A GEOMETRIC CRITERION FOR MEMBERSHIP IN NEW CLASSES $A_{1,1}^2(r)$

HAN SOO KIM AND HAE GYU KIM

1. Introduction

Let H be a separable, infinite dimensional, complex Hilbert space and let $L(H)$ denote the algebra of all bounded linear operators on H. A dual algebra is a subalgebra of $L(H)$ that contains the identity operator 1_H and is closed in the ultraweak operator topology on $L(H)$. For $T \in L(H)$, let A_T denote the smallest subalgebra of $L(H)$ that contains T and 1_H and is closed in the ultraweak operator topology. Moreover, let Q_{A_T} denote the quotient space $C_1(H)/^\perp A_T$, where $C_1(H)$ is the trace class ideal in $L(H)$ under the trace norm, and $^\perp A_T$ denotes the preannihilator of A_T in $C_1(H)$. For a brief notation, we shall denote Q_{A_T} by Q_T. One knows that A_T is the dual space of Q_T and that the duality is given by

$$ (1) \quad \langle A, [L] \rangle = tr(AL), \quad A \in A_T, \quad [L] \in Q_T. $$

The Banach space Q_T is called a predual of A_T. For x and y in H, we can write $x \otimes y$ for the rank one operator in $C_1(H)$ defined by

$$ (2) \quad (x \otimes y)(u) = (u, y)x, \quad \forall u \in H. $$

The theory of dual algebras is applied to the study of invariant subspaces, dilation theory, and reflexivity. The classes $A_{m,n}$ (to be defined in Section 2) were defined by Bercovici-Foias-Pearcy in [3]. Also these classes are closely related to the study of the theory of dual algebras.

Received November 12, 1997.

The first author was supported by the Basic Science Research Institute Program, Ministry of Education, 1998, Project No BSRI-98-1401
Especially, B. Chevreau and C. Pearcy [7] defined the properties $E_{\theta,\gamma}$ (to be defined in Section 2), and B. Chevreau, C. Exner and C. Pearcy [6] obtained some new sufficient conditions for membership in the class $A_{1,\mathfrak{m}}$ (to be defined in Section 2) concerning the properties $E_{\theta,\gamma}$. In this paper, we construct new classes and obtain a geometric criterion for membership in the classes $A_{m,n}^l$ (to be defined in Section 3).

2. Notation and preliminaries

The notation and terminology employed herein agree with those in [4], [5], [7], [12]. We shall denote by D the open unit disc in the complex plane \mathbb{C}, and we write T for the boundary of D. The space $L^p = L^p(T), 1 \leq p \leq \infty$, is the usual Lebesgue function space relative to normalized Lebesgue measure m on T. The space $H^p = H^p(T), 1 \leq p \leq \infty$, is the usual Hardy space. It is well–known that the space H^∞ is the dual space of L^1/H^1_0, where

$$H^1_0 = \{ f \in L^1 : \int_0^{2\pi} f(e^{it})e^{int}dt = 0, \text{ for } n = 0,1,2,\ldots \},$$

and the duality is given by the pairing

$$\langle f, [g] \rangle = \int_T fgdm \text{ for } f \in H^\infty, \ [g] \in L^1/H^1_0.$$

Recall that any contraction T can be written as a direct sum $T = T_1 \oplus T_2$, where T_1 is a completely nonunitary contraction and T_2 is a unitary operator. If T_2 is absolutely continuous or acts on the space $(0), T$ will be called an absolutely continuous contraction. The following Foiaş-Sz.Nagy functional calculus provides a good relationship between the function space H^∞ and a dual algebra \mathcal{A}_T.

Theorem 2.1 [4, Theorem 4.1]. *Let T be an absolutely continuous contraction in $\mathcal{L}(\mathcal{H})$. Then there is an algebra homomorphism $\Phi_T : H^\infty \to \mathcal{A}_T$ defined by $\Phi_T(f) = f(T)$ such that*

(a) $\Phi_T(1) = 1_{\mathcal{H}}, \Phi_T(\xi) = T_t$,
(b) $\|\Phi_T(f)\| \leq \|f\|_{H^\infty}, \ f \in H^\infty$,
(c) Φ_T is continuous if both H^∞ and \mathcal{A}_T are given their weak* topologies,*
(d) the range of \(\Phi_T \) is weak* dense in \(\mathcal{A}_T \),
(e) there exists a bounded, linear, one-to-one map \(\phi_T : Q_T \to L^1/H_0^1 \) such that \(\Phi_T^* = \Phi_T \), and
(f) if \(\Phi_T \) is an isometry, then \(\Phi_T \) is a weak* homeomorphism of \(H^\infty \) onto \(\mathcal{A}_T \) and \(\phi_T \) is an isometry of \(Q_T \) onto \(L^1/H_0^1 \).

Definition 2.2 [3]. Let \(\mathcal{A} \subset \mathcal{L}(\mathcal{H}) \) be a dual algebra and let \(m \) and \(n \) be any cardinal numbers such that \(1 \leq m, n \leq \aleph_0 \). A dual algebra \(\mathcal{A} \) will be said to have property \((A_{m,n})\) if \(m \times n \) system of simultaneous equations of the form

\[
[x_i \otimes y_j] = [L_{i,j}], \quad 0 \leq i < m, 0 \leq j < n,
\]

where \(\{[L_{i,j}]\}_{0 \leq i < m} \) is an arbitrary \(m \times n \) array from \(Q_A \), has a solution \(\{x_i\}_{0 \leq i < m}, \{y_j\}_{0 \leq j < n} \) consisting of a pair of sequences of vectors from \(\mathcal{H} \). Furthermore, if \(m \) and \(n \) are positive integers and \(r \) is a fixed real number satisfying \(r \geq 1 \), a dual algebra \(\mathcal{A} \) (with property \((A_{m,n})\)) is said to have property \((A_{m,n}(r))\) if for every \(s > r \) and every \(m \times n \) array \(\{[L_{i,j}]\}_{0 \leq i < m} \) from \(Q_A \) such that the rows and columns of the matrix \(\{[L_{i,j}]\}_{0 \leq i < m} \) are summable, there exist sequences \(\{x_i\}_{0 \leq i < m} \) and \(\{y_j\}_{0 \leq j < n} \) from \(\mathcal{H} \) that satisfy (5) and also satisfy the following conditions:

\[
\|x_i\|^2 \leq s \sum_{0 \leq j < n} \|[L_{i,j}]\|, \quad 0 \leq i < m,
\]

and

\[
\|y_j\|^2 \leq s \sum_{0 \leq i < m} \|[L_{i,j}]\|, \quad 0 \leq j < n.
\]

