EXPONENTIAL FORMULA FOR EXPONENTIALLY BOUNDED C-SEMIGROUPS

YOUNG S. LEE

ABSTRACT. In this paper, we establish the exponential formula for C-semigroup. If A is the generator of a C-semigroup S(t), then S(t) can be represented by $\exp(tA)$ in some sense.

1. Introduction

Let X be a Banach space and let A be a linear operator from $D(A) \subset X$ to X. Consider the abstract Cauchy problem u'(t) = Au(t), $t \geq 0$ and u(0) = x, where $x \in X$. It is well known that if A is the infinitesimal generator of a C_0 -semigroup $\{T(t): t \geq 0\}$, the abstract Cauchy problem has a unique solution, given by u(t) = T(t)x, for every $x \in D(A)$ (see [4] and [5]). In [3], it is also known that if A is the generator of a C-semigroup $\{S(t): t \geq 0\}$, then the abstract Cauchy problem has a unique solution u(t), given by $u(t) = S(t)C^{-1}x$, for all $x \in C(D(A))$.

If T(t) is a C_0 -semigroup and A is the infinitesimal generator of T(t), then T(t) can be represented by $\exp(tA)$ in some sense. It is known that T(t) is represented by the limit of $\exp(tA_r)$, where A_r are the bounded linear operators and the limit of A_r is the infinitesimal generator A of T(t) (see [4] and [5]). Since each A_r is a bounded linear operator, $\exp(tA_r) = \sum_{n=0}^{\infty} t^n/(n!)A_r^n$ is well-defined. In this paper, we establish the similar exponential formula for an exponentially bounded C-semigroup. If A is the generator of an exponentially bounded C-semigroup S(t), then S(t) can be represented by $\exp(tA)C$ in some sense. Like the C_0 -semigroup theory, $\exp(tA)C$ is the limit of $\exp(tA(h))C$ and $\exp(tA(h))C = \sum_{n=0}^{\infty} t^n/(n!)A(h)^nC$ is well-defined.

Received June 17, 1997. Revised September 12, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 47H05.

Key words and phrases: C-semigroup, generator, exponential formula.

But A(h) may not be bounded and the limit of A(h) is a densely defined linear operator $G \subset A$.

We denote D(A) by the domain of the operator A and R(A) by the range of the operator A.

Let $C: X \to X$ be an injective bounded linear operator with dense range. The family $\{S(t): t \geq 0\}$ of bounded linear operators from X to X is said to be an exponentially bounded C-semigroup if

- (1) S(0) = C,
- (2) S(t)S(s) = CS(t+s) for $t, s \ge 0$,
- (3) for each $x \in X$ S(t)x is continuous in $t \geq 0$,
- (4) there exist M and ω such that $||S(t)|| \leq Me^{\omega t}$ for $t \geq 0$.

If C = I, the identity operator on X, then $\{S(t) : t \geq 0\}$ is a C_0 -semigroup in the ordinary sense. In this case, (1), (2) and (3) imply (4). But there exist C-semigroups which satisfy (1), (2) and (3) but not (4) (see [1]). By letting $t \to 0$, we obtain S(t)C = CS(t) for all $t \geq 0$.

Let S(t) be an exponentially bounded C-semigroup with $||S(t)|| \leq Me^{\omega t}$ for $t \geq 0$. For each $r > \omega$, define the bounded linear operator L_r on X by

$$L_r x = \int_0^\infty e^{-rt} S(t) x dt, \quad ext{for} \quad x \in X.$$

Then L_r is injective for $r > \omega$ and the closed linear operator A defined by

$$Ax = (r - L_r^{-1}C)x$$

with $D(A) = \{x \in X : Cx \in R(L_r)\}$, is independent of $r > \omega$ (see [1]). The operator A is called the generator of S(t). It is known [3] that

$$Ax = C^{-1}(\lim_{t\to 0} (S(t)x - Cx)/t)$$

with $D(A) = \{x \in X : \lim_{t \to 0} (S(t)x - Cx)/t \text{ exists and is in } R(C)\}.$

2. The exponential formula

In the following discussion, C will always be an injective bounded linear operator with dense range.

