THE HP-VERSION OF THE FINITE ELEMENT METHOD UNDER NUMERICAL QUADRATURE RULES

IK-SUNG KIM

ABSTRACT. We consider the hp-version to solve non-constant coefficients elliptic equations $-\text{div}(a\nabla u) = f$ with Dirichlet boundary conditions on a bounded polygonal domain Ω in R^2. In [6], M. Suri obtained an optimal error-estimate for the hp-version. $\|u - u_h^p\|_{1,\Omega} \leq C p^{-(\sigma-1)h^{m+1}(p,\sigma-1)}\|u\|_{\sigma,\Omega}$ This optimal result follows under the assumption that all integrations are performed exactly. In practice, the integrals are seldom computed exactly. The numerical quadrature rule scheme is needed to compute the integrals in the variational formulation of the discrete problem. In this paper we consider a family $G_p = \{I_m\}$ of numerical quadrature rules satisfying certain properties, which can be used for calculating the integrals. Under the numerical quadrature rules we will give the variational form of our non-constant coefficients elliptic problem and derive an error estimate of $\|u - \tilde{u}_h^p\|_{1,\Omega}$.

1. Introduction

The finite element method is a particular kind of Ritz-Galerkin procedure in which the approximating finite-dimensional subspaces are composed of piecewise polynomials defined on a partition of the given domain. The convergence is obtained by increasing the dimension of these subspaces in some manner. There are three versions of the finite element method. The h-version is the traditional approach obtained by fixing the degree p of the piecewise polynomials at some value (usually $p = 1, 2, 3$) and refining the mesh in order to achieve convergence. The p-version, in contrast, fixes the mesh and achieves

Received November 19, 1997 Revised May 28, 1998.
1991 Mathematics Subject Classification 65G99
Key words and phrases The hp version, numerical quadrature rules, non-constant coefficients elliptic equations
the accuracy by increasing the degree p uniformly or selectively. The hp-version is the combination of both.

In this paper, to solve non-constant coefficients elliptic equations with Dirichlet boundary conditions on a bounded polygonal domain Ω in \mathbb{R}^2 we consider the hp-version with a quasi-uniform mesh and uniform p. In [6], I. Babuška and M. Suri already obtained the following optimal estimate for the hp-version:

$$\|u - u_p^h\|_{1,\Omega} \leq C p^{-(\sigma - 1)} h^{\min(p,\sigma - 1)} \|u\|_{k,\Omega} \quad \text{for all } u \in H^\sigma_0(\Omega), \, \sigma \geq 1,$$

where C is independent of u, h, and p [but depends on Ω and σ].

The above optimal result follows under the assumption that all integrations are performed exactly. In practice, the integrals are seldom computed exactly. The numerical quadrature rule scheme is needed to compute the integrals in the variational formulation of the discrete problem. Thus we first consider a family $G_p = \{I_m\}$ of numerical quadrature rules satisfying certain properties, which can be used for calculating the integrals in the stiffness matrix of (2.17). Then, under the numerical quadrature rules we will give the variational form of our non-constant coefficients elliptic problem and derive an error estimate of $\|u - \tilde{u}_p^h\|_{1,\Omega}$ where \tilde{u}_p^h is an approximation satisfying (3.6). We also analyze the cases in which the overintegration may improve the accuracy of the approximation to allow for optimal results.

2. Preliminaries

Let Ω be a closed and bounded polygonal domain in \mathbb{R}^2 with the boundary Γ. Let $\mathcal{M} = \{\mathcal{J}^h\}, \, h \geq 0$ be a quasi-uniform, regular family of meshes $\mathcal{J}^h = \{\Omega_k^h\}$ defined on Ω, where Ω_k^h is a closed quadrilateral, and

$$\max_{\Omega_k^h \in \mathcal{J}^h} \text{diam}(\Omega_k^h) = h \quad \text{for all } \Omega_k^h, \, \mathcal{J}^h \in \mathcal{M}. $$

Further we assume that for each $\Omega_k^h \in \mathcal{J}^h$ there exists an invertible
mapping $T_h^k : \tilde{\Omega} \to \Omega^h_k$ with the following correspondence:

\begin{align}
(2.2) \quad \tilde{x} \in \tilde{\Omega} & \mapsto x = T_h^k(\tilde{x}) \in \Omega^h_k, \\
(2.3) \quad \tilde{t} \in U_p(\tilde{\Omega}) & \mapsto t = \tilde{t} \circ (T_h^k)^{-1} \in U_p(\Omega^h_k),
\end{align}

where $\tilde{\Omega}$ denotes the reference elements $\tilde{T}^2 = [-1, 1]^2$ in R^2,

\begin{align}
(2.4) \quad U_p(\tilde{\Omega}) & = \{ \tilde{t} : \tilde{t} \text{ is a polynomial of degree } \leq p \text{ in each variable on } \tilde{\Omega} \}
\end{align}

and

\begin{align}
(2.5) \quad U_p(\Omega^h_k) & = \{ t : \tilde{t} = t \circ T_h^k \in U_p(\tilde{\Omega}) \}
\end{align}

We now consider the following model problem of elliptic equations:

