TOTALLY COMPLEX SUBMANIFOLDS IN CaP²

LIU XIMIN

ABSTRACT. In the present paper, some pinching theorems for the curvatures of the totally complex submanifolds of the Cayley projective plane CaP^2 are obtained.

1. Introduction

Let M be an n-dimensional compact Kaehler submanifold of the complex projective space $CP^m(1)$. Denote by h the second fundamental form of M and UM the unit tangent bundle over M. Ros in [6] showed that if $f(u) = |h(u,u)|^2 < \frac{1}{4}$ for any $u \in UM$, then M is totally geodesic. Moreover in [7], Ros gave a complete list of compact Kaehler submanifolds of $CP^m(1)$ satisfying the condition $\max_{u \in UM} f(u) = \frac{1}{4}$. The same type result for totally complex submanifolds of the quaternion projective space $HP^m(1)$ was obtained by Coulton and Gauchman [3]. In [4], Coulton and Glazebrook proved the analogous result in the case of totally complex submanifolds of the Cayley projective plane CaP^2 . In [5], we proved a pinching theorem for the square of the norm of the second fundamental form. In the present paper, we proved some pinching theorems for the curvatures of M.

THEOREM 1. Let M be a compact totally complex submanifold of complex dimension 2, immersed in Cayley projective plane CaP^2 . If the sectional curvature of M satisfies $K_M \geq \frac{1}{8}$, then M is totally geodesic and M is $CP^2(1)$.

Received August 28, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 53C42, 53C40.

Key words and phrases: totally complex submanifold, Cayley projective plane, curvature.

THEOREM 2. Let M be a compact totally complex submanifold of complex dimension n, immersed in Cayley projective plane CaP^2 . If the holomorphic sectional curvature H of M satisfies $H \geq \frac{1}{2}$, then either

- (i) $|h|^2 = 0$, M is totally geodesic in CaP^2 , and M is $CP^1(1)$ or $CP^2(1)$, or
 - (ii) $|h|^2 = n$ and M is $CP^1(\frac{1}{2})$.

THEOREM 2. Let M be a complete totally complex submanifold of complex dimension n, immersed in Cayley projective plane CaP^2 . If the Ricci curvature Q of M satisfies $Q \ge \frac{n}{2}$, then either

- (i) $|h|^2 = 0$, M is totally geodesic in CaP^2 , and M is $CP^1(1)$ or $CP^2(1)$, or
 - (ii) $|h|^2 = n$ and M is $CP^1(\frac{1}{2})$.

2. Cayley projective plane

In this section, we review the fundamental results about the Cayley projective plane, for details see [4].

Let us denote by Ca the set of Cayley numbers. It possesses a multiplicative identity 1 and a positive definite bilinear form \langle , \rangle with norm $\|a\| = \langle a, a \rangle$, satisfying $\|ab\| = \|a\| \cdot \|b\|$, for $a, b \in Ca$. Every element $a \in Ca$ can be expressed in the form $a = a_0 1 + a_1$ for $a_0 \in R$ and $\langle a_1, 1 \rangle = 0$. The conjugation map $a \longrightarrow a^* = a_0 1 - a_1$ is an antiautomorphism $(ab)^* = b^*a^*$.

A canonical basis for Ca is any basis of the form $\{1, e_0, e_1, \ldots, e_6\}$ satisfying: (i) $\langle e_1, 1 \rangle = 0$; (ii) $\langle e_i, e_j \rangle = \{0 \text{ for } i \neq j, \text{ and } 1 \text{ otherwise}\}$; (iii) $e_i^2 = -1$; $e_i e_j + e_j e_i = 0 (i \neq j)$; (iv) $e_i e_{i+1} = e_{i+3}$ for $i \in \mathbb{Z}_7$.

Let V be a vector space of real dimension 16 with automorphism group Spin(9). The splitting

$$V = Ca \bigoplus Ca$$

together with the above canonical basis on each summand, endows V with what we refer to as a Cayley structure. We know that the Cayley projective plane CaP^2 is a 16-dimensional Riemannian symmetric space whose tangent space admits the Cayley structure pointwise. In the following, Let $\{I_0, \ldots, I_6\}$ be the Cayley structure on CaP^2 .

The curvature tensor \bar{R} of CaP^2 is given in [2] as follows

$$\bar{R}((a,b),(c,d))(e,f) = \frac{1}{4}((\langle c,e\rangle a - 4\langle a,e\rangle c + (ed)b^* - (eb)d^*) + (ad - cb)f^*), (4\langle d,f\rangle b - 4\langle b,f\rangle d + a^*(cf) - c^*(af) + e^*(ad - cb)))$$

On $Ca \bigoplus Ca$ we have the positive definite bilinear form \langle , \rangle given by

$$\langle (a,b),(c,d)\rangle = \langle a,c\rangle + \langle b,d\rangle$$

3. Totally complex submanifolds

Let $V \subset T_x CaP^2$ be a real vector subspace, we say that V is a totally complex subspace if there exists an I such that there easists a basis with $I = I_0$ and (i) $I_0 \subset V$, and (ii) $I_k V$ is perpendicular to V for $1 \le k \le 6$. Clearly, if V is a maximal subspace of this kind then $dim_R V = 4$.

