SELECTION THEOREMS WITH n-CONNECTEDNESS

In-Sook Kim

Abstract. We give a generalization of the selection theorem of Ben-El-Mechaiekh and Oudadess to complete LD-metric spaces with the aid of the notion of n-connectedness. Our new selection theorem is used to obtain new results on fixed points and coincidence points for compact lower semicontinuous set-valued maps with closed values consisting of \mathcal{D}-sets in a complete LD-metric space.

0. Introduction

In 1991 Horvath [3] extended Michael's selection theorem [4] for closed convex valued lower semicontinuous maps to nonconvex values. In 1995 Ben-El-Mechaiekh and Oudadess [1] gave a generalized selection theorem by combining the result in [3] with [5] related to sets of topological dimension ≤ 0. Using the concept of n-connectedness, we introduce LD-metric spaces which are more general than $l.c.$ metric spaces given in [3]. The purpose in this paper is first to extend the selection theorem in [1] to closed valued lower semicontinuous maps with \mathcal{D}-set values in a complete LD-metric space except possibly on a set of topological dimension ≤ 0 and then to give new results on fixed points and coincidence points for compact lower semicontinuous set-valued maps with closed values consisting of \mathcal{D}-sets in a complete LD-metric space.

1. Preliminaries

Let X and Y be topological spaces. A set-valued map (simply, a map) $T : X \rightarrow Y$ is a function from X into the set 2^Y of all nonempty...
subsets of Y; the map $T^- : Y \to X$ is defined by $T^- y := \{ x \in X : y \in Tx \}$ whenever T is surjective. A map $T : X \to Y$ is said to be compact if its range $\bigcup_{x \in X} Tx$ is relatively compact in Y; and lower semicontinuous if $\{ x \in X : Tx \cap V \neq \emptyset \}$ is open in X for every open set V in Y. A continuous function $f : X \to Y$ is called a selection of $T : X \to Y$ whenever $f(x) \in Tx$ for every x in X.

If Z is a subset of a topological space X, then $\dim_X Z \leq 0$ means that $\dim E \leq 0$ for every set $E \subset Z$ which is closed in X, where $\dim E$ denotes the covering dimension of E.

A topological space X is said to be n-connected for $n \geq 0$ if every continuous map $f : S^k \to X$ for $k \leq n$ has a continuous extension over B^{k+1}, where S^k is the unit sphere and B^{k+1} the closed unit ball in \mathbb{R}^{k+1}. Note that a contractible space is n-connected for every $n \geq 0$.

Given a set Y, let $\langle Y \rangle$ denote the collection of all nonempty finite subsets of Y. Let $\Delta_n = \text{co}\{e_0, \cdots, e_n\}$ be the standard simplex of dimension n, where $\{e_0, \cdots, e_n\}$ is the canonical basis of \mathbb{R}^{n+1}.

We introduce the following geometric structure as a generalization of convex sets with the aid of the notion of n-connectedness.

Let Y be a topological space. A D-structure on Y is a map $\mathcal{D} : \langle Y \rangle \to 2^Y$ such that it satisfies the following conditions:

1. for each $A \in \langle Y \rangle$, $\mathcal{D}(A)$ is nonempty and n-connected for all $n \geq 0$;
2. for each $A, B \in \langle Y \rangle$, $A \subset B$ implies $\mathcal{D}(A) \subset \mathcal{D}(B)$.

The pair (Y, \mathcal{D}) is called a D-space; a subset Z of Y is said to be a \mathcal{D}-set if $\mathcal{D}(A) \subset Z$ for each $A \in \langle Z \rangle$. A D-space (Y, \mathcal{D}) is called an LD-metric space if (Y, d) is a metric space such that for each $\epsilon > 0$,

$$B(E, \epsilon) = \{ y \in Y : d(y, z) < \epsilon \text{ for some } z \in E \}$$

is a \mathcal{D}-set whenever $E \subset Y$ is a \mathcal{D}-set and open balls are \mathcal{D}-sets.

A D-space is a generalization of c-spaces in the sense of Horvath [3]. A simple example of a D-space but not a c-space is the space Y, obtained by forming the disjoint union of the comb space X and another copy X' of X and identifying a point $x_0 = (0, 1) \in X$ with the corresponding point $x'_0 \in X'$, by setting $\mathcal{D}(A) := Y$ for every $A \in \langle Y \rangle$.
It can be shown that any \(D \)-space becomes a generalized convex space introduced by Park and Kim [8].

