1)}\). Then \(A\) is a prime matrix. Furthermore every similar cosimilar matrix to the above matrix \((a_{ij})_{n \times n}\) is also prime.

Proof. For any epic or monic matrix \(U\), the associated linear mapping

\[L(U) : F^n \to F^n \text{ the (quasi-)injective (quasi-)projective } n-\text{dimensional vector space } F^n \text{ over } F \text{ is an automorphism.} \]

Hence each monic matrix and each epic matrix are units. Thus the Proposition 2.8 can apply here to the matrix ring \(Mat_{n \times n}(F)\). Hence we have immediately a prime matrix \(A\) with the maximal image and the irreducible kernel. \(\Box\)

For example, let \(A = (a_{ij}) \in Mat_{n \times n}(F)\) be a matrix such that

\[
\begin{align*}
 a_{jj} &= 1, \text{ for } 1 \leq j \leq n \\
 a_{ik} &= a_{ki} = -1, \text{ for the only one } k, 1 \leq k \leq n, \\
 a_{ij} &= 0, \text{ if } i \neq j \neq k.
\end{align*}
\]

\[
(a_{ij})_{n \times n} = \begin{pmatrix}
 1 & 0 & 0 & \cdots & -1 & \cdots & 0 \\
 0 & 1 & 0 & \cdots & 0 & \cdots & 0 \\
 0 & 0 & 1 & \cdots & 0 & \cdots & 0 \\
 \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
 -1 & \cdots & 0 & 1 & \cdots & \cdots & \cdots \\
 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\
 \cdots & \cdots & \cdots & \cdots & \cdots & 0 & 1
\end{pmatrix}
\]

is a prime matrix

For this matrix \((a_{ij})_{n \times n}\), \(A = (a_{ij})_{n \times n}\) is an endomorphism with the maximal image

\[ImA = \{(x_1, \ldots, x_k, \ldots, x_n) \mid x_1 = -x_k, x_t \in F\} \]

\[= F^{(n-1)} \]

and the irreducible(simple) kernel

\[\ker A = F^{(1)} \]

\[= \{ (a_1, 0, \cdots, 0, a_k, 0, \cdots, 0) \mid a_1 = a_k, a_t = 0 \text{ for } i \neq k, 1 \leq i \leq n \}. \]

Corollary 3.2. For any matrix \(A = (a_{ij})_{n \times n} \in Mat_{n \times n}(F)\) with a field \(F\) and for any prime matrix \(P_\alpha = (p_{ij})_\alpha \in Mat_{n \times n}(F)\), if
$\text{Im}A \leq \cap \text{Im}P_\alpha$ and if $\ker A \geq \sum \ker P_\alpha$, then P_α divides A for each α.

Recalling the item (3) above the Application 3.1, we only consider the standard orthogonal bases of all F^k. Then the following are obtained by the associate Mat preserving composition of linear mappings, that is,

$$\text{Mat}(fg) = \text{Mat}(f)\text{Mat}(g).$$

Application 3.3. For $n \in \mathbb{N}$ and for any field F with an identity 1, if $f : F^n \to F^n$ is a prime endomorphism, then the associated matrix $\text{Mat}(f)$ is a prime matrix. Clearly if a square matrix is prime, then its associated linear mapping is also a prime endomorphism.

For two matrices A, C, we call A an edge factor of C if $C = AB \cdots H$ or $C = H \cdots BA$ for some matrices B, \cdots, H.

Remark 3.4. For two square matrices $A, B \in \text{Mat}_{n \times n}(F)$, the following are to be read about similar matrices:

1. If A, B are similar in the sense of Linear Algebra, i.e., there is a unit matrix $N \in \text{Mat}_{n \times n}(F)$ such that $A = N^{-1}BN$. Then A is prime if and only if B is prime. However A and B need not be, in general, similar cosimilar in the sense of this paper.

2. For A, B as in (1) and for $C \in \text{Mat}_{n \times n}(F)$, A is a factor of C if and only if B is a factor of C, however for an edge factor A of C, B need not be an edge factor of C in general.

3. Moreover for similar cosimilar matrices $A, B \in \text{Mat}_{n \times n}(F)$, A is prime if and only if B is prime.

4. If A, B are similar cosimilar and $C \in \text{Mat}_{n \times n}(F)$. Then A is a factor, or an edge factor of C if and only if B is a factor, or an edge factor of C, respectively.

A **Method of Factorizing a Square Matrix.** There might be lots of different ways to factorize any given square matrix $A \in \text{Mat}_{n \times n}(F)$.

1. Find prime square matrices P_α such that $\cap \text{Im}P_\alpha \geq \text{Im}A$ and $\ker A \geq \sum \ker P_\alpha$.

2. Select one P_{α_0} of the prime matrices P_α.

3. Find a factor matrix F_{α_0} such that $A = F_{\alpha_0}P_{\alpha_0}$ or $A = P_{\alpha_0}F_{\alpha_0}$.
Certain discriminations of prime endomorphism and prime matrix

(4) *Do the step (1) for the factor matrix F_{cm}.*

(5) *After the steps (1) and (4), go to the steps (1) and (4).*

(6) *Select those factors of A and write them properly.*

For further applications of prime matrices with distinct size n by m for $n \neq m$, here some illustrations are given.

(1) For $n \leq m$ and a monomorphism $f : F^m \to F^n$, let $k = m - n$ and let partitionize the associated matrix $\text{Mat}(f)$ by k by k, that is, $(\text{Mat}(f)) = (F_{11} \ F_{12})$, where $F_{11} \in \text{Mat}_{k \times k}$ and $F_{12} \in \text{Mat}_{k \times n}$. Then we have a prime matrix $P \in \text{Mat}_{m \times m}(F)$, precisely

$$
P = \begin{pmatrix}
F_{11} & F_{12} \\
D_{kk} & 0_{nn}
\end{pmatrix}
$$

where $D_{kk} = (d_{ij})_{k \times k}$ with

$$
d_{ij} = \begin{cases}
0 & \text{if } i = j = l \text{ for only one } l, 1 \leq l \leq k \\
\delta_{ij} & \text{elsewhere, for the Kronecker's delta } \delta_{ij}
\end{cases}
$$

and where 0_{nn} is the zero matrix. This matrix $P = \begin{pmatrix} F_{11} & F_{12} \\
D_{kk} & 0_{nn}\end{pmatrix}$ is a prime factor of $\left(\begin{pmatrix} \text{Mat}(f) \\
0_{km} \end{pmatrix}\right)_{m \times m}$.

(2) For $n \geq m$ and an epimorphism $f : F^n \to F^m$, let $k = n - m$ and let partitionize the associated matrix $\text{Mat}(f)$ by m by m, that is $(\text{Mat}(f)) = \begin{pmatrix} F_{11} \\
F_{21} \end{pmatrix}$, where $F_{11} \in \text{Mat}_{m \times m}$ and $F_{21} \in \text{Mat}_{k \times m}$. Then we have a prime matrix P in $\text{Mat}_{n \times n}(F)$ such that $P = \begin{pmatrix} F_{11} & 0_{mk} \\
F_{21} & D_{kk}\end{pmatrix}$ where $D_{kk} = (d_{ij})_{k \times k}$ is as in the above (1) and where 0_{mk} is the zero matrix. This matrix P is a prime factor of $\left(\begin{pmatrix} \text{Mat}(f) \\
0_{nk} \end{pmatrix}\right)_{n \times n}$.

References

Department of mathematics
Kyungnam University
Masan 631-701, Korea
E-mail: ssb@hanma.kyungnam.ac.kr