PROPERTIES OF PSEUDOCONFORMAL MAPPINGS IN COMPLEX BANACH SPACES

KWANG HO SHON AND HYUN JUNG KIM

1. Introduction

T. Higuchi[1] obtained the distribution theorem of holomorphic mappings in several complex variables. P. Liczberski[3] and T. Matsuno[4] investigated the starlikeness of holomorphic mappings in complex vector spaces, separately. And H. J. Kim and K. H. Shon[2] obtained some properties of starlikeness for pseudoconformal mappings in complex Banach spaces. For \((z_1, \ldots, z_n) = z \in \mathbb{C}^n\), define \(|z| = \max_{1 \leq i \leq n} |z_i|\) and let \(D_r = \{z \in \mathbb{C}^n : |z| < r\}\) and \(D = D_1\). Let \(\mathcal{F}\) be the family of \(w : D \to \mathbb{C}^n\) which are holomorphic and satisfy \(w(0) = 0\), \(\text{Re} \left[\frac{w_i(z)}{z_i} \right] \geq 0\) when \(|z| = |z_i| > 0\), \((1 \leq i \leq n)\), where \(w = (w_1, \ldots, w_n)\).

In this paper, we investigate some properties of starlike mappings with respect to pseudoconformal mappings in complex Banach spaces.

2. Preliminaries

Definition 2.1. A holomorphic mapping \(f : D \to \mathbb{C}^n\) is starlike if \(f\) is univalent, \(f(0) = 0\) and \(sf(D) \subset f(D)\) for all \(s \in I = [0, 1]\).

Definition 2.2 For a system of \(n\) holomorphic functions \(f_j = \ldots\)

Received October 8, 1998

Key words and phrases. Pseudoconformal mapping, starlikeness, holomorphic mapping, complex Banach space
\[f_j(z) \ (j = 1, 2, \cdots, n), \]

\[
\det \frac{\partial f}{\partial z} = \begin{vmatrix}
\frac{\partial f_1}{\partial z_1} & \cdots & \frac{\partial f_1}{\partial z_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_n}{\partial z_1} & \cdots & \frac{\partial f_n}{\partial z_n}
\end{vmatrix} \neq 0
\]

then we call \(f \) a pseudoconformal mapping.

From Theorems 1 and 2 of T. J. Suffridge[5], we have the following theorem.

Theorem 2.3 The mapping \(f : D \rightarrow \mathbb{C}^n \) is starlike if and only if there exists \(w \in \mathcal{F} \) such that a pseudoconformal mapping \(f = Jw \), where \(f \) and \(w \) are written as column vectors and \(f(0) = 0 \).

Definition 2.4 If \(f : D \rightarrow \mathbb{C}^n \) is a biholomorphic map of \(D \) onto a convex domain, we say that \(f \) is convex.

T. J. Suffridge[5] proved that for the pseudoconformal mapping \(f : D \rightarrow \mathbb{C}^n \) being biholomorphic and \(f(0) = 0 \), the mapping \(f \) is convex if and only if there exists \(f \) which is univalent of \(D \) onto convex domains such that \(f(z) = T(f_1(z_1), f_2(z_2), \cdots, f_n(z_n)) \), where \(T \) is a nonsingular linear transformation.

3. Starlike mapping in complex Banach spaces

Let \(X \) and \(Y \) be complex Banach spaces and let \(B = \{ x \in X : \| x \| < 1 \} \). For \(0 \neq x \in X \), let \(T(x) \) be the collection of all continuous real linear functionals \(x^* \) on \(X \) satisfying \(x^*(x) = x \) and \(x^*(y) \leq \| y \| \) for all \(y \in X \). Let \(\mathcal{F}_0(B) \) be the class of mappings \(w : B \rightarrow X \) which are holomorphic, and satisfy \(w(0) = 0 \), and \(x^*(w(x)) \geq 0 \) when \(0 \neq x \in B \) and \(x^* \in T(x) \). Further let \(\mathcal{F}(B) \) be the class of \(w \in \mathcal{F}_0(B) \) which satisfy \(x^*(w(x)) > 0 \) when \(0 \neq x \in B \) and \(x^* \in T(x) \).

We can define a starlike map in the complex Banach spaces like a definition of a starlike map in \(\S2 \). That is, a holomorphic mapping \(f : B \rightarrow Y \) is starlike if \(f \) is one-to-one, \(f(0) = 0 \), and \(sf(B) \subset f(B) \) for all \(s \in I \).
THEOREM 3.1[6]. Suppose \(f : B \to Y \) is starlike and that \(f^{-1} \) is holomorphic on an open subset \(f(B) \) of \(Y \). There exists \(w \in \mathcal{F}(B) \) such that \(f(x) = Df(x)w(x) \).

THEOREM 3.2[6]. Let \(f : B \to Y \) be holomorphic and \(f(0) = 0 \). Assume \(Df(x) \) has a bounded inverse for each \(x \in B \) and for some \(w \in \mathcal{F}(B) \), \(f(x) = Df(x)w(x) \). Then \(f \) is starlike.

