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THE RIEMANN PROBLEM FOR A SYSTEM OF
CONSERVATION LAWS OF MIXED TYPE (II)

CHOON-HoO LEE

ABSTRACT. We prove that solutions u€ for the mixed hyperbolic-
elliptic system of conservation laws with the viscosity term are total
variation bounded uniformly in € and that the solution ¢ converges
to the solution for the mixed hyperbolic-elliptic Riemann problem as
e — 0.

1. Introduction

In [5] We had studied the existence of solutions for nonlinear hyperbolic-
elliptic system of conservation laws of the form

Uy _f(U)J‘ = 07

(1-1) ve —g(u)y =0

with initial condition

11 0 (u—,v) if =<,
( * ) ('U:,'U)(.'L', )_ (u+’v+) if > ”

Here, f € C%(R) is a strictly increasing convex function, g € C*R) and
there exist «, §, n with a <7 < 3 such that

g'(u) > 0ifu¢(a,B) and g'(u) < 0 for u € (a, 3),
¢"(u) <0ifu<mnand g’ (u) >0if u>7.
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Under the same hypotheses, the equation (1.1) of change type has been
studied by Fan [2], James [3], Shrear [6], Slemrod [7]. In case, the initial
data u_ and u; was assumed to lie on the metastable state:

u- < a<f<ug.

Their method for solving (1.1) was originated by Kalashnikov [4] and
Tupciev [8], [9], where the vanishing viscosity method were used. Their
idea is to replace (1.1) by the system

ur — f(v)z = €tug,,

vy — g(u)y = €tvg,

(1.3)

for x € R, t > 0 and construct solutions as the limit of the solutions of
(1.3) and (1.2) as € — 0+. The solution of the equation (1.1) is preserved
under the dilation (z,t) — (az,at), a > 0 so that (1.3), (1.2) admit
solutions of the form (u(),v(£)), where ¢ = Z. A simple calculation
shows that (u(),v(£)) is a solution of (1.3), (1.2) if it satisfies

Etug - —§u£ - f(ve)la

1.4
(1.42) et = —€v] — glu,)

(1.4b) (ue(F00), ve(£00)) = (ux,vy)

We will establish an existence of solutions of (1.4a) and (1.4b), and
prove that, for some sequence €, — 0+, (., (€),v(€)) converges to a
weak solution of

e — f(v) =0,
(1.52) &0’ — glu) =0,
(1.5b) (1u(£00), v(00)) = (us, vs),

which induces a solution (u(x/t),v(z/t)) of (1.1). In order to prove this
we will use Helley’s Theorem on the uniform boundedness of the total
variation.

In case f(u) = u, Slemrod [7] and Fan [2] showed the existence of
solution of (1.1). Following their ideas we will adopt the following two
assumptions:
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ASSUMPTION 1. g(u) — 400 as u — Foc.

ASSUMPTION 2. f(v) is a strictly increasing convex C? function on
v.

In Section 2, we review some results which will be used in the next
sections. In Section 3, we prove the main result of this paper:

THEOREM 1.1. Under the Assumption 1 and 2,

(a) The solutions of (1.4) have total variation bounded uniformly in
€.

(b) There exist solutions for the mixed hyperbolic-elliptic Riemann
problem (1.1).

In Section 4, we show that the solutions (u(¢),v(£)) jump over the
spinodal region. In Section 5, we prove that solutions lie on a continuous
curve in the (u,v)-plane. The solutions of (1.1) consist of the constant
states separated by shocks contact discontinuities, rarefaction waves, and
phase boundaries.

2. Preliminaries

In this section we recall some results from [5]. The following lemma
is from Lemma 2.1 of [5]:

LEMMA 2.1. Assume that f and g satisfy the Assumption 1 and 2.
Let (uc(€),ve(§)) be the solution of (1.4). Then one of the following
holds on any subinterval (a,b) for which ¢'(u.(£)) > 0.

(1) Both uc(§) and v.(§) are monotone on (a,b.

(2) One of the u(€) and v.(€) is a strictly increasing or decreasing
function with no critical point on (a,b) while the other has at
most one critical point that is respectively maximum or mini-
mum.

The following lemma was originated by Slemrod [6] in case f(v) = v
and this lemma holds also in the general case.

LEMMA 2.2. Assume that f and g satisfy Assumptions 1 and 2. Let
(uc(€),ve(€)) be the solution of (1.4). If uc(€) ¢ («t, ), then ul(€) > 0
and ve (& (u)) is a convex function of u ¢ («, 3), where & (u) is the inverse
function of u.(€) in the region u ¢ («, 3).
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3. Uniform Boundedness of (u.(€),v.(€))

In this section, we shall prove u,(§) and v,(€) are uniformly bounded
independently of .