Finally, a dual algebra \(\mathcal{A} \subset \mathcal{L}(\mathcal{H}) \) has property \((A_{m,\aleph_0}(r))\) (for some real number \(r \geq 1 \)) if for every \(s > r \) and every array \(\{[L_{i,j}]\}_{0 \leq i < m, 0 \leq j < \infty} \) from \(Q_A \) with summable rows, there exist sequences \(\{x_i\}_{0 \leq i < m} \) and \(\{y_j\}_{0 \leq j < \infty} \) from \(\mathcal{H} \) that satisfy (5) and (6a, b) with the replacement of \(n \) by \(\aleph_0 \). Properties \((A_{\aleph_0,\aleph_0}(r))\) and \((A_{\aleph_0,\aleph_0}(r))\) are defined similarly. For brief notation, we shall denote \((A_{n,n})\) by \((A_n)\). Furthermore, if \(m \) and \(n \) are cardinal numbers such that \(1 \leq m, n \leq \aleph_0 \), we denote by \(A_{m,n} = A_{m,n}(\mathcal{H}) \) the set of all \(T \) in \(\mathcal{A}(\mathcal{H}) \) such that the singly generated dual algebra \(\mathcal{A}_T \) has property \((A_{m,n})\).
Definition 2.3 [7]. Suppose $A \subset \mathcal{L}(\mathcal{H})$ is a dual algebra and $0 \leq \theta < \gamma \leq 1$. We denote by $\mathcal{E}_\theta(A)$ (resp. $\mathcal{E}_\delta(A)$) the set of all $[L]$ in Q_A such that there exist sequences $\{x_i\}_{i=1}^\infty$ and $\{y_i\}_{i=1}^\infty$ of vectors from \mathcal{H} satisfying

(a) \(\limsup_{i \to \infty} \|[x_i \otimes y_i] - [L]\| \leq \theta \),

(b) \(\|x_i\| \leq 1, \|y_i\| \leq 1, 1 \leq i < \infty \),

(c') \(\|[x_i \otimes z]\| \to 0 \) for all z in \mathcal{H} (resp. $(c') \|z \otimes y_i\| \to 0$ for all z in \mathcal{H}), and

(d') \(\{y_i\} \) converges weakly to zero (resp. $(d') \{x_i\}$ converges weakly to zero).

For $0 \leq \theta < \gamma \leq 1$, the dual algebra A is said to have property $E_{\theta, \gamma}$ (resp. $E_{\delta, \gamma}$) if the closed absolutely convex hull of the set $\mathcal{E}_\theta(A)$ (resp. $\mathcal{E}_\delta(A)$) contains the closed ball $B_{0, \gamma}$ of radius γ centered at the origin in Q_A:

\[
\overline{\text{co}}(\mathcal{E}_\theta(A)) \supset \{[L] \in Q_A : \|[L]\| \leq \gamma\} = B_{0, \gamma}.
\]

(resp. \(\overline{\text{co}}(\mathcal{E}_\delta(A)) \supset B_{0, \gamma} \))

To establish our results, it will be convenient to use the minimal coisometric extension theorem [12]: every contraction T in $\mathcal{L}(\mathcal{H})$ has a minimal coisometric extension $B = B_T$ that is unique up to unitary equivalence. Given such T and B, one knows that there exists a canonical decomposition of the isometry B^* as

\[
B^* = S \oplus R^*
\]

corresponding to a decomposition of the space

\[
\mathcal{K} = S \oplus \mathcal{R},
\]

where, if $S \neq (0)$, S is a unilateral shift operator of some multiplicity in $\mathcal{L}(S)$, and, if $\mathcal{R} \neq (0)$, R is a unitary operator in $\mathcal{L}(\mathcal{R})$. Of course, either S or \mathcal{R} may be (0) (\([7]\))
Lemma 2.4 [7, Lemma 3.2]. If T is an absolutely continuous contraction in $\mathcal{L}(\mathcal{H})$ with minimal coisometric extension B in $\mathcal{L}(\mathcal{K})$, and the subspace \mathcal{R} of \mathcal{K} in (9) is nonzero, then the unitary operator R in (8) is absolutely continuous.

Lemma 2.5 [7, Lemma 3.5]. Suppose $T \in A(\mathcal{K})$ and has minimal coisometric extension B in $\mathcal{L}(\mathcal{K})$. Then $B \in A(\mathcal{K}), \Phi_T \circ \Phi_B^{-1}$ is an isometry and weak* homeomorphism from \mathcal{A}_B onto \mathcal{A}_T, and $j = \varphi_B^{-1} \circ \varphi_T$ is a linear isometry of Q_T onto Q_B. Moreover,

\[(10) \quad j([C_\lambda]_T) = [C_\lambda]_B, \quad \lambda \in D,\]

and

\[(11) \quad j([x \otimes y]_T) = [x \otimes y]_B, \quad x, y \in \mathcal{H}.\]

Lemma 2.6 [7, Lemma 3.6]. If T belongs to $A(\mathcal{H})$ and has minimal coisometric extension B in $\mathcal{L}(\mathcal{K})$, $x, y \in \mathcal{H}$, and $w, z \in \mathcal{K}$, then

\[(12) \quad \|[x \otimes y]_T\| = \|[x \otimes y]_B\|,\]

\[(13) \quad [x \otimes z]_B = [x \otimes Pz]_B,\]

and

\[(14) \quad [w \otimes z]_B = [Qw \otimes Qz]_B + [Aw \otimes Az]_B.\]