EXAMPLE 3.3. Define \(f : B \to Y = I^3 \) by \(f(x) = (ax_1, bx_2, cx_3) \) where \(a, b, c \) are arbitrary constants, and \(||x||^3 = |x_1|^3 + |x_2|^3 + |x_3|^3 \).

Then \(\frac{f(x)}{Df(x)} = w(x) \) where \(w(x) = (x_1, x_2, x_3) \). But for \(0 \leq t \leq 1 \), let \(v(x, y, t) : B \to B \) be the restriction of the linear map having matrix

\[
\begin{pmatrix}
1 - t & \sqrt{1 - t^2} - 1 & \sqrt{1 - t^2} - 1 \\
\sqrt{1 - t^2} - 1 & 1 - t & \sqrt{1 - t^2} - 1 \\
\sqrt{1 - t^2} - 1 & \sqrt{1 - t^2} - 1 & 1 - t
\end{pmatrix}.
\]

Then \(f \) is starlike.

Let \(\mathcal{K}_0(B) \) be the class of all functions \(w : B \times B \times B \to X \) which are holomorphic in each variable and satisfy \(w(x, x, x) = 0 \) and \(x^*(w(x, y, z)) \geq 0 \) if \(x^* \in T(x) \) and \(\max\{||y||, ||z||\} \leq ||x|| \). Let \(\mathcal{K}(B) \) be the collection of all \(w \in \mathcal{K}_0(B) \) which satisfy \(x^*(w(x, y, z)) > 0 \) when \(x^* \in T(x) \) and \(\max\{||y||, ||z||\} < ||x|| \). The technique of the following theorem is based on the method in T J Suffridge[6].

THEOREM 3.4 If \(w \in \mathcal{K}_0(B) \) and \(|\alpha| < 1 \) then \(\frac{1}{|\alpha|} w(\alpha x, \alpha y, \alpha z) \in \mathcal{K}_0(B) \) (the limit value at \(\alpha = 0 \) is \(Dw(0, 0, 0)(x, y, z) \)). Furthermore if \(x^* \in T(x) \), \(0 \neq x \in B \) and \(\max\{||y||, ||z||\} \leq ||x|| \), then \(x^*(w(x, y, z)) = 0 \) if and only if \(x^*(Dw(0, 0, 0)) = 0 \).

Proof. For \(0 < |\alpha| < 1 \), \(x^* \in T(x) \), define \(x_{\alpha}^* \) by

\[
x_{\alpha}^*((x, y, z)) = x^*\left(\frac{\alpha(x, y, z)}{\alpha}\right)
\]

for all \((x, y, z) \in X \times X \times X \). Then \(x_{\alpha}^* \in T(\alpha x) \). Thus,

\[
0 \leq \frac{1}{|\alpha|} x_{\alpha}^* (w(\alpha x, \alpha y, \alpha z)) = \frac{1}{|\alpha|} x^* \left(\frac{w(\alpha x, \alpha y, \alpha z)}{\alpha}\right)
\]
\[x^* \left(\frac{w(\alpha x, \alpha y, \alpha z)}{\alpha} \right) = x^* \left(\frac{w(\alpha x, \alpha y, \alpha z)}{\alpha} \right). \]

Since \(x^* \) is continuous, we have

\[\frac{1}{\alpha} w(\alpha x, \alpha y, \alpha z) \in K_0(B) \]

for \(|\alpha| < 1\). Since \(x^*((x, y, z)) = \text{Re}[x^*((x, y, z) - iw^*(i(x, y, z))] \) is the real part of a continuous complex linear functional

\[x^* \left(\frac{w(\alpha x, \alpha y, \alpha z)}{\alpha} \right) \]

is nonnegative harmonic of \(\alpha \) for fixed \((x, y, z)\) and \(|\alpha| < \frac{1}{\|x, y, z\|} \).

Since

\[\frac{1}{\alpha} w(\alpha x, \alpha y, \alpha z) \in K_0(B), \]

we have

\[x^* \left(\frac{(\alpha x, \alpha y, \alpha z)}{\alpha} \right) \geq 0 \]

if \(x^* \in T(x) \). Hence \(w \) is holomorphic and so

\[x^* \left(\frac{w(\alpha x, \alpha y, \alpha z)}{\alpha} \right) \]

is harmonic. Therefore

\[x^* \left(\frac{w(\alpha x, \alpha y, \alpha z)}{\alpha} \right) > 0 \]

or

\[x^* \left(\frac{w(\alpha x, \alpha y, \alpha z)}{\alpha} \right) \equiv 0 \]

for fixed \((x, y, z)\). Hence we have \(x^*(Dw(0, 0, 0)(x, y, z)) \equiv 0 \).
Pseudoconformal mappings in complex Banach space

References

Department of Mathematics
College of Natural Sciences
Pusan National University
Pusan 609-735, Korea
E-mail: khshon@hyowon.pusan.ac.kr