A generalized convex space \((Y, \Gamma)\) consists of a topological space \(Y\) and a map \(\Gamma : \langle Y \rangle \to 2^Y\) such that the following conditions are satisfied:

1. for each \(A, B \in \langle Y \rangle\), \(A \subseteq B\) implies \(\Gamma(A) \subseteq \Gamma(B)\);
2. for each \(A \in \langle Y \rangle\) with \(|A| = n + 1\), there exists a continuous function \(\Phi_A : \Delta_n \to \Gamma(A)\) such that \(\Phi_A(\Delta_J) \subseteq \Gamma(J)\) for every \(J \in \langle A \rangle\), where \(\Delta_J\) denotes the face of \(\Delta_n\) corresponding to \(J \in \langle A \rangle\).

Lemma 0. A \(D \)-space \((Y, \mathcal{D})\) is a generalized convex space.

Proof. Since \((Y, \mathcal{D})\) is a \(D \)-space, it suffices to show that for each \(A \in \langle Y \rangle\) with \(|A| = n + 1\), there exists a continuous function \(f : \Delta_n \to \mathcal{D}(A)\) such that \(f(\Delta_J) \subseteq \mathcal{D}(J)\) for every \(J \in \langle A \rangle\). Let \(A = \{a_0, a_1, \cdots, a_n\} \in \langle Y \rangle\) be given such that \(e_i \in \Delta_{\{a_i\}}\). For each \(i \in \{0, 1, \cdots, n\}\), there exists a \(y_i \in \mathcal{D}(\{a_i\})\). Define a function \(f^0 : \Delta_n^0 \to \mathcal{D}(A)\) on the 0-skeleton of \(\Delta_n\) by \(f^0(e_i) := y_i\). Then the function \(f^0\) is continuous and \(f^0(\Delta_{\{a_i\}}) \subseteq \mathcal{D}(\{a_i\})\) for \(i = 0, 1, \cdots, n\).

Assume that a continuous function \(f^k : \Delta_n^k \to \mathcal{D}(A)\) on the \(k\)-skeleton of \(\Delta_n\) has been constructed such that \(f^k(\Delta_J) \subseteq \mathcal{D}(J)\) for all \(J \in \langle A \rangle\) with \(|J| \leq k + 1\).

Now let \(\Delta_J\) be a face of dimension \(k + 1\) of \(\Delta_n\) and let \(J_i := J \setminus \{a_i\}\) for each \(a_i \in J\). Let \(\partial \Delta_J\) be the boundary of \(\Delta_J\). Then \(\partial \Delta_J = \bigcup_{a_i \in J} \Delta_{J_i}\) is contained in the \(k\)-skeleton of \(\Delta_n\) and we have

\[
\begin{align*}
f^k(\partial \Delta_J) &\subseteq \bigcup_{a_i \in J} f^k(\Delta_{J_i}) \\
&\subseteq \bigcup_{a_i \in J} \mathcal{D}(J_i) \subseteq \mathcal{D}(J).
\end{align*}
\]

Note that there is a homeomorphism \(h : E^{k+1} \to \Delta_J\) such that \(h(S^k) = \partial \Delta_J\). Since \(f^k \circ h_{|S^k} : S^k \to \mathcal{D}(J)\) is continuous and \(\mathcal{D}(J)\) is \(k\)-connected, the function \(f^k \circ h_{|S^k}\) has a continuous extension \(g^{k+1} : E^{k+1} \to \mathcal{D}(J)\). Thus, \(f_{J_i}^{k+1} := g^{k+1} \circ h_{J_i}^{-1} : \Delta_{J_i} \to \mathcal{D}(J)\) is continuous and \(f_{J_i}^{k+1}|_{\partial \Delta_J} = f^k|_{\partial \Delta_J}\).
If \(\Delta_J \) and \(\Delta_{J'} \) are \((k + 1)\)-dimensional faces of \(\Delta_n \), \(\Delta_J \neq \Delta_{J'} \) and \(\Delta_J \cap \Delta_{J'} \neq \emptyset \), then it is clear that
\[
f^{k+1}_{J\cap J'}|_{\Delta_J \cap \Delta_{J'}} = f^k|\Delta_J \cap \Delta_{J'} = f^{k+1}_{J\cap J'}|_{\Delta_J \cap \Delta_{J'}}.
\]
Therefore, on the \((k+1)\)-skeleton of \(\Delta_n \) we obtain a continuous function
\[
f^{k+1}_{\Delta_n} : \Delta^{k+1}_n \rightarrow \mathcal{D}(A)
\]
which has the property \(f^{k+1}_{\Delta_J} \subset \mathcal{D}(J) \) for all \(J \in (A) \) with \(|J| \leq k + 2 \). It follows by the induction on \(k \leq n \) that a continuous function \(f : \Delta_n \rightarrow \mathcal{D}(A) \) has been constructed such that
\[
f(\Delta_J) \subset \mathcal{D}(J) \quad \text{for every } J \in (A).
\]
This completes the proof.

