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Growth factors such as TGF-beta, PDGF and FGF are thought to play important roles in
wound healing. However, their biological activity and signal transduction during wound
repair remain poorly understood. Growth factors are often ligands for receptor tyrosine kinase
and receptor serine/threonine kinases. With recent advances in signal transduction by receptor
kinases, we are beginning to understand the underlying mechanism of how growth factors
may regulate cutaneous wound repair. In this paper, we will describe the pharmacological
effects of growth factors on wound healing, and discuss the potential underlying signaling
mechanisms. Thus, we hope to provide the basis for designing more specific therapeutics for
wound healing in the near future.
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INTRODUCTION

Wound healing is a complex cellular process, includ-
ing inflammation, extracellular matrix synthesis, colla-
gen deposition, angiogenesis, and reepithelialization
(Clark, 1993; Martin, 1997). The complexity and clinical
variability of wound healing has limited pharmacologic
approaches to accelerate wound repair. Until recently,
no specific pharmacologic agents that could repro-
ducibly accelerate wound healing had been identified
(Mustoe et al, 1987). Growth factors discovered in the
processes of wound repair have opened the door to
new therapeutics to manipulate cutaneous repair (Deuel
et al., 1991; Pierce & Mustoe, 1995).

Growth factors such as epidermal growth factor
(EGF), platelet derived growth factor (PDGF) and fibro-
blast growth factor (FGF) are the ligands for receptor
tyrosine kinases. Receptor tyrosine kinases exhibit similar
molecular structure and are activated by a common
mechanism. The mechanism for lignd-induced to the
extracellular domain induces receptor dimerization,
which leads to activation of the catalytic domain of pro-
tein tyrosine kinase and also leads to tyrosine autophos-
phorylation. (Schlessinger & Ulirich, 1992; Schlessinger,
1997). Phosphorylation of tyrosines within the catalytic
domain is essential for maintaining the tyrosine kinase
in an active state, while phosphorylation of tyrosine
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residues that are located in noncatalytic regions leads
to generation of docking sites for SH2 (Src homology 2)
and PTB (phosphotyrosine binding) domains of signaling
molecules (Pawson, 1995; Kim, 1996). A variety of
signaling proteins are directly recruited by activated
receptor while other signaling molecules are activated
by tyrosine phosphorylation (Schlessinger & Ullrich,
1992; Kim, 1996). A variety of signaling proteins are
directly recruited by activated receptors while other
signaling molecules are activated by tyrosine pho-
sphorylation (Schlessinger & Ullrich, 1992; Kim, 1996).
In many cases, the ligands of growth factor receptors
are soluble proteins. Such soluble growth factors acti-
vate their specific cell surface receptors by multi-
valent interactions and exert their biological effects
by endocrine, paracrine, or autocrine mechanisms.
TGF-beta signaling requires a heteromeric assembly
of its two serine-threonine kinase receptors, designated
Rl and RII, respectively (Wrana & Pawson, 1997). A
recent model illustrating the physical and functional
interactions between the two receptors proposes that
upon ligand binding, the constitutively active RIl recruits
Rl and transphosphorylates the Rl, which subsequently
initiates downstream cytoplasmic events (Massague,
1996, 1997). The discovery of SMAD (mammalian ho-
molog of Drosophila Mad gene) proteins has allowed
the delineation of a mechanism by which TGF-beta
and related growth factors convey their signals from
membrane receptors into the nucleus. SMADs are '
directly phosphorylated and activated by the receptors
and then form heteromeric SMAD-SMAD complexes
that move into the nucleus where they orchestrate
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transcriptional responses (Massague, 1997; Kretzschmar
& Massague, 1998). Different modes of SMAD inter-
actions are regulated by phosphorylation. The SMAD
domains that mediate SMAD interactions, binding to
DNA, and transcriptional activation, have been defin-
ed. The recent discovery of antagonistic SMADs and
regulatory crosstalk with Ras/MAP-kinase pathways
add to our rapidly expanding knowledge of the major
regulatory network (Kretzschmar & Massague, 1998).
Defects in expression of either receptors would con-
tribute to the loss of response to exogenous and endo-
genous TGF-beta. Interestingly, in some fibrotic diseases,
the expression levels of SMAD molecules are quite
different, when compared to normal human skin (Kim
et al., unpublished data). Further experiments will be
necessary to elucidate whether SMAD molecules play
a role in normal wound repair and fibrotic skin dis-
eases,

Transforming growth factor-beta (TGF-beta)

It has been well established that endogenous and
exogenous TGF-beta enhances wound healing in nu-
merous experimental studies (Martin, 1992; Roberts &
Sporn, 1993). Systemic administration of TGF-beta 1 as
early as 24 hours prior to wounding led to accelerated
repair of cutaneous wounds (Beack, 1993). These re-
sults suggest that TGF-beta can prime cells for increas-
ed responsiveness to factors released at the wound
site, and that such signals can persist for as long as 24
hours.