Find $u \in H^1(\Omega)$, such that

\begin{align}
(2.6) \quad -\text{div}(a \nabla u) = f \quad \text{in} \quad \Omega \subset R^2,
\end{align}

where two functions a and f satisfy a compatibility condition to ensure a solution exists, and

\begin{align}
(2.7) \quad H^1_0(\Omega) & = \{ u \in H^1(\Omega) : u \text{ vanishes on } \Gamma \}.
\end{align}

For the sake of simplicity, we assume that

\begin{align}
(2.8) \quad 0 < A_1 \leq a(x) \leq A_2 \quad \text{for all } \ x \in \Omega, \text{ and} \\
(2.9) \quad f \in L^2(\Omega).
\end{align}

In addition, we also assume that there exists a constant $M \geq 1$ such that

\begin{align}
(2.10) \quad \| T_h^k \|_{m, \infty, \tilde{\Omega}} , \quad \|(T_h^k)^{-1}\|_{m, \infty, \Omega^h_k} & \leq A \quad \text{for } 0 \leq m \leq M,
\end{align}

\begin{align}
(2.11) \quad \| \tilde{T}_h^k \|_{m, \infty, \tilde{\Omega}} , \quad \|(\tilde{T}_h^k)^{-1}\|_{m, \infty, \Omega^h_k} & \leq A \quad \text{for } 0 \leq m \leq M - 1,
\end{align}

where \tilde{T}_h^k and $(\tilde{T}_h^k)^{-1}$ denote the Jacobians of T_h^k and $(T_h^k)^{-1}$ respectively.

Then, as seen in [8, theorem 3.1.2], we obtain the following correspondence: For any $\alpha \in [1, \infty]$, $0 \leq m \leq M$,

\begin{align}
(2.12) \quad \tilde{t} \in W^{m, \alpha}(\tilde{\Omega}) & \mapsto t = \tilde{t} \circ (T_h^k)^{-1} \in W^{m, \alpha}(\Omega^h_k)
\end{align}

with norm equivalence

\begin{align}
(2.13) \quad C_1 h^{(m-\frac{2}{\alpha})} \|t\|_{m, \alpha, \Omega^h_k} & \leq \|\tilde{t}\|_{m, \alpha, \tilde{\Omega}} \leq C_2 h^{(m-\frac{2}{\alpha})} \|t\|_{m, \alpha, \Omega^h_k}
\end{align}
with the subscript α omitted when $\alpha = 2$. Namely, we have

\begin{equation}
C_1 h^{(m-1)} \|t\|_{m, \Omega}^h \leq \|\hat{t}\|_{m, \widehat{\Omega}} \leq C_2 h^{(m-1)} \|t\|_{m, \Omega^h}.
\end{equation}

Let us define

\begin{equation}
S_p^h(\Omega) = \{ u \in H^1(\Omega) : u_{\Omega_h^k} \circ (T^h_k) \in U_p(\widehat{\Omega}) \text{ for all } \Omega^h_k \in \mathcal{J}^h \},
\end{equation}

where $u_{\Omega_h^k}$ denotes the restriction of $u \in H^1(\Omega)$ to $\Omega^h_k \in \mathcal{J}^h$, and

\begin{equation}
S_{p,0}^h(\Omega) = S_p^h(\Omega) \cap H_0^1(\Omega).
\end{equation}

Then, using the hp--version of the finite element method with the mesh $\mathcal{J}^h = \{ \Omega_h^k \}$ we obtain the following discrete variational form of (2.6):

Find $u_p^h \in S_{p,0}^h(\Omega)$ satisfying

\begin{equation}
B(u_p^h, v_p^h) = (f, v_p^h)_{\Omega} \text{ for all } v_p^h \in S_{p,0}^h(\Omega),
\end{equation}

where

\begin{equation}
B(u, v) = \int_{\Omega} a \nabla u \cdot \nabla v \, dx,
\end{equation}

the usual inner product

\begin{equation}
(f, v)_{\Omega} = \int_{\Omega} fv \, dx.
\end{equation}

Let us now give some approximation results which will be used later.

Lemma 2.1. For each integer $l \geq 0$, there exists a sequence of projections

\begin{equation}
\Pi_p^l : H^l(\widehat{\Omega}) \to U_p(\widehat{\Omega}), \quad p = 1, 2, 3, \ldots
\end{equation}

such that

\begin{equation}
\Pi_p^l \hat{v}_p = \hat{v}_p \text{ for all } \hat{v}_p \in U_p(\widehat{\Omega}),
\end{equation}

\begin{equation}
\|\hat{u} - \Pi_p^l \hat{u}\|_{s, \widehat{\Omega}} \leq C p^{-(r-s)} \|\hat{u}\|_{r, \widehat{\Omega}} \text{ for all } \hat{u} \in H^r(\widehat{\Omega})
\end{equation}

with $0 \leq s \leq l \leq r$.

Proof. See [9, Lemma 3.1].
Lemma 2.2. Suppose that $T_k^h : \widehat{\Omega} \rightarrow \Omega_k^h$ is an invertible affine mapping. Then for any $u \in H^\sigma(\Omega), \sigma \geq 0$ we have

\begin{equation}
\inf_{\widehat{v} \in U_p(\widehat{\Omega})} \|\widehat{v}_{\Omega_k^h} - \widehat{v}\|_{\sigma, \widehat{\Omega}} \leq Ch^\mu \|u_{\Omega_k^h}\|_{\sigma, \Omega_k^h},
\end{equation}

where $\mu = \min(p, \sigma - 1)$ and C is independent of h, p and u.