THEOREM 3.1. Under the Assumption 1 and 2, the v, (£) are bounded
from above, uniformly in e:

3.1) v, < max(vy, v )+max(us —F, a—u_ max —
(3.1) v () (v4,v-) (usy—1 )ueuhﬂaﬂqg@+] )

where ¢ = min{v_, v, }.

PRrROOF. We may assume that each v.(§) has a local maximum point
§ = 0. with u.(6,) > 5. From (1.4) and the chain rule, we have

d (dv dv. \*
2 o [ = = f ~) -4
(32 it (Gr©) = 1w () - o'
This implies that as £ increases, %‘—}(5)15 increasing(resp. decreasing) if
42O = /5 (resp. |22(8)] < /400,

Thus the initial condition

dv,

(3.3) (5)‘ =0
L
leads to
dvf g'(u)
<
. <f>l S pmax )

as long as uy > u(§) > # and ¥ = min{v_,v,}. By Lemma 2.1, u(¢)
Is increasing when u, () > . Thus (3.1) follows. O

THEOREM 3.2. Under assumptions 1 and 2, the v (€) are bounded
from below, uniformly in e.
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PROOF. Assume there exists a sequence {e,} such that each v (&)
has a local minimum point 7,, with

(3~4) vtn(Tn) — —0C  asn — 0o,

Ue, (Tn) € (a, B).

We may assume that
(3.5) Tn >0 forn=1,23,..

Let ¢, be the maximum point of v, (£) in the region u._(£) > 3. By
Lemma 2.1 we have

(3.6) v (€) >0 for £ € (14, (n).

By integrating (1.4) on (7,,,0) where 6 € (7,,,¢,), we obtain

4
0< et (6)= / —€0], (£) dE — glue, (6)) + glue, (7).

71

It follows from (3.5) and (3.5) that —&uv/ (£) < 0 for £ € (73,,¢s). Thus
we have

0 < ev (0) < gluc, (7a)) — g(ue,(0))

3.7 = gty
(3.7) < g(a) — gluc(6)).

Therefore
B<u,(0) < for 6€(m,C)

Equation (3.7) also gives
(3.8) 0 < ev(0) < g(e) —g(B) for 6 € [, (.

We claim that there exists an 7, € (7, (,] such that
(3.9)

vﬁn (T}n) Z U+ -

2 g(e) — g(8)
d— max (u)| —
f'(v) (( 7)116[%5] l9'(w)] S SEN [g’(u)])
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and

o
e=nn | 2MaXyely 5 /19 (1))

From the assumption (3.4) we can choose §,, € (7w, Cn] such that

ven(6n) = v, (G) — ) B gy 19/ ()

(3.10)

< 2(6 — ) maxye(y,5 V19 (u)]
S U4 .
f'(v)
For each n, there exists a 6 € [¢,, ,] such that v, () > v, (£,) and
% _ Ug, (Cn) — Ue,, (gn)
312) Gnle)| = el (o]

Substituting the denominator of (3.12) by (3.11) and noticing that [ue, (Cn)
~Ue, (§n)] < § — 7, we have

du.., Vv '(®)
Ve, £=0 2maxue[7,6] \/lg (u)]

Thus the set A defined by

du Vv I'(?)
_ = ’0 .
dv (6)‘ = Zma‘xue[’y,d] mu)l € [T’ }}

A= {176 [Tn, 0]

is nonempty. Since

2U u 2
613 Te©=—( (—f’<ven)+g'<ucn)(%) )

we have
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if £ € A. We must show that (3.9) and (3.10) hold at 7, = inf A.
Indeed, by the definition of the set A,

due,, B f'(o)
g=infA  2MAXyelyg) Vig' )|

From (3.14) and (3.15), we obtain

(3.15)

©)

dv.,

f,(,lj) - duﬁn (5)]
2max,¢(y 4] g’ (u)] dve,, £=inf A
due ’U(ian) d2u€
= _1(§)| +/ —= (&) dv,
dv., =0 6) dv?
- FE) e (6) = ve, (inf 4)

Pmaxecrye Vg @] | 29(@) - 9(8))

By (3.6), the above inequality implies

v, (inf A) > v, (6) — — iV f} /(ﬁl)g’ ol (9(a) — 9(3))
2/F' &)
> VelSn) — NG «
= velén) maxyc(y,s) v/ 19 (u)] (sle)
2(6 —y) max,epy,5 /19" (u)]
f’(ﬁ)
2/ f!
P—— r—_‘g - 9(8))-