To determine how TGF-beta is secreted upon injury,
expression patterns of endogenous TGF-beta have
heen studied. At the time of injury, latent TGF-beta 1
is released from degranulating platelets into the wound
bed as a bolus. Subsequently, injury-induced expres-
sion of immediated-early genes contributes to the tran-
scriptional activation and autoinductive pathways of
TGF-beta 1 that persist over a protracted period. Since
large stores of latent TGF-beta are localized to peri-
cellular matrix, the proteolytic environment characteristic
of the early stages of wound healing might also serve
to release TGF-beta locally from the extracellular
matrix. Thus, the levels of TGF-beta in wound fluid
remain elevated for up to 14 days, with peak levels
on days 7 to 9 following implantation of wire mesh
Hung-Schilling chambers in the back of rats, at the
time of maximum fibroblast proliferation and collagen
synthesis (Cromack et a/, 1987). Immunohistochemical
studies showed that TGF-beta isoforms are expressed
in unique patterns following wounding (Levine et al,
1993). Expression patterns of the TGF-beta isoforms
in human skin suggest that there may be differences
compared to the animal models (Roberts & Sporn,
1996). Whereas little expression of TGF-beta 2 and -3
was seen in mice, TGF-beta 3 mRNA and protein are
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prominantly expressed in human dermis (Schmid et
al., 1993a). TGF-beta TmRNA expression was seen at
the reepithelialization front of acute wounds. TGF-beta
type Il receptor was also expressed in the epidermis
with stronger expression in the superfacial, more diffe-
rentiated layers (Schmid et a/, 1993a). In the mouse
embryo, TGF-beta 1T mRNA is expressed transiently
and at low levels after injury (Martin et a/,, 1993), but
it is present at high levels for the duration of healing
at the adult wound site (Frank et a/., 1996). Delivery
of antibodies that neutralize TGF-beta 1 and beta 2 at
the time of wounding reduced scarring in the in-
cisional rat model (Shah et a/, 1992). TGF-beta 3 has
similar biological activities to those of TGF-beta 1
and 2. However, the exogenous addition of TGF-beta
3 was recently reported to reduce scar formation in
the rat incisional model (Shah et a/, 1995). These
results suggest that a balance among the TGF-beta
isoforms is critical in wound healing. Further work is
required to understand the potentially important diffe-
rence in the biologic activities of the TGF-beta iso-
forms in normal and pathologic repair.

Epidermal growth factor (EGF)

Topical application of EGF in human cutaneous
wound repair showed a modest acceleration in the
rate of skin resurfacing in partial thickness, donor site
wounds (Brown et al,, 1989). The modest effect of
topical EGF in wounds is a reflection of the complex
interactions of cells, growth factors/cytokines, type of
wound, and individual patient differences, The clinical
challenge remains of how to target the EGF receptor
pathways so that acute and chronic human cutaneous
wounds achieve satisfactory healing despite the presence
of underlying disease state such as diabetes or other
adverse wound-healing circumstances (Nanney & King,
1996). It is difficult in biological trials to mimic /n
vitro models of EGF receptor signal transduction path-
ways that provide clear-cut results. These difficulties
in defining a precise function for the EGF receptor or
any other cytokine in vivo are related to a number of
variables such as age, anatomical site, proliferative
state, degree of differentiation, preexisting cutaneous
and systemic abnormalities, temporal intervention after
injury, type of injury, and other undefined genetic and
environmental factors (Nanney & King, 1996). To date,
the regulation of EGF receptor expression has been
examined by therapeutic trials, immunohistochemistry,
and /n situ hybridization.

In numerous therapeutic studies, EGF showed signi-
ficant enhancement of wound healing (Mustoe et al,
1991). EGF stimulates epidermal repair in animal
excisional and thermal injury models, and may also
stimulate dermal repair (Schultz et a/, 1987). EGF
enhances reepithelialization in burm wounds on the
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backs of pigs (McGee et al,, 1988) and appears to be
effective in accelerating repair in chronic ulcers (Brown
et al, 1991; Falanga et al., 1992).

