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TOTALLY COMPLEX SUBMANIFOLDS IN CaP?
Liv XIMIN

ABSTRACT. In the present paper, some pinching theorems for the
curvatures of the totally complex submanifolds of the Cayley projec-
tive plane CaP? are obtained.

1. Introduction

Let M be an n-dimensional compact Kaehler submanifold of the com-
plex projective space C P™(1). Denote by h the second fundamental form
of M and UM the unit tangent bundle over M. Ros in [6] showed that
if f(u) = |h(u,u)]* < 1 for any u € UM, then M is totally geodesic.
Moreover in [7], Ros gave a complete list of compact Kaehler submani-
folds of CP™(1) satisfying the condition max,eyy f(u) = ;. The same
type result for totally complex submanifolds of the quaternion projective
space H P™(1) was obtained by Coulton and Gauchman [3]. In [4], Coul-
ton and Glazebrook proved the analogous result in the case of totally
complex submanifolds of the Cayley projective plane CaP?. In [5], we
proved a pinching theorem for the square of the norm of the second fun-
damental form. In the present paper, we proved some pinching theorems
for the curvatures of M.

THEOREM 1. Let M be a compact totally complex submanifold of
complex dimension 2, immersed in Cayley projective plane CaP?. If the
sectional curvature of M satisfles Ky > %, then M is totally geodesic

and M is CP?(1).
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THEOREM 2. Let M be a compact totally complex submanifold of
complex dimension n, immersed in Cayley projective plane CaP?. If the
holomorphic sectional curvature H of M satisfies H > %, then either

(i) |]* = 0, M is totally geodesic in CaP? and M is CP'(1) or
CP*(1), or

(it) [h|* = n and M is CP'(3).

THEOREM 2. Let M be a complete totally complex submanifold of
complex dimension n, immersed in Cayley projective plane CaP?. If the
Ricci curvature () of M satisfies Q > 3, then either

(i) |RJ* = 0, M Is totally geodesic in CaP?, and M is CP'(1) or
CP%1), or

(ii) |h|> = n and M is C'Pl(%).

2. Cayley projective plane

In this section, we review the fundamental results about the Cayley
projective plane, for details see [4].

Let us denote by Ca the set of Cayley numbers. It possesses a mul-
tiplicative identity 1 and a positive definite bilinear form (,) with norm
llall = (a,a}, satisfying [labl| = |la|| - ||b]|, for a,t € Ca. Every ele-
ment ¢ € Ca can be expressed in the form a = a4l + @, for gy € R
and (a;,1) = 0. The conjugation map a — a* = gyl — q, is an anti-
automorphism (ab)* = b*a*.

A canonical basis for Ca is any basis of the form {1,eq,€ey,... €5}
satisfying: (i) {(e1,1) = 0; (ii) (e;,e;) = {0 for ¢ # j, and 1 otherwise};
(iil) e = —1;e;e; + e5e; = 0(i # 7); (iv) €641 = €., for i € Z.

Let V' be a vector space of real dimension 16 with automorphism group
Spin(9). The splitting

V:Ca@(?a

together with the above canonical basis on each summand, endows V
with what we refer to as a Cayley structure. We know that the Cay-
ley projective plane CaP? is a 16-dimensional Riemannian symmetric
space whose tangent space admits the Cayley structure pointwise. In the
following, Let {/y, ..., Iz} be the Cayley structure on CaP?.
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The curvature tensor R of CaP? is given in [2] as follows

R((0), (e, d)(e f) = ;((le.c)a— ala,ehe + (e — (cb)d

(1) + (ad — eb)f7), (4(d, fib— 4(b, f)d
+ a'(cf) —c(af) + e*(ad — cb)))

On Ca@ Ca we have the positive definite bilinear form (,) given by
(2) {(a,b), (c,d)) = (a,c) + (b,d)

3. Totally complex submanifolds

Let V C T,CaP? be a real vector subspace, we say that V is a totally
complex subspace if there exists an I such that there easists a basis with
I =1Iyand (i) Iy C V, and (ii) I,V is perpendicular to V for 1 < k < 6.
Clearly, if V' is a maximal subspace of this kind then dimgV = 4.