Lemma 2.7 [7, Lemma 3.7]. Suppose $T \in A(\mathcal{H})$ and has minimal coisometric extension B in $\mathcal{L}(\mathcal{K})$, and $\{x_n\}_{n=1}^{\infty}$ is a sequence from \mathcal{H} such that

\[(15) \quad \|[x_n \otimes y]_T\| \to 0, \quad \forall y \in \mathcal{H},\]

then we have

\[(16) \quad \|[x_n \otimes z]_B\| \to 0, \quad \forall z \in \mathcal{K},\]

\[(17) \quad \|[Qx_n \otimes z]_B\| \to 0, \quad \forall z \in \mathcal{K},\]

and

\[(18) \quad \|[Ax_n \otimes z]_B\| \to 0, \quad \forall z \in \mathcal{K}.\]
Lemma 2.8 [7, Lemma 3.8]. Suppose \(T \in \mathfrak{A}(\mathcal{H}) \) and has \(B \) in \(\mathcal{L}(\mathcal{K}) \) for its minimal coisometric extension. If \(\{z_n\} \) is any sequence in \(\mathcal{K} \) that converges weakly to zero, then

\[
\| [w \otimes z_n]_B \| \to 0, \quad \forall w \in S.
\]

Suppose \(U \) is an absolutely continuous unitary operator in \(\mathcal{L}(\mathcal{N}) \) with spectral measure \(E_U \), and let \(\mu \) be a scalar spectral measure for \(U \). Then one knows, via the absolute continuity, that there exists a Borel set \(\Sigma \subset \mathbb{T} \) such that \(\mu \) is equivalent to Lebesgue measure \(m|_{\Sigma} \) (where this measure is defined to be zero on Borel subsets of \(\mathbb{T}\backslash \Sigma \)). For any vectors \(x \) and \(y \) in \(\mathcal{N} \), let us denote by \(\mu_{x,y} \) the complex measure on \(\mathbb{T} \) defined by

\[
\mu_{x,y}(B) = (E_U(B)x, y)
\]

for every Borel subset \(B \) of \(\mathbb{T} \). Obviously all of these complex measures \(\mu_{x,y} \) are absolutely continuous with respect to the measure \(m|_{\Sigma} \). Therefore, for each pair \(x, y \in \mathcal{N} \), there is a function in \(L^1(\Sigma) \), which is denoted by \(x^U \cdot y \) or \(x \cdot y \), that is the Radon-Nikodym derivatives of \(\mu_{x,y} \) with respect to \(m|_{\Sigma} \). We thus have, of course,

\[
(l(U)x, y) = \int_{\mathbb{T}} l \, d\mu_{x,y} = \int_{\Sigma} l(x \cdot y) \, dm, \quad l \in L^\infty(\Sigma).
\]

Lemma 2.9 [7, Lemma 3.9]. Suppose \(T \in \mathfrak{A}(\mathcal{H}) \) and has \(B = S^* \oplus R \) as its minimal coisometric extension, with \(R \neq (0) \). Then, for every pair of vectors \(w, z \in \mathcal{R} \), we have

\[
[w R z] = \varphi_B([w \otimes z]_B).
\]

Lemma 2.10. For \(k = 1, 2 \), suppose \(T_k \) belongs to \(\mathfrak{A}(\mathcal{H}) \) and has minimal coisometric extension \(B_k = S^*_k \oplus R_k \) in \(\mathcal{L}(\mathcal{K}) \) with \(R_k \neq (0) \). Let \(\Sigma_k \subset \mathbb{T} \) and \(\mathcal{R}_{0,k} \subset \mathcal{R}_k \) be as in [7, Proposition 3.10], and denote the projection of \(\mathcal{K} \) onto \(\mathcal{R}_{0,k} \) by \(A_{0,k} \). Let also \(\epsilon \) and \(\rho \) be arbitrary
real numbers such that $\epsilon > 0$ and $0 < \rho < 1$. If $a_1 \in \mathcal{H}, b_k \in R_k$ and $h_k \in L^1(\Sigma_k)$ are given, and we write $h_{1,k} = (A_k a_1 \cdot b_k) + h_k$, then there exist, for each $k = 1, 2$, $u_k \in \mathcal{H}$ and $c_k \in R_k$ such that

\begin{equation}
\|h_{1,k} - A_k(a_1 + u_k) \cdot c_k\|_1 < \epsilon,
\end{equation}

\begin{equation}
\|Q u_k\| < \epsilon,
\end{equation}

\begin{equation}
\|(A_k - A_{0,k})u_k\| < \epsilon,
\end{equation}

\begin{equation}
\|u_k\| \leq 2\|h_k\|_1^{1/2},
\end{equation}

\begin{equation}
\|c_k\| \leq (1/\rho)\{\|b_k\| + \|h_k\|_1^{1/2}\},
\end{equation}

and

\begin{equation}
c_k - b_k \in R_{0,k},
\end{equation}

where the notation $\|\cdot\|_1$ indicates the norm on $L^1(\Sigma)$.

Proof. It is clear from [7, Theorem 3.11].

We shall employ the notation $C_0 = C_0(\mathcal{H})$ for the class of all (completely nonunitary) contractions T in $\mathcal{L}(\mathcal{H})$ such that the sequences $\{T^{*n}\}$ converges to zero in the strong operator topology and is denoted by, as usual, $C_0 = (C_0)^*$, and N is denoted by the set of all natural numbers.

Lemma 2.11 [8, Theorem 2.1]. Suppose $\{T_k\}_{k=1}^{\infty}$ is any sequence of operators contained in the class $A_{R_0} \cap C_0$, $\{[L_k]_{T_k}\}_{k=1}^{\infty}$ is an arbitrary sequence (where $[L_k]_{T_k} \in Q_{T_k}$), and $\{\epsilon_k\}_{k=1}^{\infty}$ is any sequence of positive numbers. Then there exists a dense set $D \subset \mathcal{H}$ such that for every x in D, there exists a sequence $\{y_k^x\}_{k=1}^{\infty} \subset \mathcal{H}$ satisfying

\begin{equation}
[x \otimes y_k^x]_{T_k} = [L_k]_{T_k}, \quad k \in \mathbb{N},
\end{equation}

and

\begin{equation}
\|y_k^x\| > \epsilon_k, \quad k \in \mathbb{N}.
\end{equation}
3. Main results

From the idea of lemma 2.11, we construct new classes as following:

Definition 3.1. Let m, n and l be any cardinal numbers such that $1 \leq m, n, l \leq \aleph_0$. We denote by $\mathbb{A}_{m,n}(\mathcal{H})$ the class of all sets $\{T_k\}_{k=1}^l$ such that T_k belong to $A(\mathcal{H})$ for all $k = 1, 2, \ldots, l$ and that every $m \times n \times l$ system of simultaneous equations of the form

$$(31) \quad [x_i \otimes y_j^{(k)}]_{T_k} = [L_{ij}^{(k)}]_{T_k},$$

where $\{[L_{ij}^{(k)}]_{T_k}\}_{0 \leq i < m}$ is an arbitrary $m \times n$ array from Q_{T_k} for each $1 \leq k \leq l$, has a solution $\{x_i\}_{0 \leq i < m}, \{y_j^{(k)}\}_{0 \leq j < n}$ consisting of a pair of sequences of vectors from \mathcal{H}. Furthermore, if m and n are positive integers and r is a fixed real number satisfying $r > 1$, then we denoted by $(\mathbb{A}_{m,n}(r))$ the class of all sets $\{T_k\}_{k=1}^l$ such that T_k belong to $A(\mathcal{H})$ for all $k = 1, 2, \ldots, l$ and that every $m \times n \times l$ system of simultaneous equations of the form (31) has a solution $\{x_i\}_{0 \leq i < m}, \{y_j^{(k)}\}_{0 \leq j < n}$ consisting of a pair of sequences of vectors from \mathcal{H} and also satisfy the following conditions:

$$(32) \quad \|x_i\|^2 \leq s \sum_{0 \leq j < n} \|[L_{ij}^{(k)}]_{T_k}\|, \quad 0 \leq i < m, \quad 1 \leq k \leq l$$

and

$$(33) \quad \|y_j^{(k)}\|^2 \leq s \sum_{0 \leq i < m} \|[L_{ij}^{(k)}]_{T_k}\|, \quad 0 \leq j < n, \quad 1 \leq k \leq l.$$
Lemma 3.3. Suppose \(m, n \) and \(l \) are cardinal numbers such that \(1 \leq m, n, l \leq R_0 \) and \(T_k \in A(\mathcal{H}) \) has minimal coisometric extension \(B_k \) in \(\mathcal{L}(\mathcal{S}_k \oplus \mathcal{R}_k) \) for \(k, 1 \leq k \leq l \). Then \(\{T_k\}_{k=1}^{l} \in A_{m,n}^l \) if and only if for \(\{|[L^{(k)}_{ij}]T_k|\}_0 \leq j \leq n \leq i \leq m \subset Q_{T_k}, 1 \leq k \leq l \), there exists a Cauchy sequence \(\{x_{i,p}\}_{p=1}^{\infty} \) in \(\mathcal{H} \) and sequences \(\{w_{j,p}^{(k)}\}_{p=1}^{\infty} \) in \(\mathcal{S}_k \) and \(\{b_{j,p}^{(k)}\}_{p=1}^{\infty} \) in \(\mathcal{R}_k \) such that \(\{w_{j,p}^{(k)} + b_{j,p}^{(k)}\} \) is bounded and \(\|((\varphi_{B_k}^{-1} \circ \varphi_{T_k})(|[L^{(k)}_{ij}]T_k|) - [x_{i,p} \otimes (w_{j,p}^{(k)} + b_{j,p}^{(k)})]B_k]\| \to 0 \).

Proof. It is clear from [7, Proposition 4.7].

Convention. In the following theorems we assume that \(\mathcal{R}_k \) are either simultaneously (0) or not (0).

Theorem 3.4. For \(k = 1, 2, \) suppose that \(T_k \in A(\mathcal{H}) \) has minimal coisometric extension \(B_k \) in \(C_0(\mathcal{K}) \), and \(A_{T_k} \) has property \(E_{\theta, \gamma}^\prime \) for some \(0 < \theta < \gamma \leq 1 \). Suppose also that, for each \(k = 1, 2, \) \(0 < \rho < 1 \), \(|L_k| \in Q_{B_k}, a \in \mathcal{H}, w_k \in \mathcal{S}_k, b_k \in \mathcal{R}_k \), and \(\delta > 0 \) are given such that

\[
\max_k \{\|[L_k]_{B_k} - [a \otimes (w_k + b_k)]_{B_k}\|\} < \delta.
\]

Then there exist \(\hat{a} \in \mathcal{H}, \hat{w}_k \in \mathcal{S}_k, \hat{b}_k \in \mathcal{R}_k, \) \(k = 1, 2 \), such that

\[
\max_{k=1,2} \{\|[L_k]_{B_k} - [\hat{a} \otimes (\hat{w}_k + \hat{b}_k)]_{B_k}\|\} < (\theta/\gamma)\delta,
\]

and

\[
\|\hat{a} - a\| < 6(\delta/\gamma)^{1/2}, \quad \|\hat{w}_k - w_k\| < (\delta/\gamma)^{1/2} \\
\|\hat{b}_k\| < 1/\rho\{\|b_k\| + (\delta/\gamma)^{1/2}\}, \quad k = 1, 2.
\]

Proof. Of course, either of the spaces \(\mathcal{S}_k \) or \(\mathcal{R}_k \) may be zero, for all \(k \), but the proof is unchanged in these special cases. Let

\[
[D_k]_{B_k} = [L_k]_{B_k} - [a \otimes (w_k + b_k)]_{B_k}
\]
and set \(d = \max_k \{ \| [D_k]_{B_k} \| \} \), so, \(0 < d < \delta \). We may assume that
\(d > 0 \), since otherwise we can simply take \(\hat{a} = a, \hat{w}_k = w_k \) and \(\hat{b}_k = b_k \)
for each \(k = 1, 2 \). And, we choose \(\epsilon > 0 \) such that

\[(\theta / \gamma) d + \epsilon < (\theta / \gamma) \delta.\]

With \(j \) as in Lemma 2.5, note that \(\| (\gamma / d)^{-1}([D_k]_{B_k}) \| < \gamma \), and thus, by hypothesis, for each \(k = 1, 2 \), there exist \(N \in \mathbb{N} \), elements \([P_{1,k}], \ldots, [P_{N,k}]\) from \(\mathcal{E}_\delta^\gamma(A_{T_k}) \), and scalars \(\tilde{\alpha}_{1,k}, \ldots, \tilde{\alpha}_{N,k} \) such that

\[\| (\gamma / d)^{-1}([D_k]_{B_k}) - \sum_{i=1}^{N} \tilde{\alpha}_{i,k} [P_{i,k}]_{T_k} \| < (\epsilon / 2)(\gamma / d),\]

and \(\sum_{i=1}^{N} |\tilde{\alpha}_{i,k}| < 1, k = 1, 2 \). Upon setting \(\alpha_{i,k} = (d / \gamma) \tilde{\alpha}_{i,k} \), for each \(i, k \), we obtain, by multiplying (39) by \(d / \gamma \),

\[\| (D_k^\gamma)^{-1} ([D_k]_{B_k}) - \sum_{i=1}^{N} \alpha_{i,k} [P_{i,k}]_{T_k} \| < (\epsilon / 2), \quad k = 1, 2,\]

and

\[\sum_{i=1}^{N} |\alpha_{i,k}| < d / \gamma, \quad k = 1, 2.\]