Similar calculation as (3.13) yields that

d,, > 2maxye(y,8) V19’ (u)]
due, 7" f'(®)
Thus the equation

- 9(8))
(3.16)

>'U+—

for £ € [1, 7]

Ve, (nn) dv€

Ve () — e, (Tn) = /

S (€) du.
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implies
2(6 —
Ve, (Th) 2 Ve, \Mn) — g’
(7a) 2 v, () f,(q_) > max g
4(0 —
> vy — ——— max +/|¢'(u)
-t f’( uc['Y)(s] I
fl
T ote) = 9(8).
maXye(y,s) /19’ (w)]
which is a contradiction to (3.4). O

We will denote by

u” = sup{u.(§) [{ € R,0 < e < 1}
u. = inf{u () [{ €eR,0< e < 1}.
We also define similarly for v.

THEOREM 3.3. If f and g satisfy Assumptions 1 and 2, then ue(€)
are bounded uniformly in e.

PROOF. We only prove that the u.(¢) are bounded from below uni-
formly in €. The uniform boundedness of u.(£) from above can be proved
similarly. Assume the contrary. Then there is a sequence {€n} such that
each u., (§) has a local minimum point at £ = 7, with
(3.11) Ue, (Th) — —00 as n — x.

We may assume that

(3.12) o < 0.

From Lemma , u.(£) and v (€) are decreasing on (--00,7,). By integrat-
ing (1.4) we obtain

0 < el (~00) =~ [ €l (©de ~ o, (r) + F(00).
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From (3.12) it follows that &u! (£) < 0 on (—~0co,7,; and hence

(313) 0< / eu. (€)dE < f(v_) — flve. (1)) < Flv) — F(vs).

For any 6 < min{—1,7,}, we have

] 17
[ €l (€) d > — / W () dE = u_ g, (6).
Thus (3.13) gives

(3.14) ue, (0) > u_ + f(v.) — fv).

It remain to consider the case that —1 < 7,, < 0. Then for each n we can
choose a § € (—2, —1) such that v (#) < f(v*) — f(v.). By integrating
(1.4) on [0, T,], we obtain

(e, (Tn)) = —evl(m,) + evén (0) + g(ue, (8 / Even
(3.15)

> ev! (0) + glue, (0) / e _(€) de

In view of (3.14) and the uniform boundedness of v.(§), it follows easily
from (3.15) that the right-hand side of (3.15) is bounded uniformly in e.
Thus, by virtue of assumption 1, the u._(7,) are bounded from below
uniformly in €, in contradiction to (3.11). O

THEOREM 3.4. Under the assumption 1 and 2, there exist solutions
of (1.1).

PROOF. Since (u.(§),v.(§)) has total variation bounded independent
of €, Helley’s theorem shows that (u.(£),ve(§)) possesses a subsequence
converging almost everywhere on (—oo, 00) to a fuanction (u(§),v(£)) of
bounded variation. Thus (u(%),v(%)) is a weak solution of (1.1). O
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4. The shock jumps over the spinodal region

In this section we assume that (u(£), v, (€)) is bounded uniformly in
€. We shall prove that u(£) jumps over the spinodal region (¢, 3) and
also establish some useful lemmas for later use.

Consider uc, (€) (or v, (€)) as a multivalued function of ve, (or u., ).
Denote these functions by U, (v)( or V., (u)).

LEMMA 4.1. (a) {L(&)|uc(€) € F} is uniformly bounded in €, on
any compact subset F' of (u_,u,).

(b) If
{Z—Z(f} |€ € R such that uc(€) < a}

({gz(g) |€ € R such that u(€) > B})

is not bounded uniformly in e,, then there is a subsequence of {e,},
again denoted by {e, }, such that

(G @er)

is bounded independent of €,, on any compact subset F of (—o00,a)(or
(c) {V.,.(u)} has a subsequence which converges to a continuous curve.
Furthermore, (u(€),v(€)) lies on this curve for every £ € R.