Let M be a compact Riemannian manifold isometrically immersed in
CaP? by j: M — CaP?. Denote by h and A the second fundamental
form of j and the Weingarten endomorphism respectively. Then we have

(3) {(h(X,Y), N) = (X, ANY)

where X, Y € TM, N € TM*. We take 57, v7 and v+ to be the
Riemannian connection on CaP?, M and the normal connection on M
respectively. The corresponding curvature tensors are denoted by R, R,
and R' respectively. The first and second covariant derivatives of h are
given by

(@) (VhX,Y,Z) = vz((X,Y) = h(v2X,Y) — h(X,vzY)

(5) (62}7’)(‘)(7 Y’ Z’ W) = Vé(@h)(Xa YJ Z) - (<7}L)(VVVX’ Ya Z)

—(Vh)(X, VVV'Yy Z) - (Vh)(X, Y, VWZ)
where X,Y,Z, W € TM. The Codazzi equation takes the following form
(6) (VRN Xr), X2y, Xriny) = (VR (X1, X, X3)

where 7 € S3, the permutation group, and the arguments are in the
tangent space of M. Recalling that h and s7h are symmetric, we have
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the Ricci identity

— 5

(7) (V*R)(X,Y, 2, W) ~ (V*R)(X,Y, W, Z)
= —R(Z,W)h(X,Y) + h(R(Z,W)X,Y) + h(X, R(Z, W)Y)
We say that j : M — CaP? is a totally complex immersion if W =
J«(TM) is a totally complex subspace for each point of M. Observe that

every totally complex submanifold of CaP? has a Kaehler structure. We
set [ = Iy, and consequently we have

(a) vxI=0
(8) (b) R(IX,Y)=1Ih(X)Y)

(¢) Ainv=ITAxy = —ANIT

(d) TR(X,IX)X = R(X,IX)IX
where XY € T,M and N € T,M*.

Define f(u) = |h({u, u){?, where u € UM, the unit tangent bundle over
M. Assume f attains its maximum at some vector v € UM,, then ([6]):

(9) Anayv = (v, v)[*v

LEMMA 3.1. [5]. Let M"™ be a compact totally complex submanifold

in CaP?. Assume f attains its maximum at v € UM, then

6

(10) 3lh(v, v) (1 = 4|h(v,0)[") + > (h(v,v), Lv)?

i=1
+ A|yh(v,v,0))P <0
LEMMA 3.2. [5]. Let M be a compact totally complex submanifold

in CaP?. Assume f attains its maximum at v € UM,, then for any
u € UM, with (u,v) = {u, Iv) = 0, we have

6
(1) [Aalw, )1 = 8lh(w, v)]*) = [Apeaul® + D (v, ), Lu)?

+ A[(Th) (w0, 0)* <0

When the complex dimension of M is 2, we can always choose a vector
u € UM, such that

(12) Apeau = (h(v,v), h(u, u))u.
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Define
S= S S, = {(n Dl t € UMy, (1, 8) = (r, It) = 0}
peM

and function o on S by
(13) a(r,t) = |h(r,t)]".

LEMMA 3.3. Let M be a compact totally complex submanifold of
complex dimension n > 2 in CaP?. If o attains its maximum at some
(u,v) € UM, x UM, for some p € M and f also attains its maximum
at v € UM, then we have

6
(19) 20w, 0) 21 = 4h(w, )2 = 20w, u)2) + S (hlu,v), Lu)?

A

(TR (u,u,v)* <0

~

+

a4

Proof. Let y(t) = cos tv + sin vt, then (y(¢),7'(t)) € S,. Since the
function o(7,~') attains its maximum at t = 0,

(15) 0= %(O) = 2(h(v,v), h(u,v)) — 2(h(u,u), h(u,v))
d’o(v,7')
(16) 0> T(O)

= 2|h(v, v)|* + 2lA(u, w)[* = 8Jh(w, v)* = A(h(u, u), h(v, v)).

Suppose now that the function f also attains its maximum at v €
UM,. Fix u, for any w € UM, with (u,w), (w,v) € S,, then c(t) =
(u,cos tv + sin tw) € S, and o - ¢(t) attains its maximum at ¢ = 0, thus

_d(o-c) ’
(17) 0= 7 (0) = 2{h(u,v), h(u,w)).