To gain insight into the participation of EGF receptor
and its ligands in wound repair, the expression of EGF
receptor was examined in normal neonatal and adult
skin by immunohistochemistry and in situ hybridization.
EGF receptor has been localized throughout all nu-
cleated layers of the neonatal epidermis. However, in
adult dermis, EGF receptor is spatially positioned
only on basal layer keratinocytes, cells that are of
prime importance for the resurfacing of human partial-
thickness wounds. The presence or absence of EGF
receptor on specific keratinocyte populations in the
epidermis and within epidermal appendages implies
regulatory and biological significance for this cytokine
signaling pathway. Since skin appendages are situated
deep in the dermis and subcutaneous tissues, this
population of keratinocytes is better protected from
the environment and, therefore, serves as a ready
source of cells to replace the overlying epidermis
lost during wounding. During wound-healing, EGF
receptor-mediated events appear to play a vital role
in reforming the epidermal permeability barrier, kerati-
nocyte differentiation, keratinocyte proliferation, and
keratinocyte migration and adhesion (Nanney & King,
1996). Injections of EGF into neonatal mice showed
that EGF could affect epithelial structures by modulat-
ing the normal developmental process (Nanney &
King, 1996). However, the underlying mechanisms by
which EGF regulates repair remain undefined.

To further investigate the functional role of EGF in
wound healing, EGF receptor signal transduction mech-
anisms have been extensively studied (Schlessinger &
Ulirich, 1992; Pawson, 1995). In the EGF receptor
signal transduction pathway, we are now able to trace
molecules relaying signals from receptor to nucleus,
such as Grb2 (Schlessinger, 1997). More recently,
much attention has been paid to protein tyrosine
phosphatases (PTPases). Identification of a large family
of PTPases has lead to the study of interactions of
tyrosine kinase such as EGF receptor with PTPases
(Fischer et al, 1991; Kim, 1996). PTPases have been
localized in normal human skin, but have not been
examined in would healing (Clark, 1996). Since sti-
mulatory signals through tyrosine kinase receptors such
as EGF receptor must be attenuated with regulatory
molecules such as the PTPases, it will be fruitful to
study the potential role of PTPases in wound healing.
Until recently, it was not clear how extracellular
signals might affect cell motility involved in wound
healing, but it is now known that EGF ligand binding
to receptor activates the signaling molecule MEK, and
that MEK selectively interacts with the small guanosine
triphosphatase (GTPase) Rac/Cdc42 (Fanger et al,, 1997;
Frost ef al, 1997). When Rac is activated in fibroblasts
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in response to EGF, it transmits signals leading to actin-
based membrane ruffling, which mediates lamellipodial
extension and the assembly of focal adhesion com-
plexes as part of the crawling response of tissue culture
fibroblasts and epithelial cells (Martin, 1997). Intere-
stingly, recent studies showed that gelsolin, crucial
for organization of actin filament, is a downstream
effector of Rac for fibroblast motility (Azuma et al,
1998). Compared to wild type dermal fibroblasts,
gelsolin in gelsolin-null dermal fibroblasts reverts the
ruffling response to EGF. Stable expression of gelsolin
in gelsolin-null dermal fibroblasts reverts the ruffling
response, and Rac expression to normal. These results
suggest that gelsolin is an essential effector of Rac-
mediated actin dynamics, acting downstream of Rac
recruitment to the membrane. To understand EGF-
mediated wound healing, it is crucial to study under-
lying mechanisms how Rac/cdc42 and gelsolin re-
gulate epidermis and fibroblast motility during wound
healing.

Platelet-derived growth factor (PDGF)

It has been shown that PDGF is potent stimulator
for wound healing in animal experiments and in hu-
man clinical trials (Helding & Westermark, 1996). For
example, PDGF enhances angiogenesis and epitheliali-
zation in excisional wound models (Pierce et al., 1992),
and increases the breaking strength of incisional wounds
in both normal and impaired healing models (Pierce
et al., 1989). PDGF also accelerates the deposition of
provisional wound matrix containing, in particular, gly-
cosaminoglycans and fibronectin. These results sug-
gest that PDGF plays an important role in wound
healing, however its underlying mechanism is still
unclear.

PDGF receptor signal transduction mechanisms have
been extensively studied. PDGF induces tyrosine phos-
phorylation of the PDGF receptor and numerous other
intracellular proteins (Schlessinger & Ullrich, 1992; Li
et al, 1994). PDGF receptor mediates fibroblast chem-
otaxis, proliferation, and induction of extracellular
matrix and metalloproteinases, which are required for
wound remaodeling (Deuel et al, 1991; Bennett &
Schultz, 1993). Until recently, it was not known which
molecules are involved in PDGF-mediated wound
healing. However, we now know that PDGF activates
the small GTPases Rac in fibroblasts (Nobes & Hall,
1995). Gelsolin, as described earlier, is a downstream
effector of Rac (Hartwig et a/, 1995). So it is likely
that Rac may be one of the key molecular switches
responsible for the onset of PDGF-mediated fibroblast
migration into a wound. Further studies are required
for identification of the PDGF receptor-secondary sig-
naling molecules to fully understand the mechanisms
of PDGF-mediated wound repair. It is also necessary
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to determine the specificity of tyrosine kinases in acc-
elerating wound healing. PDGF may be an important
future clinical tool, particularly for the stimulation of
soft tissue repair in patients with impaired capacity
for wound healing. Much work remains, however, to
optimize dose, methods of administration, choice of
PDGF isoform, etc (Clark, 1996). Moreover, critical
comparisons with other growth factors should be per-
formed in order to select the best factor, or com-
binations of factors, for different types of wounds.