Let M be a compact Riemannian manifold isometrically immersed in CaP^2 by $j: M \longrightarrow CaP^2$. Denote by h and A the second fundamental form of j and the Weingarten endomorphism respectively. Then we have

(3)
$$\langle h(X,Y), N \rangle = \langle X, A_N Y \rangle$$

where $X,Y\in TM$, $N\in TM^{\perp}$. We take ∇ , ∇ and ∇^{\perp} to be the Riemannian connection on CaP^2 , M and the normal connection on M respectively. The corresponding curvature tensors are denoted by \bar{R} , R, and R^{\perp} respectively. The first and second covariant derivatives of h are given by

(4)
$$(\bar{\bigtriangledown}h)(X,Y,Z) = \nabla_Z^{\perp}(h(X,Y) - h(\nabla_Z X,Y) - h(X,\nabla_Z Y))$$

(5)
$$(\bar{\bigtriangledown}^2 h)(X, Y, Z, W) = \bigtriangledown_W^{\perp}(\bar{\bigtriangledown}h)(X, Y, Z) - (\bar{\bigtriangledown}h)(\bigtriangledown_W X, Y, Z) - (\bar{\bigtriangledown}h)(X, \bigtriangledown_W Y, Z) - (\bar{\bigtriangledown}h)(X, Y, \bigtriangledown_W Z)$$

where $X, Y, Z, W \in TM$. The Codazzi equation takes the following form

(6)
$$(\bar{\bigtriangledown}h)(X_{\tau(1)}, X_{\tau(2)}, X_{\tau(3)}) = (\bar{\bigtriangledown}h)(X_1, X_2, X_3)$$

where $\tau \in S_3$, the permutation group, and the arguments are in the tangent space of M. Recalling that h and ∇h are symmetric, we have

the Ricci identity

(7)
$$(\bar{\bigtriangledown}^2 h)(X, Y, Z, W) - (\bar{\bigtriangledown}^2 h)(X, Y, W, Z)$$

$$= -R^{\perp}(Z, W)h(X, Y) + h(R(Z, W)X, Y) + h(X, R(Z, W)Y)$$

We say that $j: M \longrightarrow CaP^2$ is a totally complex immersion if $W = j_*(TM)$ is a totally complex subspace for each point of M. Observe that every totally complex submanifold of CaP^2 has a Kaehler structure. We set $I = I_0$, and consequently we have

where $X, Y \in T_x M$ and $N \in T_r M^{\perp}$.

Define $f(u) = |h(u, u)|^2$, where $u \in UM$, the unit tangent bundle over M. Assume f attains its maximum at some vector $v \in UM_p$, then ([6]):

(9)
$$A_{h(v,v)}v = |h(v,v)|^2 v$$

LEMMA 3.1. [5]. Let M^n be a compact totally complex submanifold in CaP^2 . Assume f attains its maximum at $v \in UM_p$, then

(10)
$$3|h(v,v)|^2 (1-4|h(v,v)|^2) + \sum_{i=1}^6 \langle h(v,v), I_i v \rangle^2$$

$$+ 4|\bar{\nabla} h(v,v,v)|^2 \le 0$$

LEMMA 3.2. [5]. Let M be a compact totally complex submanifold in CaP^2 . Assume f attains its maximum at $v \in UM_p$, then for any $u \in UM_p$ with $\langle u, v \rangle = \langle u, Iv \rangle = 0$, we have

(11)
$$|h(v,v)|^2 (1-8|h(u,v)|^2) - |A_{h(v,v)}u|^2 + \sum_{i=1}^6 \langle h(v,v), I_i u \rangle^2 + 4|(\bar{\nabla}h)(u,v,v)|^2 \le 0$$