\[\square \]

2. Selection theorems

In this paper, paracompact spaces are assumed to be Hausdorff. The following proposition is a basic statement for the new selection theorem presented in this section.

Proposition 1. Let \(X \) be a paracompact space, \(\mathcal{R} \) a locally finite open covering of \(X \), \((Y, \mathcal{D}) \) a D-space, and \(\eta : \mathcal{R} \rightarrow Y \) a function. Then there exists a continuous function \(g : X \rightarrow Y \) such that
\[
g(x) \in \mathcal{D}(\{\eta(U) : x \in U \text{ and } U \in \mathcal{R}\}) \quad \text{for each } x \in X.
\]

Proof. For any \(k \geq 1 \), \((B^{k+1}, S^k) \) is homeomorphic to \((s, \partial s)\), where \(s \) is a \((k+1)\)-simplex and \(\partial s \) is its boundary (cf. [10], 3.1.22). Therefore, under the weak condition of \(n \)-connectedness instead of contractibility, we can verify our result along the lines of proof of Theorem 3.1 in [3]. \(\square \)

Having established Proposition 1, we now turn to the selection theorem. It begins with the following lemma on \(\epsilon \)-approximate selections.

Lemma 2. Let \(X \) be a paracompact space, \((Y, \mathcal{D}) \) an LD-metric space, \(Z \) a subset of \(X \) with \(\dim_X Z \leq 0 \), and \(T : X \rightarrow Y \) a lower semicontinuous map such that \(T(x) \) is a \(\mathcal{D} \)-set for all \(x \notin Z \). Then for every \(\epsilon > 0 \), \(T \) admits an \(\epsilon \)-approximate selection, that is, a continuous
single-valued function $g_\epsilon : X \to Y$ such that $g_\epsilon(x) \in B(Tx, \epsilon)$ for every $x \in X$.

The proof of Lemma 2 proceeds in precisely the same fashion as Lemma 2 in [1], except that all c-sets in an l.c. metric space is replaced by D-sets in an LD-metric space.

The following main theorem is a generalization of Ben-El-Mechaiekh and Oudadess [1, Theorem 3] which generalizes Michael and Pixley [5, Theorem 1.1].

Theorem 3. Let X be a paracompact space, (Y, D) a complete LD-metric space, Z a subset of X with $\dim X Z \leq 0$, and $T : X \to Y$ a lower semicontinuous map with closed values such that Tx is a D-set for all $x \notin Z$. Then T admits a selection $g : X \to Y$.

Proof. Set $T_1 := T$. By Lemma 2, there is δ continuous function $g_1 : X \to Y$ such that

$$g_1(x) \in B(T_1x, \frac{1}{2})$$

for every $x \in X$.

Hence, a map $T_2 : X \to Y, x \mapsto T_1x \cap B(g_1(x), \frac{1}{2})$, is lower semicontinuous (cf. [4, Proposition 2.4]) and T_2x is a D-set for all $x \notin Z$.

Assume that for $k = 1, \cdots, n$, a lower semicontinuous map $T_k : X \to Y$ has been defined and a continuous function $g_k : X \to Y$ has been chosen such that

$$T_1x = Tx$$

$$T_kx = T_{k-1}x \cap B(g_{k-1}(x), \frac{1}{2^{k-1}})$$

for $k = 2, \cdots, n$

are nonempty D-sets for all $x \notin Z$ and

$$g_k(x) \in B(T_kx, \frac{1}{2^k})$$

for every $x \in X$.

Hence, a map $T_{n+1} : X \to Y, T_{n+1}x := T_nx \cap B(g_n(x), \frac{1}{2^n})$, is lower semicontinuous and $T_{n+1}x$ is a D-set for all $x \notin Z$. By Lemma 2, there exists a continuous function $g_{n+1} : X \to Y$ such that

$$g_{n+1}(x) \in B(T_{n+1}x, \frac{1}{2^{n+1}})$$

for every $x \in X$.