Proof. The proof is given in [6].

Lemma 2.3. For each $u \in H^\sigma(\Omega)$ and $\Omega_k^h \in J^h$ there exists a sequence $z^h_p \in U_p(\Omega_k^h), p = 1, 2, \cdots$ such that for any $0 \leq r \leq \sigma$

\begin{equation}
\|u_{\Omega_k^h} - z^h_p\|_{r, \Omega_k^h} \leq Ch^{\mu - r + 1} p^{-r} \|u_{\Omega_k^h}\|_{\sigma, \Omega_k^h} \text{ for all } \Omega_k^h \in J^h,
\end{equation}

where $\mu = \min(p, \sigma - 1)$ and C is independent of h, p and u.

Proof. See [6, Lemma 4.5].

Let $u \in H^\sigma(\Omega), \sigma > 1$ be the solution of (2.6) and u^h_p the hp-version finite element solution of (2.17). Then, as seen in [6] we have an estimate

\begin{equation}
\|u - u^h_p\|_{1, \Omega} \leq Ch^{\min(p, \sigma - 1)} p^{-1} \|u\|_{\sigma, \Omega},
\end{equation}

where C is independent of u, h and p.

3. The hp-version under numerical quadrature rules

We consider numerical quadrature rules I_m defined on the reference element $\widehat{\Omega}$ by

\begin{equation}
I_m(\widehat{f}) = \sum_{i=1}^{n(m)} \widehat{w}^m_i \widehat{f}(\widehat{x}^m_i) \sim \int_{\widehat{\Omega}} \widehat{f}(\widehat{x}) \, d\widehat{x},
\end{equation}
where \(m \) is a positive integer. Let \(G_p = \{ I_m \} \) be a family of quadrature rules \(I_m \) with respect to \(U_p(\hat{\Omega}) \), \(p = 1, 2, 3, \cdots \), satisfying the following properties: For each \(I_m \in G_p \),

(K1) \(\hat{w}_i^m > 0 \) and \(\hat{x}_i^m \in \hat{\Omega} \) for \(i = 1, \cdots, n(m) \).

(K2) \(I_m(\hat{f}^2) \leq C_1 \| \hat{f} \|_{0, \hat{\Omega}}^2 \) for all \(\hat{f} \in U_p(\hat{\Omega}) \).

(K3) \(C_2 \| \hat{f} \|_{0, \hat{\Omega}}^2 \leq I_m(\hat{f}^2) \) for all \(\hat{f} \in \tilde{U}_p(\hat{\Omega}) \),

where \(\tilde{U}_p(\hat{\Omega}) = \{ \frac{\partial \hat{f}}{\partial \hat{x}_i} : \hat{f} \in U_p(\hat{\Omega}) \} \subset U_p(\hat{\Omega}) \).

(K4) \(I_m(\hat{f}) = \int_{\hat{\Omega}} \hat{f}(\hat{x}) \, d\hat{x} \) for all \(\hat{f} \in U_d(m)(\hat{\Omega}) \),

where \(d(m) \geq d(p) > 0 \).

We also get a family \(G_{p, \Omega} = \{ I_{m, \Omega} \} \) of numerical quadrature rules with respect to \(S_p^h(\Omega) \), defined by

\[
(3.2) \quad I_{m, \Omega^h}(f_{\Omega^h}) = \sum_{j=1}^{n(m)} w_j^m f_{\Omega^h}(x_j^m) = \sum_{j=1}^{n(m)} \hat{w}_j^m \hat{J}_k^h(\hat{x}_j^m)(f_{\Omega^h} \circ T_k^h)(\hat{x}_j^m) = I_m(\hat{J}_k^h \hat{f}_{\Omega^h})
\]

and

\[
(3.3) \quad I_{m, \Omega}(f) = \sum_{\Omega^h \in J^h} I_{m, \Omega^h}(f_{\Omega^h}).
\]

In particular, one may be interested in Gauss-Legendre(G-L) quadrature rules. Let \(L_q \) denote the cross-products of \(q \)-point G-L rules along the \(\hat{x}_1 \) and \(\hat{x}_2 \) axes on \(\hat{\Omega} = \hat{T} \times \hat{T} \), given by

\[
L_q(\hat{f}) = \sum_{i=1}^{q} \sum_{j=1}^{q} w_i^q \hat{w}_j^q \hat{f}(\hat{x}_i^q, \hat{x}_j^q) \quad \text{for all} \quad \hat{f} \in L_2(\hat{\Omega}),
\]

where \(\hat{x}_i^q = (\hat{x}_1^q, \hat{x}_2^q) \in \hat{\Omega} = \hat{T} \times \hat{T} \) with the weights \(\hat{w}_i^q \) and \(\hat{w}_j^q \).

We consider a family \(\{ L_q \}_{q \geq l(p)} \) of G-L quadrature rules with respect to \(U_p(\hat{\Omega}) \) such that \(l(p) = p+1 \). Then, \(\{ L_q \}_{q \geq l(p)} \) satisfy the properties (K1) - (K4). In fact, when \(q \geq p+1 \) \(L_q(\hat{f}) \) is exact for all \(\hat{f} \in U_d(q)(\hat{\Omega}) \) with \(d(q) \geq 2p+1 > 0 \), so that (K2) and (K3) hold with \(C_1 = C_2 = 1 \).