When the complex dimension of M is 2, we can always choose a vector $u \in UM_v$, such that

$$(12) A_{h(v,v)}u = \langle h(v,v), h(u,u) \rangle u.$$

Define

$$S = \bigcup_{p \in M} S_p, \, S_p = \{(r,t) | r, t \in UM_p, \langle r, t \rangle = \langle r, It \rangle = 0\}$$

and function σ on S by

(13)
$$\sigma(r,t) = |h(r,t)|^2.$$

LEMMA 3.3. Let M be a compact totally complex submanifold of complex dimension $n \geq 2$ in CaP^2 . If σ attains its maximum at some $(u,v) \in UM_p \times UM_p$, for some $p \in M$ and f also attains its maximum at $v \in UM_p$ then we have

$$(14) 2|h(u,v)|^{2}(1-4|h(u,v)|^{2}-2|h(u,u)|^{2}) + \sum_{v=1}^{6}\langle h(u,v), I_{i}u\rangle^{2} + 4|(\bar{\nabla}h)(u,u,v)|^{2} \leq 0$$

Proof. Let $\gamma(t) = \cos tv + \sin vt$, then $(\gamma(t), \gamma'(t)) \in S_p$. Since the function $\sigma(\gamma, \gamma')$ attains its maximum at t = 0,

(15)
$$0 = \frac{d\sigma(\gamma, \gamma')}{dt}(0) = 2\langle h(v, v), h(u, v) \rangle - 2\langle h(u, u), h(u, v) \rangle$$

(16)
$$0 \ge \frac{d^2 \sigma(\gamma, \gamma')}{dt^2}(0)$$
$$= 2|h(v, v)|^2 + 2|h(u, u)|^2 - 8|h(u, v)|^2 - 4\langle h(u, u), h(v, v)\rangle.$$

Suppose now that the function f also attains its maximum at $v \in UM_p$. Fix u, for any $\omega \in UM_p$ with $(u, \omega), (\omega, v) \in S_p$, then $c(t) = (u, \cos tv + \sin t\omega) \in S_p$, and $\sigma \cdot c(t)$ attains its maximum at t = 0, thus

(17)
$$0 = \frac{d(\sigma \cdot c)}{dt}(0) = 2\langle h(u, v), h(u, \omega) \rangle.$$

Now, let $e_1 = v, e_2 = Iv, e_3 = u, e_4 = Iu$ be an orthonormal basis of UM_p , and assume

$$A_{h(u,v)}u = \sum_{i=1}^{2n} a_i e_i, \ A_{h(u,v)}v = \sum_{i=1}^{2n} b_i e_i,$$

then it is easy to see from (9), (15) and (17) that $a_i = 0$ if $i \neq 1$, and $b_i = 0$, when $j \neq 3$, that is

(18)
$$A_{h(u,v)}u = |h(u,v)|^2 v, \ A_{h(u,v)}v = |h(u,v)|^2 u.$$

Let C_u be the geodesic in M satisfying the initial conditions $C_u(0) = p$, $C'_u = u$. Parallel translating u and v along $C_u(t)$ yields vector fields $U_u(t)$ and $V_u(t)$. Let $\sigma_u = \sigma \cdot (U_u, V_u)$, we have

(19)
$$\frac{d^2\sigma_u}{dt^2}(0) = 2\langle (\bar{\bigtriangledown}^2 h)(u,u,u,v), h(u,v)\rangle + 2|(\bar{\bigtriangledown} h)(u,u,v)|^2,$$

$$(20) \qquad \frac{d^2\sigma_{Iu}}{dt^2}(0)=2\langle(\bar\bigtriangledown^2h)(Iu,Iu,u,v),h(u,v)\rangle+2|(\bar\bigtriangledown h)(u,u,v)|^2.$$

By a simple calculation and using (17) and (18), we get

(21)
$$2\langle (\bar{\bigtriangledown}^{2}h)(Iu, Iu, u, v), h(u, v)\rangle$$

$$= 2\langle (\bar{\bigtriangledown}^{2}h)(Iu, u, Iu, v), h(u, v)\rangle$$

$$= 2\langle (\bar{\bigtriangledown}^{2}h)(u, Iu, Iu, v), h(u, v)\rangle + \langle (R^{\perp}(Iu, u)h(Iu, v), h(u, v))\rangle$$

$$-\langle R(Iu, u)Iu, A_{h(u,v)}v\rangle - \langle R(Iu, u)v, A_{h(u,v)}Iu\rangle$$

$$= -2\langle (\bar{\bigtriangledown}^{2}h)(u, u, u, v), h(u, v)\rangle$$

$$+ \frac{1}{2}\{\sum_{i=1}^{6}\langle h(u, v), I_{i}u\rangle^{2} - |h(u, v)|^{2} - 4|A_{h(u,v)}u|^{2}\}$$

$$-\{-|h(u, v)|^{2} + 2|h(u, v)|^{2}|h(u, u)|^{2}\}$$

$$-\{-\frac{1}{2}|h(u, v)|^{2} + 2|h(u, v)|^{4}\}.$$

Since σ attains its maximum at (u, v), we have

$$(22) 0 \ge \frac{d^2\sigma_u}{dt^2} + \frac{d^2\sigma_{Iu}}{dt^2}.$$

Substituting (18)-(21) into (22), we get (14).