Fibroblast growth factor (FGF)

It is well established that among FGF family mem-
bers, FGF-2 is present and modulated at sites of der-
mal tissue injury (Abraham & Klagsbrun, 1996). To
begin to determine the role of FGF-2 in wound healing,
expression patterns of FGF-2 have been studied ex-
tensively in numerous experimental studies. For example,
FGF-2 activity is detectable in wound fluids from
both full- and partial-thickness wounds (Chen et al.,
1992: Werner et al, 1992). During the mouse skin
wound healing, FGF-2 protein or mRNA is localized
in the basal layer keratinocytes and hair bulbs at the
wound edge and in the reepithelialized area (Kurita
et al, 1992). To further study the functional role of
FGF-2, therapeutic effects of FGF-2 on would healing
have been examined.

'FGF-2 is involved in angiogenesis, extracellular mat-
rix accumulation, and also stimulates collagenolysis.
FGF-2 has also been shown to increase the rate of
epithelialization in excisional pig wounds and in
healing-impaired diabetic mice (Mustoe et al., 1991;
Pierce et al., 1992; Tsuboi et al., 1992; Legrand et al,
1993). Fibroblasts seeded in an FGF-2-coated collagen
| sponges matrix facilitate early dermal and epidermal
wound healing (Marks et al, 1991). FGF-2 encap-
sulated in red blood cell ghosts also accelerates
incisional wound healing (Slavin et a/, 1992). In a
Phase | clinical trial, FGF-2 was applied to pressure
sore in paraplegics and the healing rate among patients
at the highest dose of FGF-2 was increased (Robson
et al., 1992). However, a larger clinical trial with FGF-
2 did not demonstrate a beneficial effect of FGF-2.
This may be, at least in part, due to the fact that
FGFs can not activate their surface receptors without
the cooperation of accessory molecules. FGF-2 binds
to FGF receptors monovalently, and is, therefore, unable
to promote receptor dimerization and tyrosine kinase
activation (Schlessinger et al, 1995). Oligomerization of
FGF molecules is mediated via multimeric interactions
with soluble or membrane-attached heparin sulfate
proteoglycans, allowing FGF to induce FGF receptor
dimerization and tyrosine kinase activation. Indeed, in
intact cells, heparin sulfate proteoglycans, are required
for FGF stimulation of FGF receptor dimerization, tyro-
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sine kinase activation, and signaling via FGF receptors
(Spivak-Kroizman et al, 1994). While these studies
investigating FGF signal transduction provide fruitful
information, further studies are required to understand
the molecular mechanisms of how FGF-2 enhances
wound healing.

FUTURE PROSPECTS

There has been an accumulation of knowledge
about the role of growth factors in wound healing
(Pierce & Mustoe, 1995), however further experimental
studies are still required for the clinical use of growth
factors to generate new tissue, to accelerate neovessel
formation in ischemic tissue, and to promote repair.
One of the difficulties in studying wound repair me-
chanisms is redundancy and cross-talk in the biology
(Clark, 1996; Martin, 1997). Most repair signals pro-
bably control more than one cellular activity, and most
of cell activities are a response to a a summation of
signals. The redundancy of these multiple signals is be-
coming more apparent through the study of transgenic
mice. Candidate genes thought to play a role in wound
healing may also be important in normal development
such that a homozygous gene knockout is lethal to the
embryo. Nonetheless, interbreeding of knockout mice
and the careful design of transgenic mice with gene
knockouts or dominant-negative receptor constructs
with tissue-specific promoters will provide a wealth
of further insight (Pierce & Mustoe, 1995).

Growth factors are extremely valuable tools in our
attempts to understand the mechanisms that modulate
cellular activities. Targeting of growth factors to
specific cells and maintaining adequate physiological
levels may be essential for successful repair. Taking
advantage of redundancy and cross talk by growth
factor signaling, it will be interesting to examine the
effects of growth factor-combination therapy on wound
healing in the near future (Nimni, 1997). To be cost
effective, clinical trials must focus on targeting growth
factors for specific types of impaired healing. Phar-
macological doses of growth factors can be delivered
in extracellular matrix molecule carriers that would
promote the influx of necessary cells into the wound.
When targeted for specific problem wounds, this app-
roach has the potential for making significant clinical
improvements in wound healing (Greenhalgh, 1996).
The next few years will be exciting for wound phar-
macology, as we test to see whether we can induce
adult wounds to heal successfully, while at the same
time decreasing or eliminating fibrosis and scarring.
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