Now, we denote by DF the \(2 \times 2 \) Jacobian matrix of \(F : R^2 \to R^2 \), and define two discrete inner products
(3.4) \((u, v)_{m, \Omega_k^h} = I_m(\Omega_k^h((uv)_{\Omega_k^h})) = I_m(\hat{J}_k^h(\hat{uv})_{\Omega_k^h}) \) on \(\Omega_k^h \in \mathcal{J}^h \),

(3.5) \((u, v)_{m, \Omega} = \sum_{\Omega_k^h \in \mathcal{J}^h} (u, v)_{m, \Omega_k^h} \) on \(\Omega \).

Then, under numerical quadrature rules \(I_m \) in \(G_p \) we obtain the following actual problem of (2.17): Find \(\tilde{u}_p^h \in S_{p,0}^h(\Omega) \), such that

(3.6) \(B_{m, \Omega}(\tilde{u}_p^h, v_p^h) = (f, v_p^h)_{\Omega} \) for all \(v_p^h \in S_{p,0}^h(\Omega) \),

where

(3.7) \(B_{m, \Omega}(\tilde{u}_p^h, v_p^h) = \sum_{\Omega_k^h \in \mathcal{J}^h} I_m(\hat{J}_k^h a(\hat{\nabla} \tilde{u}_p^h \hat{D}(T_k^h)^{-1} (\hat{\nabla} v_p^h \hat{D}(T_k^h)^{-1})^t)

= \sum_{\Omega_k^h \in \mathcal{J}^h} \sum_{i,j=1}^2 \frac{\partial \hat{\tilde{u}}_p^h}{\partial \hat{x}_i} \frac{\partial v_p^h}{\partial \hat{x}_j} \hat{a}_{ij} \hat{t} m, \hat{\Omega} ,

and \(\hat{a}_{ij} \) are the entries of the matrix

\(\hat{J}_k^h (\hat{D}(T_k^h)^{-1}) (\hat{D}(T_k^h)^{-1})^t . \)

Here, \(\hat{a} , \hat{a}_{i,j} , \hat{\tilde{u}}_p^h \) and \(\hat{v}_p^h \) denote the restrictions \(\hat{a}_{\Omega_k^h} , (\hat{a}_{i,j})_{\Omega_k^h} , (\hat{\tilde{u}}_p^h)_{\Omega_k^h} \) and \((\hat{v}_p^h)_{\Omega_k^h} \) respectively.

Let us now derive an estimate of the error \(\|u - \tilde{u}_p^h\|_{1,\Omega} \) for the \(hp \)-version under numerical quadrature rules \(I_m \). In fact, \(\|u - \tilde{u}_p^h\|_{1,\Omega} \) depends on two separate terms. The first dependence is on the error \(\|u - v_p^h\|_{1,\Omega} \) given in (2.24). Next, the smoothness of \(a \) has influence upon the error. We will start with the following Lemma.

Lemma 3.1. Let \(u \) be the exact solution of (2.6) and \(v_p^h \) that of (2.17). Let \(\tilde{u}_p^h \) be an approximate solution of \(u \) which satisfies a discrete variational form (3.6). Then there exists a constant \(C \) independent of \(m \) such that
\[(3.8) \quad \|u - \hat{w}_p^h\|_{1,\Omega}\]

\[
\leq C \inf_{v_p^h \in S_{p,0}^h(\Omega)} \{\|u - v_p^h\|_{1,\Omega} + \sup_{w_p^h \in S_{p,0}^h(\Omega)} \frac{|B(v_p^h, w_p^h) - B_{m,\Omega}(v_p^h, w_p^h)|}{\|w_p^h\|_{1,\Omega}}\}.
\]

Proof. Let \(v_p^h\) be an arbitrary element in \(S_{p,0}^h(\Omega)\). Then we have
\[
(3.9) \quad \|u - \hat{w}_p^h\|_{1,\Omega} \leq \|u - v_p^h\|_{1,\Omega} + \|v_p^h - \hat{w}_p^h\|_{1,\Omega}.
\]
From the ellipticity of \(B_{m,\Omega}(\cdot, \cdot)\), for a constant \(C_1 > 0\)
\[
(3.10) \quad C_1\|v_p^h - \hat{w}_p^h\|_{1,\Omega}^2 \leq B_{m,\Omega}(v_p^h, v_p^h) - (f, v_p^h - \hat{w}_p^h)
\]
\[
= \|B_{m,\Omega}(v_p^h, v_p^h - \hat{w}_p^h) - B(v_p^h, v_p^h - \hat{w}_p^h)\|
\]
\[
= \|B_{m,\Omega}(v_p^h, v_p^h - \hat{w}_p^h) - B(v_p^h, v_p^h - \hat{w}_p^h)\|.
\]

Hence, taking the infimum with respect to \(v_p^h \in S_{p,0}^h(\Omega)\) we have
\[
(3.11) \quad \|u - \hat{w}_p^h\|_{1,\Omega}
\]
\[
\leq C \inf_{v_p^h \in S_{p,0}^h(\Omega)} \{\|u - v_p^h\|_{1,\Omega} + \frac{|B(v_p^h, v_p^h - \hat{w}_p^h) - B_{m,\Omega}(v_p^h, v_p^h - \hat{w}_p^h)|}{\|v_p^h - \hat{w}_p^h\|_{1,\Omega}}\}.
\]

The Lemma follows from taking \(w_p^h = v_p^h - \hat{w}_p^h \in S_{p,0}^h(\Omega)\).