Let $A(h) = (C^{-1}S(h) - I)/h$. Then for each $n \ge 1$ $R(C) \subset D(A(h)^n)$ and $S(t)(X) \subset D(A(h)^n)$ for all $t \ge 0$. Even if A(h) may not be bounded, we can define $\exp(tA(h))C = \sum_{k=0}^{\infty} t^k/k! A(h)^k C$. And $\exp(tA(h))C$ forms a C-semigroup.

THEOREM 2.1. Let $\{S(t): t \geq 0\}$ be an exponentially bounded C-semigroup with $||S(t)|| \leq Me^{\omega t}$ for $t \geq 0$. For each $x \in X$, define

$$S^{h}(t)x = \sum_{n=0}^{\infty} \frac{t^{n}}{n!} A(h)^{n} Cx = \sum_{n=0}^{\infty} \frac{1}{n!} (\frac{t}{h})^{n} (C^{-1}S(h) - I)^{n} Cx.$$

Then $\{S^h(t): t \geq 0\}$ is an exponentially bounded C-semigroup with $||S^h(t)|| \leq M \exp(t(e^{\omega h}-1)/h)$ for $t \geq 0$ and A(h) is a generator of the C-semigroup $\{S^h(t): t \geq 0\}$.

Before proving Theorem 2.1, we present several lemmas to be used in the proof of Theorem 2.1.

LEMMA 2.2. For each nonnegative integer k and $x \in X$, we have

$$(C^{-1}S(h)-I)^kCx = \sum_{m=0}^k (-1)^m \binom{k}{m} S((k-m)h)x.$$

That is, $(C^{-1}S(h)-I)^kC$ is a bounded linear operator and $||(C^{-1}S(h)-I)^k|| \le M(e^{\omega h}+1)^k$.

Proof. For each $x \in X$,

$$(C^{-1}S(h) - I)^{n}Cx = (C^{-1}S(h) - I)(C^{-1}S(h) - I)^{n-1}x$$

$$= (C^{-1}S(h) - I)\sum_{m=0}^{n-1} (-1)^{m} \binom{n-1}{m} S((n-1-m)h)x$$

$$= \sum_{m=0}^{n-1} (-1)^{m} \binom{n-1}{m} C^{-1}S(h)S((n-1-m)h)x$$

$$-\sum_{m=0}^{n-1} (-1)^m \binom{n-1}{m} S((n-1-m)h)x$$

$$= \sum_{m=0}^{n-1} (-1)^m \binom{n-1}{m} S((n-m)h)x$$

$$+ \sum_{m=0}^{n-1} (-1)^{m+1} \binom{n-1}{m} S((n-(m+1))h)x$$

$$= S(nh)x + \sum_{m=1}^{n-1} (-1)^m \binom{n-1}{m} + \binom{n-1}{m-1} S((n-m)h)x$$

$$+ (-1)^n S(0)x$$

$$= \sum_{m=0}^{n} (-1)^m \binom{n}{m} S((n-m)h)x.$$

By induction, the result follows.

LEMMA 2.3. For any nonnegative integers k and n, we have

$$(C^{-1}S(h) - I)^{k}C(C^{-1}S(h) - I)^{n}C = C(C^{-1}S(h) - I)^{k+n}C.$$

proof. Let $x \in X$. By Lemma 2.2, we have

$$(C^{-1}S(h) - I)^k C(Cx)$$

$$= \sum_{m=0}^k (-1)^m \binom{k}{m} S((k-m)h) Cx$$

$$= C \sum_{m=0}^k (-1)^m \binom{k}{m} S((k-m)h) x = C(C^{-1}S(h) - I)^k Cx.$$

That is, $(C^{-1}S(h)-I)^kC = C(C^{-1}S(h)-I)^k$ on R(C). By the similar argument in the proof of Lemma 2.2, we obtain

$$(C^{-1}S(h) - I)^k S(t)x = \sum_{m=0}^k (-1)^m \binom{k}{m} S((k-m)h + t)x.$$

So we have

$$(C^{-1}S(h) - I)^k CS(t)x = \sum_{m=0}^k (-1)^m \binom{k}{m} S((k-m)h)S(t)x$$
$$= \sum_{m=0}^k (-1)^m \binom{k}{m} S((k-m)h + t)Cx$$
$$= C(C^{-1}S(h) - I)^k S(t)x.$$

This means that $(C^{-1}S(h)-I)^kC = C(C^{-1}S(h)-I)^k$ on S(t)(X) for all $t \geq 0$. Since $(C^{-1}S(h)-I)^nCx$ is a sum of the elements in R(C) or S(t)(X), the result follows.