Now, let e, = v,es = Iv,e3 = u,ey = Iu be an orthonormal basis of
UM, and assume

2n 2n
Ah(u,v)u = E a;e;, Ah(u,v)v = E bieiv
1=] 1=1
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then it is easy to see from (9), (15) and (17) that a; = 0 if ¢ # 1, and
b; = 0,when j # 3, that is
(18) Anunytt = [h(w,v)|*0, Appov = |h(u,v)|*u.

Let C), be the geodesic in M satisfying the initial conditions C,(0) =
p,C,, = u. Parallel translating v and v along C,(t) yields vector fields
Uu(t) and V,(t). Let 0, = 0 - (U,, V.,), we have

do, -

(19)  T2H(0) = 2(TR) w0, b)) + 20T, u, v
(20) L7 (0) = 2(920) (T, Ty, v), A, ) + 24(TH) (e, w,v)
By a simple calculation and using (17) and (18), we get

Q1) 2RI, T, u,v), by,

v)

= 2((*h)(Tu, u, Iu v) h(u,v)

= 2((V*h)(u, Tu, Tu,v), h{u, v)
—(R(Iu,u)lu, Ahm vy —

= ——2<(V2h)(u u,u, v), h(u,v))

)
)
)y + (R (Tu, w)h(Iu, v), h(u, v))
(R(Tu,u)v, Anelu)

+= {Z u,v) — |h(u,v)[* — 4] Apayul?}
—{—\h(u,v)lz+2|h(u,v)12!h(u,u)|2}
g b ) + 2Ah(en ) ).

Since o attains its maximum at (u,v), we have

d’o, d’oq,
> — .
(22) 02" +
Substituting (18)-(21) into (22), we get (14). O

4. Proof of the main theorems

PROOF OF THEOREM 1. Assume f attains its maximum at v € UM,
for some p € M. If f(v) = 0, then M is totally geodesic. If f(v) # 0, we
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can assume from Lemma 3.1 that

—

(23) |h(v,v)|* > =

y{;

For any ¢ € M, and any (r,t) € S,, it follows from (R(r,t)t,r) > é that

(24) 8(h(r, ), hit, 1)) > —(1 — 8|h(r, t)[?).
Similarly, from (R(Ir,t)t, Ir) > 1, we have
(25) 8(h(r,r), h(t, 1)) <1 —8|h(r, 1)
Thus,
(26) 1= 8Jh(r,t)|* 2 8|(h(r, ), h(t, 1)),
and so
(27) W <
for any (r,t) € S;, and any ¢ € M. Hence, the function o defined by
o(r,t) = |h(r, )| satlsﬁes
1
(28) o< g
Now, we take a u € UM, with (u,v) € S, and Axqmyu = (h(u,u), h(v, v))u,

by (26), we have

(29) [(h(u,u), h(v,v))| <

QO b=

From (23), (26) and (29), we obtain
(30) |h(v, v)]2(1 — 8|h(w,v)|?) > 16(h(u,u), h(v,v))?.
Substituting (30) and Ay,u = (h(u,u), h(v,v))u into (11), one can
easily deduce

1
(31) (h(u,u), h(v,v)) = 0, [h(u,v)]* = 3

From (28) and (31), we find that o attains its maximum at (u,v) € S,,.
Substituting (31) into (14), we get

(32) [Pu, w)* >

ok M
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It follows from (16), (23), (31) and (32) that |h(u,«)|* = |h(v,v)]? = 1§,
and so f < 1 on UM. Theorem 1 now follows from Theorem 2.2 in [4]
and Ky > —é, this completes the proof of Theorem 1. O

PRrROOF OF THEOREM 2. By (1) and Gauss equation we have

H(u) = (R(u, Iu)Tu,u) =1 — 2|h|?

for any uw € UM. Hence the condition H(u) > } is equvalent to the

condition |h|> < }. Then the theorem 2 now follows from Theorem 2.2
in [4]. O

PrOOF OF THEOREM 3. By assumption and Myers theorem we know
that M is compact. From condition @ > 2, we can get |h|* < n. Then
the theorem 3 follows from the theorem of [5]. This completes the proof
of Theorem 3. O
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