The following Lemma will be used later.

Lemma 3.2. Let \(\hat{u}_p, \hat{w}_p \in U_p(\hat{\Omega})\) and \(\hat{f} \in L_\infty(\hat{\Omega})\). Then, for all \(\hat{w}_q \in U_q(\hat{\Omega})\), \(\hat{f}_r \in U_r(\hat{\Omega})\) with \(0 < q \leq p\) and \(r = d(m) - p - q > 0\) we have
\[
(3.12) \quad |(\hat{f} \hat{u}_p, \hat{w}_p)_{\hat{\Omega}} - (\hat{f} \hat{u}_p, \hat{w}_p)_{m,\hat{\Omega}}|
\]
\[
\leq C \{\|\hat{f}_r\|_{0,\infty,\hat{\Omega}} \|\hat{u}_p - \hat{w}_q\|_{0,\hat{\Omega}} + \|\hat{f} - \hat{f}_r\|_{0,\infty,\hat{\Omega}} \|\hat{w}_p\|_{0,\hat{\Omega}}\} \|\hat{w}_p\|_{0,\hat{\Omega}},
\]
where \(C\) is independent of \(p, q\) and \(m\).
Proof. For any $\hat{f}_r \in U_r(\hat{\Omega})$ we have

\begin{equation}
(3.13) \quad |(\hat{f}_r \hat{u}_p, \hat{w}_p)_{\hat{\Omega}} - (\hat{f}_r \hat{u}_p, \hat{w}_p)_{m,\hat{\Omega}}| \\
\leq |(\hat{f}_r \hat{u}_p, \hat{w}_p)_{\hat{\Omega}} - (\hat{f}_r \hat{u}_p, \hat{w}_p)_{\hat{\Omega}}| + |(\hat{f}_r \hat{u}_p, \hat{w}_p)_{\hat{\Omega}} - (\hat{f}_r \hat{u}_p, \hat{w}_p)_{m,\hat{\Omega}}| \\
+ |(\hat{f}_r \hat{u}_p, \hat{w}_p)_{m,\hat{\Omega}} - (\hat{f}_r \hat{u}_p, \hat{w}_p)_{m,\hat{\Omega}}|.
\end{equation}

Thank to (K4),

\begin{equation}
(3.14) \quad (\hat{f}_r \hat{v}_q, \hat{w}_p)_{\hat{\Omega}} - (\hat{f}_r \hat{v}_q, \hat{w}_p)_{m,\hat{\Omega}} = 0 \quad \text{for any} \quad \hat{v}_q \in U_q(\hat{\Omega}).
\end{equation}

Hence,

\begin{equation}
\begin{aligned}
(3.15) \quad &|(\hat{f}_r \hat{u}_p, \hat{w}_p)_{\hat{\Omega}} - (\hat{f}_r \hat{u}_p, \hat{w}_p)_{m,\hat{\Omega}}| \\
\leq & |(\hat{f}_r \hat{v}_q, \hat{w}_p)_{\hat{\Omega}} - (\hat{f}_r \hat{v}_q, \hat{w}_p)_{\hat{\Omega}}| + |(\hat{f}_r \hat{v}_q, \hat{w}_p)_{m,\hat{\Omega}} - (\hat{f}_r \hat{v}_q, \hat{w}_p)_{m,\hat{\Omega}}|.
\end{aligned}
\end{equation}

By the Schwarz inequality we obtain

\begin{equation}
\begin{aligned}
(3.16) \quad &|(\hat{f}_r \hat{u}_p, \hat{w}_p)_{\hat{\Omega}} - (\hat{f}_r \hat{u}_p, \hat{w}_p)_{\hat{\Omega}}| \\
\leq & (\hat{f}_r(\hat{u}_p - \hat{v}_q), \hat{f}_r(\hat{u}_p - \hat{v}_q))_{m,\hat{\Omega}}^{\frac{1}{2}} (\hat{w}_p, \hat{w}_p)_{\hat{\Omega}}^{\frac{1}{2}} \\
\leq & C \|\hat{f}_r\|_{0,\infty,\hat{\Omega}} \|\hat{u}_p - \hat{v}_q\|_{0,\hat{\Omega}} \|\hat{w}_p\|_{0,\hat{\Omega}}.
\end{aligned}
\end{equation}

Also, from (K2) we have

\begin{equation}
\begin{aligned}
(3.17) \quad &|(\hat{f}_r \hat{v}_q, \hat{w}_p)_{m,\hat{\Omega}} - (\hat{f}_r \hat{v}_q, \hat{w}_p)_{m,\hat{\Omega}}| \\
\leq & (\hat{f}_r(\hat{u}_p - \hat{v}_q), \hat{f}_r(\hat{u}_p - \hat{v}_q))_{m,\hat{\Omega}}^{\frac{1}{2}} (\hat{w}_p, \hat{w}_p)_{m,\hat{\Omega}}^{\frac{1}{2}} \\
\leq & C \|\hat{f}_r\|_{0,\infty,\hat{\Omega}} \|\hat{u}_p - \hat{v}_q\|_{0,\hat{\Omega}} \|\hat{w}_p\|_{0,\hat{\Omega}}.
\end{aligned}
\end{equation}