It follows by induction that there is a sequence of functions $g_n : X \rightarrow Y$ which has the above properties for all $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$ be arbitrary. Then there is a $y \in Y$ such that $y \in T_{n+1}x \cap B(g_{n+1}(x), \frac{1}{2^{n+1}})$ for all $x \in X$, hence we have

$$d(g_{n+1}(x), g_n(x)) \leq d(g_{n+1}(x), y) + d(y, g_n(x)) < \frac{1}{2^{n+1}} + \frac{1}{2^n}.$$

It is also clear that the sequence (g_n) is a uniformly Cauchy sequence. Since Y is complete, (g_n) converges uniformly on X.

Define a map $g : X \rightarrow Y$ by

$$g(x) := \lim_{n \rightarrow \infty} g_n(x) \quad \text{for } x \in X.$$

Then g is continuous and $g(x) \in Tx$ for every $x \in X$ since Tx is closed. This completes the proof. \square

Using Theorem 3, we give a sufficient condition for a lower semicontinuous set-valued map with closed values to have the selection extension property.

Corollary 4. Let (Y, \mathcal{D}) be a complete LD-metric space such that $\mathcal{D}(\{y\}) = \{y\}$ for all $y \in Y$. Let X be a paracompact space, Z a subset of X with $\dim_X Z \leq 0$, and $T : X \twoheadrightarrow Y$ a lower semicontinuous map with closed values such that Tx is a \mathcal{D}-set for all $x \notin Z$. If A is closed in X, then every selection g for $T|_A$ extends to a selection for T. Here $T|_A$ denotes the restriction of T to A.

Proof. Let $g : A \rightarrow Y$ be a selection for $T|_A$. We define a map $T_g : X \twoheadrightarrow Y$ by

$$T_gx := \begin{cases} \{g(x)\} & \text{for } x \in A \\ Tx & \text{for } x \notin A. \end{cases}$$

Then T_g is a lower semicontinuous map with closed values and T_gx is a \mathcal{D}-set for all $x \notin Z$. By Theorem 3, T_g has a selection $f : X \rightarrow Y$, which is a selection for T that extends g because $g : A \rightarrow Y$ is a selection for $T|_A$. \square
Corollary 5. Let \((Y, \mathcal{D})\) be a complete LD-metric space such that \(\mathcal{D}(\{y\}) = \{y\}\) for all \(y \in Y\). Let \(X\) be a paracompact space, \(A\) a closed subset of \(X\) and \(g : A \to Y\) a continuous function. Then there is a continuous function \(f : X \to Y\) which extends \(g\).

Proof. A map \(T : X \to Y\), defined by

\[
Tx := \begin{cases}
\{g(x)\} & \text{for } x \in A \\
Y & \text{for } x \not\in A
\end{cases}
\]

is lower semicontinuous and its values are closed \(\mathcal{D}\)-sets. By Theorem 3, \(T\) has a continuous selection \(f : X \to Y\). Since \(f(x) \in Tx\) for all \(x \in X\), we obtain \(f|_A = g\).

\[
\square
\]

3. Applications to fixed points and coincidence points

We need the following theorem due to Park [7, Theorem 2].

Theorem 6. Let \(X\) be a compact Hausdorff space, \((Y, \Gamma)\) a generalized convex space and \(T : X \to Y\) a map with the property that there is a map \(S : X \to Y\) such that the following conditions are satisfied:

1. For each \(x \in X\), \(A \in \langle Sx \rangle\) implies \(\Gamma(A) \subset Tx\); and
2. \(X = \bigcup \{\text{int} S^{-} y : y \in Y\}\), where \(\text{int}\) denotes the interior.

Then \(T\) has a continuous selection \(f : X \to Y\). More precisely, there exist a simplex \(\Delta_n\) and two continuous functions \(p : X \to \Delta_n\) and \(q : \Delta_n \to Y\) such that \(f = q \circ p\) and \(f(X) \subset \Gamma(A)\) for some \(A \in \langle Y \rangle\) with \(|A| = n + 1\).

An immediate consequence of Theorem 6 and Brouwer’s fixed point theorem is in connection with fixed points and coincidence points for set-valued maps. Since \(D\)-spaces are generalized convex spaces by Lemma 0, Theorem 6 works for \(D\)-spaces.