PROOF. (a) Without loss of generality, we can assume that F is closed
interval [u_ 4 &,u; — ] for some small § > 0. We assert that

g’ (w)] +
< max max —,
- {ue[u*,u*] [f'(v)}

dv

——(¢)

(41) |2

> o

uw(§)eF

(v* — v, +1)}

To prove this assertion, we assume that (4.1) does not hold at some point
§ =& € R such that u.(&) € F. Without loss of generality, we assume
that %ﬁ(&)lg;ge < 0. Then

42 g (50)=ro (Le) —sue
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implies that 3—5(5) is decreasing as £ decreases from £ until it reaches
the minimum point 7, of uc(€). Since u(7) < u_, it follows that

dv,
du,

(6) < L

~ due

(43) ©)

£=¢.
if ue(€) € [u— + §,uc(€)]. Thus

5 ue(€e) g .
wle) —Velu-+3) = [ @ du
(4.4) “2-+6 ‘ 5
< —E(U* — v, + 1) (u({e) —u._ — —2-) .
Since u.(§) € F, we have
Ve — 0V < 'Ue(fe) -V <’ll,~ + g)
< ~§(v* — vy + 1) <u€(§) —u_ — g)
< —(v* —v,+1)

which is impossible.
(b) Since the u.(§) are bounded uniformly in ¢, it follows that

' (uc(€))
F'(ve(€))

for some constant C7 > 0. If

<C

{dve (&) | € € R such that u.(€) < a}
due

is not bounded uniformly in €, there are subsequences {e,} and {£,}
such that u._(£,) < a and

< 1
Cy

due,,

(4.5) o

(s>|

§=¢n
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From (1.4), we derive that

(46) ot (320) =0 (2) - 1

From (4.5) and (4.6), we conclude that

du,
dv,

€ F| < max
= welk fl(-,

(©)

Ue,y, (E)

for any compact subset of (—oo, ar).

(c) For simplicity, we assume that {%ﬁ:({)} is not uniformly bounded
only when u., (§) < a. The proofs in other cases are similar. Then,
by (a) and (b), we can extract a subsequence of {¢,}, denoted again by
{€n} such that, as n — oo, V, (u) — V(u) for u € [(u_ + @),u.] and

Ul . (v) = U(v) for

veE{veR|v=v.(§),u (€< (u + 3a)

for large n and for some £ € R},

where U} )( ) is the branch of U(v) with U, (v) < a. u = U(v) and
v = V(u) coincide when u € [3(u_ + @), 1(u_ + 3a)], since both %= due

Vep

and # are bounded uniformly in € there. There

(U(v),v) foru=U(v) < = (u_ +a)

[ SR

(u,v) = 1
(u,V(u)) for u > i(u_ + @)

is the desired curve. That (u(€),v(£)) lies on the curve follows from
(b). O

For the convenience of notations, we parameterized the curve v =
V(u) by (U(s), V(s)) where s is the length of the arc of v = V (u) joining
(u—,v-) and the point (U(s),V(s)). Since the curve v = V(u) does not
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intersect itself, the parameterization is bijective. In this kind of param-
eterization, s increases when ¢ increases. We call the curve (U(s), V (s))
the base curve of the solution (u(£),v(£)).

Now we study the discontinuities of (u(¢),v(£)). Let & be a point of
discontinuity of (u(£),v(§)). Denote C¢, by the portion of the base curve
in the (u,v)-plane that connects points (u(£o—),v(&—)) and (u(&+),
v(§o+)). We fix (@,7) € C¢,. For n large, we define & (u; @, 7) to be the
branch of the inverse function of u = u,, () for which

(4.6) Ve (€e, (85, 0)) — 0

as n — oo. For n large, we define & , 4., 0., by the relations

(4.7) €, =¢&..(a) + €,
(4'8) (7 (C) = Ve, (gn)a
(49) ﬁen (C) = Ue,, (§n)a

LEMMA 4.2. Let & be a point of discontinuity of (u(¢),v(€)). For
(de, (€),?¢, (¢)) defined above, there is a subsequence of {e,}, also de-
noted by {e,}, such that (i, ({), %, (¢)) — (2(¢), #(¢)) € CY{R;R?) as
n — oo uniformly for ¢ in a compact subset of R. (4(¢),9(¢)) satisfies
the following initial value problem:

di(¢)

iy 2 - () - ulew) - (6(0) - felerT)
i) 2 = o) - vlee®) — (0(a0)) - aluleo®)
(4.11c) (0) = 5,4(0) = @

Furthermore, (4(£),9(€)) lies on Cg,.
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PROOF. Clearly, the (i, (¢),%.,(¢)) have uniformly bounded total
variation since the (uc(€),ve(€)) do. Thus, there is a subsequence of
{€n}, again denoted by {¢,}, such that

(4.12) (2, (€), 0(Q)) = (4(¢),5(¢))  asm— o0

for any ¢ € R. By Lemma 4.1(b), we can choose a small neighborhood
Vo of (u(€o—),v(&—)) in the (u,v)-plane such that

(413a) {2 (€))e € R such that (ue, (€). ve, (€)) € Veo)
(4.13b) (2% (€)j¢ € R such that (uq, (€). ., (6)) € Vao)