Hence, combining (3.16) and (3.17) we estimate

\begin{equation}
\begin{aligned}
(3.18) \quad &|(\hat{f}_r \hat{u}_p, \hat{w}_p)_{\hat{\Omega}} - (\hat{f}_r \hat{u}_p, \hat{w}_p)_{m,\hat{\Omega}}| \\
\leq & C \|\hat{f}_r\|_{0,\infty,\hat{\Omega}} \|\hat{u}_p - \hat{v}_q\|_{0,\hat{\Omega}} \|\hat{w}_p\|_{0,\hat{\Omega}}.
\end{aligned}
\end{equation}

Similarly, since $\hat{f} \in L_\infty(\hat{\Omega})$ we obtain
\begin{align}
(3.19) \quad & |(\hat{f} \hat{u}_p, \hat{w}_p)_{\widehat{\Omega}} - (\hat{f}_r \hat{u}_p, \hat{w}_p)_{\widehat{\Omega}}| \\
& \leq \left((\hat{f} - \hat{f}_r) \hat{u}_p, (\hat{f} - \hat{f}_r) \hat{u}_p \right)^{\frac{1}{2}} (\hat{w}_p, \hat{w}_p)^{\frac{1}{2}}_{\widehat{\Omega}} \\
& \leq C \left\| \hat{f} - \hat{f}_r \right\|_{0, \infty, \widehat{\Omega}} \left\| \hat{u}_p \right\|_{0, \widehat{\Omega}} \left\| \hat{w}_p \right\|_{0, \widehat{\Omega}},
\end{align}

and
\begin{align}
(3.20) \quad & |(\hat{f}_r \hat{u}_p, \hat{w}_p)_{m, \widehat{\Omega}} - (\hat{f} \hat{u}_p, \hat{w}_p)_{m, \widehat{\Omega}}| \\
& \leq \left((\hat{f}_r - \hat{f}) \hat{u}_p, (\hat{f}_r - \hat{f}) \hat{u}_p \right)^{\frac{1}{2}} (\hat{w}_p, \hat{w}_p)^{\frac{1}{2}}_{m, \widehat{\Omega}} \\
& \leq C \left\| \hat{f}_r - \hat{f} \right\|_{0, \infty, \widehat{\Omega}} \left\| \hat{u}_p \right\|_{m, \widehat{\Omega}} \left\| \hat{w}_p \right\|_{0, \widehat{\Omega}}.
\end{align}

The Lemma follows from (3.18), (3.19), (3.20) and (3.13).

As seen in Lemma 3.1, the last dependence of \(\|u - \tilde{u}_p^h\|_{1, \Omega} \) is on the smoothness of \(a \). In this connection, we let

\begin{align}
(3.21) \quad & M_{p,q} = \max_{i,j} \left\| \hat{a}_{ij} \right\|_{p,q, \widehat{\Omega}},
\end{align}

where the subscript \(q \) will be omitted when \(q = 2 \). Then, we obtain the following results which give an estimate for the last term of the right side in (3.8).

Lemma 3.3. Let \(I_m \in G_p \) be a quadrature rule defined on \(\widehat{\Omega} \subset R^2 \), which satisfies \(d(m) - p - 1 > 0 \). Let \(u \in H^\sigma(\Omega) \), \(a \in H^\alpha(\Omega) \) and \(\hat{a}_{ij} \in H^\rho(\widehat{\Omega}) \) for \(i, j = 1, 2 \), such that \(\lambda = \min(\alpha, \rho) \geq 2 \). Then, for any \(w_p^h \in S_p^h(\Omega) \) and an approximation \(u_p^h \) which satisfies (2.17) we have

\begin{align}
(3.22) \quad & \left| B(u_p^h, w_p^h) - B_m, \Omega(u_p^h, w_p^h) \right| \\
& \leq C \left\{ q^{-(\sigma - 1)} h^\mu \left\| u \right\|_{\sigma, \Omega} + r^{-1} h^{(\alpha - 1) - 1} \left\| a \right\|_{\alpha, \Omega} M_p \left\| u \right\|_{1, \Omega} \right\},
\end{align}

where \(\mu = \min(p, \sigma - 1) \) and \(q \) is a positive integer such that \(0 < q \leq p \) and \(r = d(m) - p - q > 0 \).
Proof. For arbitrary \(w^h_p \in S^h_{p,0}(\Omega) \) we have

\[
|B(w^h_p, w^h_p) - B_{m,\Omega}(w^h_p, w^h_p)| \leq C \max_{\Omega_k^h \in \mathcal{T}^h} \max_{i,j} \left| \left(\frac{\partial \hat{w}^h_p}{\partial \mathbf{x}_i}, \frac{\partial \hat{w}^h_p}{\partial \mathbf{x}_j} \right)_{\hat{\Omega}} \right| - \left| \left(\frac{\partial \hat{a}_{ij}}{\partial \mathbf{x}_i}, \frac{\partial \hat{w}^h_p}{\partial \mathbf{x}_j} \right)_{m,\hat{\Omega}} \right|
\]