For each \(i = 1, \ldots, N \), by definition of \(\mathcal{E}_\delta^\gamma(A_{T_k}) \), there exist sequences \(\{x_{n_i,(k)}^{(i,k)}\}_{n_i=1,k=1}^{\infty,2} \) and \(\{y_{n_i,(k)}^{(i,k)}\}_{n_i=1,k=1}^{\infty,2} \) in the unit ball of \(\mathcal{H} \) such that

\[\| [P_{i,k}]_{T_k} - [x_{n_i,(k)}^{(i,k)} \otimes y_{n_i,(k)}^{(i,k)}]_{T_k} \| < \theta + (\epsilon / 2)(\gamma / d), \quad n_i, \in \mathbb{N},\]

\[\lim_{n_i \to \infty} \| [x_{n_i,(k)}^{(i,k)} \otimes z]_{T_k} \| = 0, \quad \forall z \in \mathcal{H},\]

and

\[\{y_{n_i,(k)}^{(i,k)}\}_{n_i=1}^{\infty},\]
converges weakly to zero for each \(k = 1, 2 \). By (40) and (42), we get, for any choice of the \(N \)-tuple \(\nu = (n_1, \cdots, n_N) \),

\[
\| j^{-1}([D_k]_{B_k}) - \sum_{i=1}^{N} \alpha_{i,k}[x_{n_i}^{(i,k)} \otimes y_{n_i}^{(i,k)}]_{T_k} \| < \epsilon/2 + (d/\gamma)\{\theta + (\epsilon/2)(\gamma/d)\} = \epsilon + (d\theta/\gamma)
\]

and, we obtain, using (11),

\[
\|[D_k]_{B_k} - \sum_{i=1}^{N} \alpha_{i,k}[x_{n_i}^{(i,k)} \otimes y_{n_i}^{(i,k)}]_{B_k} \| < \epsilon + (d\theta/\gamma)
\]

for every choice of \(\nu \). Take \(\tau > 0 \) such that

\[
(\theta \delta/\gamma) - \{(d\theta/\gamma) + \epsilon\} = 5\tau.
\]

Using (14) and (37) we may combine (46) and (47) to yield

\[
\|[L_k]_{B_k} - [Qa \otimes w_k]_{B_k} - (A)\| < (\theta \delta/\gamma) - 5\tau,
\]

where

\[
(A) = \sum_{i=1}^{N} \alpha_{i,k}[Qx_{n_i}^{(i,k)} \otimes Qy_{n_i}^{(i,k)}]_{B_k} - [M_k(\nu)]_{B_k}
\]

and

\[
[M_k(\nu)]_{B_k} = [Aa \otimes b_k]_{B_k} + \sum_{i=1}^{N} \alpha_{i,k}[Ax_{n_i}^{(i,k)} \otimes Ay_{n_i}^{(i,k)}]_{B_k}
\]

for every choice of \(\nu \). Let us define, for arbitrary \(\nu = (n_1, \cdots, n_N) \),

\[
u^{(k)} = \sum_{i=1}^{N} \beta_{i,k} x_{n_i}^{(i,k)}, \quad \nu^{(k)} = \sum_{i=1}^{N} \beta_{i,k} y_{n_i}^{(i,k)}.
\]
where \((\beta^{(k)}_i)^2 = \alpha_{i,k}\) for \(i = 1, \cdots, N, \ k = 1, 2\). Then, for every choice of \(\nu\),

\[
[Q(a + u_{\nu}) \otimes (w_k + Qv^{(k)}_{\nu})]_{B_k} = [Qa \otimes w_k]_{B_k} + [Qu_{\nu} \otimes w_k]_{B_k} + [Qa \otimes Qv^{(k)}_{\nu}]_{B_k} + [Qu_{\nu} \otimes Qv^{(k)}_{\nu}]_{B_k}, \ k = 1, 2,
\]

and

\[
\|[Qu_{\nu} \otimes Qv^{(k)}_{\nu}]_{B_k}\| \\
\leq \sum_{i=1}^{N} |\alpha_{i,k}| \|[Qx^{(i,k)}_{n_i} \otimes Qy^{(i,k)}_{n_i}]_{B_k}\| + \sum_{i,j=1 \atop i \neq j}^{N} |\beta^{(k)}_{i} \beta^{(k)}_{j}| \|[Qx^{(i,k)}_{n_i} \otimes Qy^{(j,k)}_{n_j}]_{B_k}\| + \sum_{k_1=1}^{2} \sum_{i,j=1}^{N} |\beta^{(k_1)}_{i} \beta^{(k)}_{j}| \|[Qx^{(i,k_1)}_{n_i} \otimes Qy^{(j,k)}_{n_j}]_{B_k}\|, \ k = 1, 2.
\]

Thus we see from (51), (52), and \(B_k \in C_0, \ k = 1, 2\), it suffices to choose the indices \(n^0_1, \cdots, n^0_N\) (one at a time, in the indicated order) sufficiently large that for \(\nu_0 = (n^0_1, \cdots, n^0_N)\) the following properties are valid:

\[
\|[Qa \otimes Qv^{(k)}_{\nu_0}]_{B_k}\| < \tau/4,
\]

\[
\|[Qu_{\nu_0} \otimes w_k]_{B_k}\| < \tau/4,
\]

\[
\sum_{i,j=1 \atop i \neq j}^{N} |\beta^{(k)}_{i} \beta^{(k)}_{j}| \|[Qx^{(i,k_1)}_{n^0_i} \otimes Qy^{(j,k)}_{n^0_j}]_{B_k}\| < \tau/4,
\]

\[
\sum_{k_1=1}^{2} \sum_{i,j=1}^{N} |\beta^{(k_1)}_{i} \beta^{(k)}_{j}| \|[Qx^{(i,k_1)}_{n^0_i} \otimes Qy^{(j,k)}_{n^0_j}]_{B_k}\| < \tau/4.
\]
A geometric criterion for membership in new classes $A_{1,1}^2(r)$