LEMMA 2.4. For each $x \in X$, $(C^{-1}S(h))^kCx = S(kh)x$. That is, $(C^{-1}S(h))^kC$ is a bounded linear operator and $||(C^{-1}S(h))^kC|| < Me^{k\omega h}$.

Proof. For each $x \in X$,

$$(C^{-1}S(h))^n Cx = (C^{-1}S(h))(C^{-1}S(h))^{n-1}Cx$$

= $C^{-1}S(h)S((n-1)h)x = S(nh)x$.

By induction, the result follows.

Proof of Theorem 2.1. It is clear that $S^h(0) = C$.

By Lemma 2.2 and 2.3, for $t, s \ge 0$

$$\begin{split} S^h(t)S^h(s) &= (\sum_{n=0}^{\infty} \frac{1}{n!} (\frac{t}{h})^n (C^{-1}S(h) - I)^n C) (\sum_{k=0}^{\infty} \frac{1}{k!} (\frac{t}{h})^k (C^{-1}S(h) - I)^k C) \\ &= \sum_{l=0}^{\infty} \sum_{k+n=l} \frac{1}{n!} \frac{1}{k!} (\frac{t}{h})^n (\frac{s}{h})^k (C^{-1}S(h) - I)^n C (C^{-1}S(h) - I)^k C \\ &= \sum_{l=0}^{\infty} \sum_{n=0}^{l} \frac{1}{(l-n)!} \frac{1}{n!} (\frac{t}{h})^n (\frac{s}{h})^{l-n} C (C^{-1}S(h) - I)^l C \\ &= \sum_{l=0}^{\infty} \frac{1}{l!} (\frac{t+s}{h})^l C (C^{-1}S(h) - I)^l C = C S^h (t+s). \end{split}$$

Let $S_n^h(t)x = \sum_{k=0}^n 1/k! (t/h)^k (C^{-1}S(h) - I)^k Cx$ for $x \in X$. Then $S_n^h(t)x$ is continuous in $t \geq 0$. Since $\lim_{n\to\infty} S_n^h(t)x = S^h(t)x$, uniformly on any finite t-intervals, $S^h(t)x$ is continuous in $t \geq 0$.

By Lemma 2.2 and 2.4, we have $S^h(t)=e^{-\frac{t}{h}I}(\sum_{k=0}^{\infty}1/k!(\frac{t}{h})^k(C^{-1}S(h))^kC)$. Thus

$$||S^{h}(t)x|| = ||e^{-\frac{t}{h}I}(\sum_{k=0}^{\infty} \frac{1}{k!} (\frac{t}{h})^{k} (C^{-1}S(h))^{k}C)x||$$

$$\leq ||e^{-\frac{t}{h}I}|| ||\sum_{k=0}^{\infty} \frac{1}{k!} (\frac{t}{h})^{k} (C^{-1}S(h))^{k}C|| ||x||$$

$$\leq e^{-\frac{t}{h}} M \exp(\frac{t}{h} e^{\omega h}) ||x||.$$

Therefore $\{S^h(t): t \geq 0\}$ is an exponentially bounded C-semigroup $||S^h(t)|| \leq M \exp(t(e^{\omega h}-1)/h)$ for $t \geq 0$.

By the definition of $S^h(t)$, we have

$$S^{h}(t)x = \sum_{n=0}^{\infty} \frac{1}{n!} (\frac{t}{h})^{n} (C^{-1}S(h) - I)^{n} Cx.$$

Thus

$$||\frac{S^{h}(t)x - Cx}{t} - \frac{S(h)x - Cx}{h}||$$

$$= ||\frac{1}{t} \sum_{n=2}^{\infty} \frac{1}{n!} (\frac{t}{h})^{n} (C^{-1}S(h) - I)^{n} Cx||$$

$$\leq \frac{1}{t} \sum_{n=2}^{\infty} \frac{1}{n!} (\frac{t}{h})^{n} M(e^{\omega h} + 1)^{n} ||x||$$

$$= \frac{M}{t} (\exp(\frac{t}{h}(e^{\omega h} + 1)) - 1 - \frac{t}{h}(e^{\omega h} + 1)) ||x||.$$