For any \(\hat{a}_{ij}, i,j = 1,2 \) and \(\Omega_k^h \in \mathcal{T}^h \), we let \(q \) be any integer such that \(0 < q < p \) and \(r = d(m) - p - q > 0 \). Then since \(\hat{a}_{ij} \in L_{\infty}(\hat{\Omega}) \), due to Lemma 3.2 with \(\hat{v}_q = \frac{\partial}{\partial \mathbf{x}_i} (\Pi_q^1 \hat{w}^h_p) \) and \(\hat{f}_r = \Pi_r^2(\hat{a}_{ij}) \), we have

\[
|\left(\frac{\partial \hat{a}_{ij}}{\partial \mathbf{x}_i}, \frac{\partial \hat{w}^h_p}{\partial \mathbf{x}_j} \right)_{\hat{\Omega}} - \left(\frac{\partial \hat{a}_{ij}}{\partial \mathbf{x}_i}, \frac{\partial \hat{w}^h_p}{\partial \mathbf{x}_j} \right)_{m,\hat{\Omega}}| \leq C \{\Pi^2_q(\hat{a}_{ij})\}_{0,\infty,\hat{\Omega}} \left\| \frac{\partial \hat{w}^h_p}{\partial \mathbf{x}_i} - \frac{\partial}{\partial \mathbf{x}_i} (\Pi^1_q \hat{w}^h_p) \right\|_{0,\hat{\Omega}} + \Pi^2_q(\hat{a}_{ij}) \}_{0,\infty,\hat{\Omega}} \left\| \frac{\partial \hat{w}^h_p}{\partial \mathbf{x}_i} - \frac{\partial}{\partial \mathbf{x}_i} (\Pi^1_q \hat{w}^h_p) \right\|_{0,\hat{\Omega}}.
\]

Using Lemma 2.1 and Lemma 2.2 we easily see from the boundedness of \(\Pi^1_q \) and (2.14) that

\[
\| \frac{\partial \hat{w}^h_p}{\partial \mathbf{x}_i} - \frac{\partial}{\partial \mathbf{x}_i} (\Pi^1_q \hat{w}^h_p) \|_{0,\hat{\Omega}} \leq C \| \hat{w}^h_p - \Pi^1_q \hat{w}^h_p \|_{1,\hat{\Omega}} \leq C q^{-(\sigma - 1)} \| \hat{w}^h_p \|_{\sigma,\hat{\Omega}} \leq C q^{-(\sigma - 1)} \{\| \hat{w} - \hat{w}^h_p \|_{\sigma,\hat{\Omega}} + \| \hat{w}^h_p \|_{\sigma,\hat{\Omega}}\} \leq C q^{-(\sigma - 1)} (h^\mu + h^{(\sigma - 1)}) \| u \|_{\sigma,\Omega_k^h} \leq C q^{-(\sigma - 1)} h^\mu \| u \|_{\sigma,\Omega_k^h},
\]

where \(\mu = \min(p, \sigma - 1) \).

Also, clearly

\[
\| \frac{\partial \hat{w}^h_p}{\partial \mathbf{x}_i} \|_{0,\hat{\Omega}} \leq C \| \hat{w}^h_p \|_{1,\hat{\Omega}} \leq C \| \hat{w} \|_{1,\hat{\Omega}} \leq C \| u \|_{1,\Omega_k^h},
\]

and

\[
\| \frac{\partial \hat{w}^h_p}{\partial \mathbf{x}_i} \|_{0,\hat{\Omega}} \leq C \| \hat{w}^h_p \|_{1,\hat{\Omega}} \leq C \| w^h_p \|_{1,\Omega_k^h}.
\]
On the other hand, by an interpolation result (see [9, Theorem 3.2], [7, Theorem 6.2.4]) it follows that for \(\hat{w} \in H^\eta(\hat{\Omega}) \) with \(\eta \geq 2 \),

\[
\| \hat{w} - \Pi_p^2 \hat{w} \|_{0,\infty, \hat{\Omega}} \leq C \| \hat{w} - \Pi_p^2 \hat{w} \|_{1+\varepsilon, \hat{\Omega}}^{\frac{1}{2}} \| \hat{w} - \Pi_p^2 \hat{w} \|_{1-\varepsilon, \hat{\Omega}}^{\frac{1}{2}} \quad \text{for } 0 < \varepsilon \leq \frac{1}{2}.
\]

Also, taking \(s = 1 + \varepsilon \) and \(s = 1 - \varepsilon \) in (2.21) we have

\[
\| \hat{w} - \Pi_p^2 \hat{w} \|_{0,\infty, \hat{\Omega}} \leq C p^{-(\eta-1)} \| \hat{w} \|_{\eta, \hat{\Omega}}.
\]

Thus, since \(\hat{\alpha} \hat{\alpha}_{1j} \in H^\lambda(\hat{\Omega}) \) with \(\lambda = \min(\alpha, \rho) \geq 2 \) it follows from (3.29) that

\[
\| \hat{\alpha} \hat{\alpha}_{1j} - \Pi_p^2 (\hat{\alpha} \hat{\alpha}_{1j}) \|_{0,\infty, \hat{\Omega}} \leq C r^{-(\lambda-1)} \| \hat{\alpha} \|_{\alpha, \Omega} M_\rho \leq C r^{-(\lambda-1)} h^{(\alpha-1)} \| a \|_{\alpha, \Omega} M_\rho.
\]

Moreover, since \(\| \Pi_p^2 (\hat{\alpha} \hat{\alpha}_{1j}) \|_{0,\infty, \hat{\Omega}} \) is bounded it follows from (3.25), (3.26), (3.27) and (3.30) that

\[
\| \hat{\alpha} \hat{\alpha}_{1j} - \Pi_p^2 (\hat{\alpha} \hat{\alpha}_{1j}) \|_{0,\infty, \hat{\Omega}} \leq C q^{-(\sigma-1)} h^\mu \| u \|_{\sigma, \Omega} h + r^{-(\lambda-1)} h^{(\alpha-1)} \| a \|_{\alpha, \Omega} M_\rho \| u \|_{1, \Omega} \| w_p^h \|_{1, \Omega},
\]

where \(\mu = \min(p, \sigma - 1) \).