(57) \[\| [A u_\nu_o \otimes b_k]_{B_k} \| < \tau, \]

and

(58) \[\| u_\nu_o \|^2 < 2\delta / \gamma, \quad \| v_{\nu_o}^{(k)} \|^2 < \delta / \gamma, \quad k = 1, 2. \]

Therefore, by combining (51)-(55), we obtain for each $k = 1, 2$,

(59) \[\| [Q a \otimes w_k]_{B_k} + \sum_{i=1}^{N} \alpha_{i,k} [Q x_{n_i, o}^{(i,k)} \otimes Q y_{n_i, o}^{(i,k)}]_{B_k} \]

\[- [Q (a + u_\nu_o) \otimes (w_k + Q v_{\nu_o}^{(k)})]_{B_k} \| < \tau. \]

We next define

(60) \[a_1 = a + u_\nu_o, \quad \tilde{w}_k = w_k + Q v_{\nu_o}^{(k)}, \quad k = 1, 2, \]

and conclude from (60), (59) and (48) that

(61) \[\| [L_k]_{B_k} - [Q a_1 \otimes \tilde{w}_k]_{B_k} - [M_k(\nu_o)]_{B_k} \| < (\theta \delta / \gamma) - 4\tau, \]

\[k = 1, 2. \]

Moreover, if in $[M_k(\nu_o)]_{B_k}$ we replace a by a_1, and so define, for $k = 1, 2$,

(62) \[[M_k^{(1)}(\nu_o)]_{B_k} = [A a_1 \otimes b_k]_{B_k} + \sum_{i=1}^{N} [A x_{n_i, o}^{(i,k)} \otimes A y_{n_i, o}^{(i,k)}]_{B_k}, \]

then by (49), (57), (60), and (61) we have

(63) \[\| [L_k]_{B_k} - [Q a_1 \otimes \tilde{w}_k]_{B_k} - [M_k^{(1)}(\nu_o)]_{B_k} \| < (\theta \delta / \gamma) - 3\tau, \]

\[k = 1, 2. \]

Now suppose that $\mathcal{R}_k = (0)$, for all $k = 1, 2$. Then $b_k = 0$, $[M_k^{(1)}(\nu_o)]_{B_k} = 0$, $Q a_1 = a_1$, and

\[\| [L_k]_{B_k} - [a_1 \otimes \tilde{w}_k]_{B_k} \| < (\theta \delta / \gamma) - 3\tau, \quad k = 1, 2. \]
Then, by (60) and (58), we have
\[||a - a_1|| < (2\delta/\gamma)^{1/2} \quad \text{and} \quad ||w_k - \tilde{w}_k|| < (\delta/\gamma)^{1/2}, \quad k = 1, 2, \]
so (with \(\tilde{b}_k = 0 \)) the proof in this case is complete.
Hence we may suppose that \(\mathcal{R}_k \neq (0), \quad k = 1, 2, \) we let \(\Sigma_k \subset \mathbb{T} \) be as in Lemma 2.10, and we prepare to apply Lemma 2.10 to deal with the term \([M_k^{(1)}(\nu_o)]_{B_k} \) in (63). By (62) and Lemma 2.9 we have
\[
(64) \quad \varphi_{B_k}([M_k^{(1)}(\nu_o)]_{B_k}) = [Aa_1 \cdot b_k] + \sum_{i=1}^{N} \alpha_i,k [Ax_{\nu_0}^{(i,k)} \cdot Ay_{\nu_0}^{(i,k)}].
\]
Thus we define the function \(h_k, \quad k = 1, 2, \) in \(L^1(\Sigma_k) \) to be
\[
h_k = \sum_{i=1}^{N} \alpha_i,k (Ax_{\nu_0}^{(i,k)} \cdot Ay_{\nu_0}^{(i,k)}).
\]
We note from (21) and (41) that \(||h_k||_1 \leq \delta/\gamma, \) and we set \(\epsilon' = \{\tau/(2(||w'|| + 1))\}(<\tau) \) where \(||w'|| = \max_{k=1,2} ||\tilde{w}_k||. \) With \(a_1 \) and \(b_k, k = 1, 2, \) as in (64), an application of Lemma 2.10 yields the existence of \(\tilde{u}_k \in \mathcal{H} \) and \(c_k \in \mathcal{R}_k, \quad k = 1, 2, \) such that
\[
(65) \quad ||Aa_1 \cdot b_k + \sum_{i=1}^{N} \alpha_i,k (Ax_{\nu_0}^{(i,k)} \cdot Ay_{\nu_0}^{(i,k)}) - A(a_1 + \sum_{k=1}^{2} \tilde{u}_k) \cdot c_k ||_1 < \epsilon' + \tau < 2\tau, \quad k = 1, 2,
\]
\[
(66) \quad ||Q(\sum_{k=1}^{2} \tilde{u}_k)|| < \tau/(||w'|| + 1),
\]
\[
(67) \quad ||\sum_{k=1}^{2} \tilde{u}_k|| \leq 4(\delta/\gamma)^{1/2},
\]
\[
(68) \quad ||c_k|| \leq (1/\rho)\{||b_k|| + ||h_k||^{1/2}\} < \{||b_k|| + (\delta/\gamma)^{1/2}\}, \quad k = 1, 2.
\]
A geometric criterion for membership in new classes $A_{1,1}^2(\tau)$

Since $L^1(\Sigma_k) \subset L^1(\mathbb{T})$ and the norm in $L^1(\mathbb{T})$ dominates the norm in $(L^1/H^1_0)(\mathbb{T})$, we obtain using (62), (22), and (65),

$$\|M_k^{(1)}(\nu_o)|_{B_k} - [A(a_1 + \sum_{k=1}^{2} \tilde{u}_k) \otimes c_k]|_{B_k} \| < 2\tau, \quad k = 1, 2. \quad (69)$$