So $\lim_{t\to 0} (S^h(t)x - Cx)/t = (S(h)x - Cx)/h$.

$$C^{-1}(\lim_{t\to 0}\frac{S^h(t)x-Cx}{t})=C^{-1}(\frac{S(h)x-Cx}{h})=A(h)x.$$

Exponential formula

That is, A(h) is the generator of the C-semigroup $\{S^h(t): t \geq 0\}$. \square Before presenting our main theorem, we introduce a linear operator G defined by

$$Gx = \lim_{t \to 0} (C^{-1}S(t)x - x)/t$$

with $D(G) = \{x \in R(C) : \lim_{t\to 0} (C^{-1}S(t)x - x)/t \text{ exists } \}$. Then D(G) is dense in X and $G \subset A$ (see [1]). And $\lim_{h\to 0} A(h)x = Gx$ for $x \in D(G)$. The idea of the proof is due to E. Hille [2].

THEOREM 2.5. Let A be the generator of an exponentially bounded C-semigroup $\{S(t): t \geq 0\}$ with $||S(t)|| \leq M\epsilon^{\omega t}$ for $t \geq 0$ and let $\{S^h(t): t \geq 0\}$ be the C-semigroups given in Theorem 1. Then

$$S(t)x = \lim_{h \to 0} S^h(t)x$$
 for all $x \in X$

and the convergence is uniform on bounded t-intervals.

Proof. Let $x \in D(G)$. Then $x \in D(A) \cap D(A(h))$ and A(h)S(s)x = S(s)A(h)x. By Theorem 2.4 in [3], $S^h(t-s)S(s)$ is differentiable in s and

$$\frac{d}{ds}S^h(t-s)S(s)x = S^h(t-s)(-A(h))S(s)x + S^h(t-s)S(s)Ax$$
$$= S^h(t-s)S(s)(Ax - A(h)x).$$

Integrating to both sides from 0 to t, we have

$$S^h(0)S(t)x-S^h(t)S(0)x=\int_0^t S^h(t-s)S(s)(Ax-A(h)x)ds.$$

So for $x \in D(G)$ we have

$$\begin{aligned} || \, CS(t)x - S^h(t)Cx|| \\ &\leq \int_0^t || S^h(t-s)S(s)(Ax - A(h)x)|| \, ds \end{aligned}$$

Young S. Lee

$$\leq ||Ax - A(h)x|| \int_0^t M \exp(\frac{t-s}{h}(e^{\omega h} - 1)) M e^{\omega s} ds$$

$$\leq M^2 ||Ax - A(h)x|| \int_0^t e^{(t-s)(e^{\omega} - 1)} e^{\omega s} ds$$

$$\leq M^2 ||Ax - A(h)x|| \int_0^t e^{t(e^{\omega} - 1)} e^{\omega t} ds$$

$$= tM^2 ||Ax - A(h)x|| e^{t(e^{\omega} + \omega + 1)}.$$

Therefore we have

$$CS(t)x = \lim_{h \to 0} S^h(t)Cx = C(\lim_{h \to 0} S^h(t)x)$$
 for $x \in D(G)$.

Since C is injective, $S(t)x = \lim_{h\to 0} S^h(t)x$ for $x \in D(G)$.

Since ||S(t)|| and $||S^h(t)||$ are uniformly bounded on any finite t-intervals and D(G) is dense, the result follows.

References

- [1] E. B. Davies and M. M. H. Pang, The Cauchy problem and a generalization of the Hille-Yosida theorem, Proc. London Math. Soc. 55 (1987), 181 - 248.
- [2] E. Hille, Representation of one-parameter semi-groups of linear transformations, Proc. Nat. Acad. Sc. U. S. A. 28 (1942), 175 178.
- [3] R. deLaubenfels, C-semigroups and the Cauchy problem, J. Funct. Anal. 111 (1993), 44 61.
- [4] J. A. Goldstein, Semigroup of linear operators and applications, Oxford, New York, 1985.
- [5] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer, New York, 1983.

DEPARTMENT OF MATHEMATICS, SEOUL WOMEN'S UNIVERSITY, SEOUL 139-774, KOREA