Theorem 7. Let \(X\) be a compact Hausdorff space, \((Y, \mathcal{D})\) a \(D\)-space, \(S, T : X \to Y\) two maps such that the following conditions are satisfied:

1. \(A \in \langle Sx \rangle\) implies \(\mathcal{D}(A) \subset Tx\) for every \(x \in X\);
2. \(X = \bigcup \{\text{int} S^{-} y : y \in Y\}\).
Then
(a) For any continuous function \(g : Y \to X \) there is a \(y_0 \in Y \) such that \(y_0 \in Tg(y_0) \).

(b) If \(R : X \to Y \) is a set-valued map such that \(R^- : Y \to X \) has a continuous selection, then there is an \(x_0 \in X \) such that \(Rx_0 \cap Tx_0 \neq \emptyset \).

Proof. (a) Let \(g : Y \to X \) be a continuous function. By Theorem 6, \(T \) has a continuous selection \(f : X \to Y \) and there exist continuous functions \(p : X \to \Delta_n \) and \(q : \Delta_n \to Y \) such that \(f = q \circ p \). The continuous function \(\varphi : \Delta_n \to \Delta_n, z \mapsto p \circ g \circ q(z) \), has a fixed point \(z_0 \), by Brouwer’s fixed point theorem. Setting \(y_0 = q(z_0) \), we have

\[
y_0 = (q \circ p \circ g \circ q)(z_0) = (f \circ g)(y_0) \in Tg(y_0).
\]

(b) Let \(h : Y \to X \) be a continuous selection for \(R^- \). By (a), there is a \(y_0 \in Y \) such that \(y_0 \in Th(y_0) \) and also \(h(y_0) \in R^- y_0 \). If \(x_0 := h(y_0) \), then \(Rx_0 \cap Tx_0 \neq \emptyset \). This completes the proof. \(\square \)

Using the selection theorems above, we establish the existence of fixed points and coincidence points for compact lower semicontinuous set-valued maps with closed values in a complete \(l.D \)-metric space.

Theorem 8. Let \((Y, D) \) be an \(l.D \)-metric space and suppose that for every \(\epsilon > 0 \) there are two maps \(S, T : Y \to Y \) such that the following conditions are satisfied:

1. \(A \in \{Sy \} \) implies \(D(A) \subset Ty \) for every \(y \in Y \);
2. \(Y = \bigcup \{ \text{int } S^{-} y : y \in Y \} \); and
3. \(y \in B(Ty, \epsilon) \) for all \(y \in Y \).

Then any compact continuous function \(g : Y \to Y \) has a fixed point.

Proof. Let \(\epsilon > 0 \). Applying Theorem 7 to \(T|_{g(Y)} \), there is a point \(y_\epsilon \) in \(Y \) such that \(y_\epsilon \in Tg(y_\epsilon) \), hence by (3), \(d(g(y_\epsilon), y_\epsilon) < \epsilon \). Since \(g(Y) \) is relatively compact in \(Y \) and \(g \) is continuous, it is easy to verify that there exists a \(y_0 \in Y \) such that \(g(y_0) = y_0 \). \(\square \)

Remark. Theorem 8 remains true if \(Y \) is a Hausdorff uniform space with a \(D \)-structure \(D \) on \(Y \).
Corollary 9. Let \((Y, \mathcal{D})\) be an LD-metric space such that \(\mathcal{D}(\{y\}) = \{y\}\) for all \(y \in Y\). Then any compact continuous function \(g : Y \to Y\) has a fixed point.

Proof. Apply Theorem 8 with \(S = T\) and \(T.x := Y\) for every \(x \in X\). \(\square\)

Theorem 10. Let \((Y, \mathcal{D})\) be a complete LD-metric space such that \(\mathcal{D}(\{y\}) = \{y\}\) for all \(y \in Y\) and let \(Z\) be a subset of \(Y\) with \(\dim_y Z \leq 0\). Then any compact lower semicontinuous map \(T : Y \to Y\) with closed values such that \(Ty\) is a \(\mathcal{D}\)-set for all \(y \notin Z\) has a fixed point.

Proof. By Theorem 3, \(T\) has a continuous selection \(g : Y \to Y\). Since \(g\) is compact, by Corollary 9, \(g : Y \to Y\) has a fixed point. Thus, \(y_0 = g(y_0) \in Ty_0\) for some \(y_0 \in Y\). \(\square\)

Corollary 11. Let \((Y, \mathcal{D})\) be a complete LD-metric space, and \(Z\) a subset of \(Y\) with \(\dim_y Z \leq 0\) such that \(\mathcal{D}(\{y\}) = \{y\}\) for all \(y \in Y\). Let \(T : Y \to Y\) be a compact map with closed values such that \(Tx\) is a \(\mathcal{D}\)-set for all \(x \notin Z\) and \(T^{-1}y\) is open for all \(y \in Y\). Then \(T\) has a fixed point.