Thus from (63) and (69) we get

$$\|L_k|_{B_k} - [Qa_1 + \tilde{w}_k]_{B_k} - [A(a_1 + \sum_{k=1}^{2} \tilde{u}_k) \otimes c_k]|_{B_k} \|
\leq \|L_k|_{B_k} - [Qa_1 + \tilde{w}_k]_{B_k} - [M_k^{(1)}(\nu_o)]_{B_k} \|
+ \|M_k^{(1)}(\nu_o)|_{B_k} - [A(a_1 + \sum_{k=1}^{2} \tilde{u}_k) \otimes c_k]|_{B_k} \|
< \langle \theta \delta / \gamma \rangle - 3\tau + 2\tau = \langle \theta \delta / \gamma \rangle - \tau, \quad k = 1, 2, \quad (70)$$

and since, by (66), we have

$$\|Q(\sum_{k=1}^{2} \tilde{u}_k) \otimes \tilde{w}_k|_{B_k} \| \leq \|Q(\sum_{k=1}^{2} \tilde{u}_k)\| \cdot \|\tilde{w}_k\|
< (\tau/(\|w'\| + 1))\|w'\| < \tau, \quad k = 1, 2, \quad (71)$$

the inequality (70) yields

$$\|L_k|_{B_k} - [Q(a_1 + \sum_{k=1}^{2} \tilde{u}_k) \otimes \tilde{w}_k]_{B_k} - [A(a_1 + \sum_{k=1}^{2} \tilde{u}_k) \otimes c_k]|_{B_k} \|
< \langle \theta \delta / \gamma \rangle, \quad k = 1, 2. \quad (72)$$

Since $\tilde{w}_k \in S_k$ and $c_k \in R_k$, by using (14) one can rewrite (72) as

$$\|L_k|_{B_k} - [(a_1 + \sum_{k=1}^{2} \tilde{u}_k) \otimes (\tilde{w}_k + c_k)]_{B_k} \| < \langle \theta \delta / \gamma \rangle, \quad k = 1, 2.$$
So if we define

\[\hat{a} = a_1 + \sum_{k=1}^{2} \bar{u}_k = a + u_{\nu_0} + \bar{u}_1 + \bar{u}_2 \]

\[\hat{b}_k = c_k, \quad \hat{w}_k = \bar{w}_k, \quad k = 1, 2, \]

then (35) is satisfied. Moreover,

\[\| \hat{a} - a \| \leq \| u_{\nu_0} \| + \| \sum_{k=1}^{2} \bar{u}_k \| < (2\delta/\gamma)^{1/2} + 4(\delta/\gamma)^{1/2} = 6(\delta/\gamma)^{1/2}, \]

from (58) and (67), so the first inequality in (35) is satisfied. Furthermore, from (60) and (58) we have

\[\| \hat{w}_k - w_k \| \leq \| Q u_{\nu_0}^{(k)} \| < (\delta/\gamma)^{1/2}, \quad k = 1, 2. \]

Finally,

\[\| \hat{b}_k \| = \| c_k \| < (1/\rho) \{ \| b_k \| + (\delta/\gamma)^{1/2} \}, \quad k = 1, 2. \]

We are ready to prove main theorems.

Theorem 3.5. For \(k = 1, 2 \), suppose that \(T_k (\in A(\mathcal{H})) \) has minimal coisometric extension \(B_k \) in \(C_0(\mathcal{K}) \), and \(A_{T_k} \) has property \(E_{\theta, \gamma}' \) for some \(0 \leq \theta < \gamma \leq 1 \). Suppose also that \(\delta > 0, \) \([L_k] \in Q_{T_k}, \) \(a \in \mathcal{H}, \) \(w_k \in S_k \) and \(b_k \in R_k \) are given such that

(73) \[\max_{k=1,2} \{ \| [L_k]T_k - [a \otimes P(w_k + b_k)]T_k \| \} < \delta, \]

where \(P \) is the projection of \(\mathcal{K} \) onto the subspace \(\mathcal{H} \). Then there exist \(\hat{a} \in \mathcal{H}, \) \(\hat{w}_k \in S_k \) and \(\hat{b}_k \in R_k \) such that

(74) \[[L_k]T_k = [\hat{a} \otimes P(\hat{w}_k + \hat{b}_k)]T_k, \quad k = 1, 2, \]

(75) \[\| \hat{a} - a \| < 6(\delta/\gamma)^{1/2}(1/\{1 - (\theta/\gamma)^{1/2}\}), \]

(76) \[\| \hat{w}_k - w_k \| < (\delta/\gamma)^{1/2}(1/\{1 - (\theta/\gamma)^{1/2}\}), \quad k = 1, 2, \]

and

(77) \[\| \hat{b}_k \| < 2\| b_k \| + 2(\delta/\gamma)^{1/2}(1/\{1 - (\theta/\gamma)^{1/2}\}), \quad k = 1, 2 \]
Proof. Since if \(\mathcal{A}_T k \) has property \(E^*_\theta, \gamma \) for each \(k \), it also has property \(E^{T}_{\theta, \gamma} \) for all \(0 < \theta < \gamma \), the right-hand side of (75), (76), and (77) are continuous functions of \(\theta \) and \(\delta \), it suffices to treat the case \(0 < \theta < \gamma \). Suppose now that (73) holds, let \(\{ s_n \} \) be a sequence of positive numbers strictly decreasing to \(3/4 \) such that \(s_1 = 1 \), and define \(\rho_n = (s_{n+1}/s_n), \ n \in \mathbb{N} \). Set

\[
[\hat{L}_k]_{B_k} = \varphi^{-1}_{B_k} \circ \varphi_{T_k}([L_k]), \quad k = 1, 2.
\]

Then we have, by (73), (11), (12), and (13),

\[
\max_{k=1,2} \{ \|[\hat{L}_k]_{B_k} - [a \otimes (w_k + b_k)]_{B_k}\| \} < \delta.
\]

We now set

\[
a = a_1, \ w_k = w_{1,k}, \ b_k = b_{1,k}, \quad k = 1, 2,
\]

and apply Theorem 3.4 to obtain \(a_2 \in \mathcal{H}, \ w_{2,k} \in S_k \) and \(b_{2,k} \in \mathcal{R}_k, \ k = 1, 2, \) such that

\[
\max_{k=1,2} \{ \|[\hat{L}_k]_{B_k} - [a_2 \otimes (w_{2,k} + b_{2,k})]_{B_k}\| \} < (\theta/\gamma)\delta,
\]

\[
\|a_2 - a_1\| < 6(\delta/\gamma)^{1/2}, \quad \|w_{2,k} - w_{1,k}\| < (\delta/\gamma)^{1/2},
\]

\[
\|b_{2,k}\| < (1/\rho_1)\{\|b_{1,k}\| + (\delta/\gamma)^{1/2}\}, \quad k = 1, 2.
\]