Consequently, we have

\[
\max_{\Omega^h} \max_{\mathcal{J}_h} \| \hat{\alpha} \hat{\alpha}_{1j} - \Pi_p^2 (\hat{\alpha} \hat{\alpha}_{1j}) \|_{0,\infty, \hat{\Omega}} \leq C q^{-(\sigma-1)} h^\mu \| u \|_{\sigma, \Omega} + r^{-(\lambda-1)} h^{(\alpha-1)} \| a \|_{\alpha, \Omega} M_\rho \| u \|_{1, \Omega} \| w_p^h \|_{1, \Omega},
\]

where \(\mu = \min(p, \sigma - 1) \). The Lemma follows from dividing by \(\| w_p^h \|_{1, \Omega} \).

By a direct application of Lemma 3.3 and (2.24) to Lemma 3.1 we obtain the following main Theorem which gives an asymptotic, \(H^1(\Omega) \)-norm error estimate for the rate of convergence under numerical quadrature rules.

Theorem 3.4. Let \(I_m \in G_p \) be a quadrature rule defined on \(\hat{\Omega} \subset \mathbb{R}^2 \), which satisfies \(d(m) - p - 1 > 0 \). We assume that \(u \in H^\sigma(\hat{\Omega}), a \in H^{\alpha} \), and \(a \in H^\lambda(\hat{\Omega}) \).
The \(hp\)-version of the finite element method

\(H^\alpha(\Omega)\) and \(\tilde{\alpha}_{ij} \in H^\rho(\hat{\Omega})\) for \(i, j = 1, 2\) such that \(\lambda = \min(\alpha, \rho) \geq 2\). Then, for any positive integer \(q\) such that \(0 < q \leq p\), we have

\[
(3.33) \quad \|u - \tilde{w}_p^h\|_{1, \Omega} \leq C \{q^{-(\sigma - 1)} h^{\mu}\|u\|_{\sigma, \Omega} + r^{-(\lambda - 1)} h^{(\alpha - 1)} M_p \|u\|_{1, \Omega}\},
\]

where \(\mu = \min(p, \sigma - 1)\) and \(r = d(m) - p - q\).

\textbf{proof.} Taking \(v_p^h \in S_{p, 0}^h(\Omega)\) with an approximation \(u_p^h\) of \(u\) which satisfies (2.17), we obtain from Lemma 3.1 that

\[
(3.34) \quad \|u - \tilde{w}_p^h\|_{1, \Omega} \leq C \{\|u - u_p^h\|_{1, \Omega} + \sup_{w_p^h \in S_{p, 0}^h(\Omega)} \frac{|B(u_p^h, w_p^h) - B_{m, \Omega}(u_p^h, w_p^h)|}{\|w_p^h\|_{1, \Omega}}\}.
\]

Since \(0 < q \leq p\) it follows from (2.24) and Lemma 3.3 that the first term of the right side in (3.34) is dominated by its last term. Hence, the proof is completed by a direct application of Lemma 3.3 to (3.34).

We see from Theorem 3.4 that the rate of convergence is essentially given by

\[
(3.35) \quad O(q^{-(\sigma - 1)} h^{\min(p, \sigma - 1)} + (d(m) - p - q)^{-(\lambda - \frac{q}{2})} h^{(\alpha - 1)}).
\]

If \(m\) is large enough with \(q = p\), then the rate of convergence is asymptotically \(O(p^{-(\sigma - 1)} h^{\min(p, \sigma - 1)})\), which coincides with that of (2.24). In the case where \(a\) is sufficiently smooth, i.e. \(\alpha\) is large enough, even when \(d(m) \approx 2p + 1\) with \(q = p\) the first term in (3.35) may dominate, so that the rate of convergence is asymptotically \(O(p^{-(\sigma - 1)} h^{\min(p, \sigma - 1)})\).

More precisely, in G-L quadrature rules, using \(I_m\) with \((p + 1)\)-point rules we would obtain an asymptotic rate \(O(p^{-(\sigma - 1)} h^{\min(p, \sigma - 1)})\). But, when \(a\) is not smooth enough, the first term \(q^{-(\sigma - 1)} h^{\min(p, \sigma - 1)}\) may be dominated by the other term of (3.35). In this situation, using an overintegration with a sufficiently large \(m\) we may reduce the error \(\|u - \tilde{w}_p^h\|_{1, \Omega}\) until the first term dominates again. In practice, when \(a\) is not smooth we may increase the value of \(d(m)\) with \(q \approx p\).
References

Department of Applied Mathematics
Korea Maritime University
Pusan 606-791, Korea