Corollary 12. Let \(X\) be a paracompact space, \((Y, \mathcal{D})\) a complete LD-metric space such that \(\mathcal{D}(\{y\}) = \{y\}\) for all \(y \in Y\), \(Z\) a subset of \(X\) with \(\dim_X Z \leq 0\), and let \(S, T : Y \to Y\) be two maps such that the following conditions are satisfied:

1. \(T\) is a compact lower semicontinuous map with closed values such that \(Tx\) is a \(\mathcal{D}\)-set for all \(x \notin Z\);
2. \(S^{-1} : Y \to X\) has a continuous selection.

Then there is an \(x_0 \in X\) such that \(Sx_0 \cap Tx_0 \neq \emptyset\).

Proof. Let \(g : Y \to X\) be a continuous selection for \(S^{-1}\). The composition \(T \circ g : Y \to Y\) is compact, lower semicontinuous. By Theorem 10, there is a \(y_0 \in Y\) such that \(y_0 \notin Tg(y_0)\). Since \(g(y_0) \in S^{-1}y_0\), we have \(Sg(y_0) \cap Tg(y_0) \neq \emptyset\). \(\square\)

With the help of \(\mathcal{D}\)-functions, we give a fixed point theorem which is a generalization of a result in [2].
Let \((X, D)\) be a \(D\)-space. A continuous function \(f : X \times X \to \mathbb{R}\) is said to be a \(D\)-function if it has the following properties:

1. For every \(x \in X\) and every \(\lambda \in \mathbb{R}\), \(\{y \in X : f(x, y) > \lambda\}\) is a \(D\)-set.
2. \(f(x, x) \geq 0\) for all \(x \in X\).

Theorem 13. Let \((X, D)\) be a compact Hausdorff \(D\)-space. Suppose that for any \((x_1, x_2) \in X \times X\) with \(x_1 \neq x_2\) there is a \(D\)-function \(f : X \times X \to \mathbb{R}\) such that \(f(x_1, x_2) < 0\). Then any compact continuous function \(g : X \to X\) has a fixed point.

Proof. For \(\lambda < 0\) and \(D\)-function \(f\), let

\[
T_\lambda(f) = \{(x, y) \in X \times X : f(x, y) > \lambda\}.
\]

Then \(T_\lambda(f)\) is a graph of the multimap \(x \mapsto \{y \in X : f(x, y) > \lambda\}\) having open inverses and \(D\)-set values.

For \(\lambda_i < 0\) and \(D\)-functions \(f_i, i = 1, \ldots, n\), \(\bigcap_{i=1}^{n} T_{\lambda_i}(f_i)\) is a graph of the multimap \(x \mapsto \{y \in X : f_i(x, y) > \lambda_i\}\) for all \(i\) having open inverses and \(D\)-set values. Since \(Y\) is compact, there exists a unique uniform structure on \(Y\) (cf. [9], II 3.6 Satz 1).

Now let \(V\) be an open entourage and \((x_1, x_2) \in (X \times X) \setminus V\). By assumption, there is a \(D\)-function \(f\) and a number \(\lambda < 0\) such that \(f(x_1, x_2) < \lambda\). Therefore, we have \((x_1, x_2) \notin T_\lambda(f)\). The collection

\[
\{(X \times X) \setminus T_\lambda(f) : \lambda < 0 \text{ and } f \text{ is a } D\text{-function}\}
\]

covers the closed set \((X \times X) \setminus V\). By the compactness of \(X \times X\), there are finitely many \(D\)-functions \(f_1, \ldots, f_n\) and numbers \(\lambda_1, \ldots, \lambda_n < 0\) such that

\[
(X \times X) \setminus V \subset (X \times X) \setminus \bigcap_{i=1}^{n} T_{\lambda_i}(f_i)
\]

hence \(\bigcap_{i=1}^{n} T_{\lambda_i}(f_i) \subset V\). By Theorem 8, any compact continuous function \(g : X \to X\) has a fixed point. \(\square\)
References

Department of Mathematics
Sung Kyun Kwan University
Suwon 440-746, Korea
E-mail: iskim@math.skku.ac.kr