Suppose now that vectors \(\{ a_p \}_{p=1}^n \) in \(\mathcal{H} \), \(\{ w_{p,k} \}_{p=1}^n \) in \(S_k \), and \(\{ b_{p,k} \}_{p=1}^n \) in \(\mathcal{R}_k \), have been chosen so that for \(p = 2, \cdots, n, \ k = 1, 2, \)

\[
\max_{k=1,2} \{ \|[\hat{L}_k]_{B_k} - [a_p \otimes (w_{p,k} + b_{p,k})]_{B_k}\| \} < (\theta/\gamma)^{p-1}\delta,
\]

\[
\|a_p - a_{p-1}\| < 6(\delta/\gamma)^{1/2}(\theta/\gamma)^{(p-2)/2},
\]

\[
\|w_{p,k} - w_{p-1,k}\| < (\delta/\gamma)^{1/2}(\theta/\gamma)^{(p-2)/2},
\]

\[
(\theta/\gamma)^{(p-2)/2},
\]
and

\[(84_p) \quad \|b_{p,k}\| < (1/\rho(p-1)}\{\|b_{p-1,k}\| + (\delta/\gamma)^{1/2}(\theta/\gamma)^{(p-2)/2}\}. \]

Then, applying Theorem 3.4, we deduce the existence of vectors \(a_{n+1}\) in \(\mathcal{H}\), \(w_{n+1,k}\) in \(S_k\), and \(b_{n+1,k}\) in \(\mathcal{R}_k\) such that the inequalities \((81)_{n+1}\), \((82)_{n+1}\), \((83)_{n+1}\), and \((84)_{n+1}\) are valid. Therefore, by induction, there exist sequences \(\{a_n\}_{n=1}^{\infty}\) in \(\mathcal{H}\), \(\{w_{n,k}\}_{n=1}^{\infty}\) in \(S_k\), \(k = 1, 2\), and \(\{b_{n,k}\}_{n=1}^{\infty}\) in \(\mathcal{R}_k\), \(k = 1, 2\), satisfying the appropriate inequalities for all \(n \in \mathbb{N}\), and it is clear from \((82)_p\) and \((83)_p\) that \(\{a_n\}\) and \(\{w_{n,k}\}\) are Cauchy, for each \(k = 1, 2\). Define

\[\hat{a} = \lim_{n \to \infty} a_n, \]
\[\hat{w}_k = \lim_{n \to \infty} w_{n,k}, \quad k = 1, 2, \]

and observe that since

\[\|\hat{a} - a\| = \left\| \sum_{p=2}^{\infty} (a_p - a_{p-1}) \right\| \]
\[\leq \sum_{p=2}^{\infty} \|a_p - a_{p-1}\| \]
\[= 6(\delta/\gamma)^{1/2}(1/(1 - (\theta/\gamma)^{1/2})) \],

and

\[\|\hat{w}_k - w_k\| < (\delta/\gamma)^{1/2}(1/(1 - (\theta/\gamma)^{1/2})) \],

inequalities \((75)\) and \((76)\) are satisfied. Furthermore, by iterating \((84)_p\), we see that

\[\frac{1}{2} \|b_{n,k}\| \leq s_n \|b_{n,k}\| \]
\[\leq \|b_k\| + (\delta/\gamma)^{1/2} \sum_{p=1}^{n-1} s_p(\theta/\gamma)^{(p-1)/2}, \]

and therefore that

\[\|b_{n,k}\| \leq 2\|b_k\| + 2(\delta/\gamma)^{1/2}(1/(1 - (\theta/\gamma)^{1/2})), \quad n \in \mathbb{N}, \quad k = 1, 2. \]

Thus the sequence \(\{b_{n,k}\}\) is bounded and w.l.o.g., we may suppose that \(\{b_{n,k}\}\) converges weakly to \(\hat{b}_k\). Hence

\[\|\hat{b}_k\| \leq 2\|b_k\| + 2(\delta/\gamma)^{1/2}(1/(1 - (\theta/\gamma)^{1/2})), \quad k = 1, 2, \]

which establishes \((77)\). That \((74)\) is valid now follows from \((81)_p\) as in the proof of Lemma 3.3.
Theorem 3.6. Under the hypotheses of Theorem 3.5, suppose that $\|[L_1]T_1\|$ and $\|[L_2]T_2\|$ are equal. Then, we have $\{T_1, T_2\} \in A_{1,1}^2(\tau(\theta, \gamma))$, where

$$r(\theta, \gamma) = (18/\gamma)(1/(1 - (\theta/\gamma)^{1/2}))^2.$$

Proof. By theorem 3.5, the set $\{T_1, T_2\}$ certainly belongs to some $A_{1,1}^2(\tau)$. To see that τ may be taken to be as in (85), let $\epsilon > 0$ and set $a = 0$, $w_k = 0$, $b_k = 0$ and $\delta = \max_{k=1,2} \{\|[L_k]r_k\|\} + \epsilon$ in (73). Then from (75), (76) and (77), we see that

$$\|\hat{\alpha}\| \|[\hat{\rho}(\hat{w}_k + \hat{b}_k)\|$$

$$\leq \|\hat{\alpha}\| (\|\hat{w}_k\| + \|\hat{b}_k\|)$$

$$< 6(\delta/\gamma)^{1/2}(1/(1 - (\theta/\gamma)^{1/2}))$$

$$[(\delta/\gamma)^{1/2}(1/(1 - (\theta/\gamma)^{1/2})) + 2(\delta/\gamma)^{1/2}(1/(1 - (\theta/\gamma)^{1/2}))]$$

$$= 18(\delta/\gamma)(1/(1 - (\theta/\gamma)^{1/2}))^2$$

$$= (18/\gamma)(1/(1 - (\theta/\gamma)^{1/2}))^2(\|[L_k]r_k\| + \epsilon),$$

by the hypothesis. Therefore, we have

$$\{T_1, T_2\} \in A_{1,1}^2(\tau(\theta, \gamma)),$$

where

$$r(\theta, \gamma) = (18/\gamma)(1/(1 - (\theta/\gamma)^{1/2}))^2.$$

References

Department of Mathematics
College of Natural Science
Kyungpook National University
Taegu 702-701, Korea

Department of Mathematics Education
Cheju National University of Education
Cheju 690-061, Korea