4. Proof of the main theorems

PROOF OF THEOREM 1. Assume f attains its maximum at $v \in UM_p$ for some $p \in M$. If f(v) = 0, then M is totally geodesic. If $f(v) \neq 0$, we

can assume from Lemma 3.1 that

(23)
$$|h(v,v)|^2 \ge \frac{1}{4}.$$

For any $q \in M$, and any $(r,t) \in S_q$, it follows from $\langle R(r,t)t,r \rangle \geq \frac{1}{8}$ that

(24)
$$8\langle h(r,r), h(t,t)\rangle \ge -(1-8|h(r,t)|^2).$$

Similarly, from $\langle R(Ir,t)t,Ir\rangle \geq \frac{1}{8}$, we have

(25)
$$8\langle h(r,r), h(t,t) \rangle \le 1 - 8|h(r,t)|^2.$$

Thus,

(26)
$$1 - 8|h(r,t)|^2 \ge 8|\langle h(r,r), h(t,t)\rangle|,$$

and so

$$|h(r,t)|^2 \le \frac{1}{8}$$

for any $(r,t) \in S_q$, and any $q \in M$. Hence, the function σ defined by $\sigma(r,t) = |h(r,t)|^2$ satisfies

$$(28) \sigma \le \frac{1}{8}.$$

Now, we take a $u \in UM_p$ with $(u, v) \in S_p$ and $A_{h(v,v)}u = \langle h(u, u), h(v, v) \rangle u$, by (26), we have

(29)
$$|\langle h(u,u), h(v,v) \rangle| \leq \frac{1}{8}.$$

From (23), (26) and (29), we obtain

$$(30) |h(v,v)|^2 (1-8|h(u,v)|^2) \ge 16\langle h(u,u), h(v,v) \rangle^2.$$

Substituting (30) and $A_{h(v,v)}u = \langle h(u,u), h(v,v)\rangle u$ into (11), one can easily deduce

(31)
$$\langle h(u,u), h(v,v) \rangle = 0, |h(u,v)|^2 = \frac{1}{8}.$$

From (28) and (31), we find that σ attains its maximum at $(u, v) \in S_p$. Substituting (31) into (14), we get

$$|h(u,u)|^2 \ge \frac{1}{4}.$$

Liu Ximin

It follows from (16), (23), (31) and (32) that $|h(u,u)|^2 = |h(v,v)|^2 = \frac{1}{4}$, and so $f \leq \frac{1}{4}$ on UM. Theorem 1 now follows from Theorem 2.2 in [4] and $K_M \geq \frac{1}{8}$, this completes the proof of Theorem 1.

PROOF OF THEOREM 2. By (1) and Gauss equation we have

$$H(u) = \langle R(u, Iu)Iu, u \rangle = 1 - 2|h|^2$$

for any $u \in UM$. Hence the condition $H(u) \geq \frac{1}{2}$ is equivalent to the condition $|h|^2 \leq \frac{1}{4}$. Then the theorem 2 now follows from Theorem 2.2 in [4].

PROOF OF THEOREM 3. By assumption and Myers theorem we know that M is compact. From condition $Q \ge \frac{n}{2}$, we can get $|h|^2 \le n$. Then the theorem 3 follows from the theorem of [5]. This completes the proof of Theorem 3.

References

- A. L. Besse, Manifolds all of whose geodesics are closed, Springer-Verlag, Berlin, 1978.
- [2] R. Brown and A. Gray, Riemannian manifolds with holonomy group Spin(9), in Diff. Geom. in honor of K. Yano, Tokyo, 1972, pp.42-59.
- [3] P. Coulton and H. Gauchman, Submanifolds of quaternion projective space with bounded second fundamental form, Kodai Math. J., 12 (1989), 296-307.
- [4] P. Coulton and J. Glazebrook, Submanifolds of Cayley projective plane with bounded second fundamental form, Geom. Dedi., 33 (1990), 265-272.
- [5] Liu Ximin, Totally complex submanifolds of the Cayley projective plane, Glasgow Math. J., 40 (1998), 161-166.
- [6] A. Ros, Positively curved Kaehler submanifolds, Proc. Amer. Math. Soc., 93 (1985), 329-331.
- [7] A. Ros, A characterization of seven compact Kaehler submanifolds by holomorphic pinching, Annals of Math., 121 (1985), 377-382.
- [8] K. Tsukada, Parallel submanifolds in a quaternion projective space, Osaka J. Math., 22 (1985), 187-241.

DEPARTMENT OF APPLIED MATHEMATICS, DALIAN UNIVERSITY OF TECHNOLOGY, DALIAN 116024, P. R. CHINA