€n

bounded uniformly in n. Since U(s) is composed of as many monotone
pieces as u.(§), we can further choose Ve, small and (us,v;5) € Cg, N
Ve, such that U(s) is monotone when (U(s),V(s)) € Vg, runs from
(u(€o—),v(&—)) to (us,vs), along C¢,. For definiteness, we can assume
without loss of generality that (4.13b) holds. For n large, there is a

(4.14) Oc,, € (€, (us) — v/em, &, (us))
such that 2 -
vl (8,)] < = TV(ve,) < =

V() < XL

3
Ven Vén

74 (0n) <

€n

S

From (3.9) and
(Ue,, (), ve, (€)) — (u(§),v(§)),
it is easily seen that

€e, (us) — &o

and hence 6, — &. Since U(s) is monotone, so is u. (£). Hence
liminf, o0 e, (0r) lies between u(£o—) and us. Thus, extracting, if
necessary, another subsequence, we deduce that

(4.17) e, (0n) — uz as n — oo



A system of conservation laws of mixed type (I1) 51
for some ugy between u(£p—) and us. Then we have that

(4.18) nler;ovcn (te,, (61)) = V(ug) = vy

where (u2,v2) € Vg,. For simplicity, we shall write € instead of ,, in the
rest of this paper. Integrating (1.4) from 6, to 7. = &, () + €¢, we get

Tl = eo(ae€) — wl6) - F(54(0)
+1(w0) + 00— [ (6 - @i de
(4.19) o

dﬁ;g) = = £0(0(C) — ve(6e)) ~ 9(ac(¢))

+o(ul0)) + (6 - [ " (@ - eo)l(e) de

€

By (4.15) eu;(6.) and ev/(.) approach 0 as ¢ — 0 uniformly in ¢. Re-
calling that 8. — &, 7. — & as n — oo, uniformly in ¢ for ¢ in compact
subsets of R, we see that the last terms in (4.19) vanish as n — oo,
uniformly in ¢ in a compact set. A classical theorem of the ordinary dif-
ferential equations implies that (4(¢), %(¢)) — (4((),0(¢)) as n — oo,
uniformly on compact subsets of R, and that

%?(C) = =&o(a(¢) — u2) — f(3(C)) + f(va),

Z_Z’(g) = —o(9(¢) — u2) — g(a(<)) + g(u),

11(0) = U2, @2(0) = V3.

(4.20)

By letting Vg, shrink to (u(&—),v(€0—)) so as to force (ug, vo) — (u(&—),
v(€0—)), We obtain (3.6) and (3.7). The last assertion of the lemma is an
immediate consequence of Lemma 4.1(b) and the uniqueness of (4.11).00

LEMMA 4.3. Let & be a point of discontinuity of (u(§),v(€)). Then
for any (4,7) € Cg, it follows that
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(a) if U(s) Is increasing (decreasing) at (4, v),then

—&o(@ —u(éo—)) — (f(7) — f(v(6%—))) >0 (L0).
(b) if V(s) is increasing (decreasing) at (@, v),then

—&(7 —v(60—)) — (9(a) — g(u(&—))) 20 (< 0).

Moreover we can change all £9— to &p+.

THEOREM 4.4. u(§) takes no value in (a,3) and may take at most
one of a and 3 as a value.

PROOF. From Theorem 1.1, u(§) is increasing when u(¢) € (o, 3).
Assume that there is a §p € R such that u(§p~) € (o, 8). We assert that

u(§) = u(éo—) for £ € (& — 4,&) for some § > 0. Indeed, if not, there
are two possibilities:

Case 1: There is a sequence {&,} of points of discontinuity of (u(&),
v(€)) such that &, — &— as n — oo.

Case 2: (u(§),v(§)) is continuous in (§ — §, &) for some § > 0 and
there is a sequence {{,} C (&o — 6,&p) such that £, — §— as n — oo

and u(&,+) # u(€o—)-
Case 1 is impossible because u({,t+) € (a, ) for large n and the
Rankine-Hugoniot conditions

—&n(u(ént) = ulén—)) — (f(v(@nt) = S (v(za—)) = 0
—En(v(Ent) — v(€n—)) — (9(u(znt) — g(u(zn—)) =0

cannot hold. We assert that Case 2 is also impossible. Indeed, we can
integrate (1.5) from &, to &g, to get

Anu , 1 So ,
oty = SO~ g [ E-oneds

Anv , 1 & ,
Ao AR GL:
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where Anpu = u(§o—) — u(é,+) > 0, Av = v(éo—1 — v(é,+) > 0, and
€ (u(én+),u(§o~—)) and 6 lies in between v(€,+) and v(€y—). It follows
from Lemma 4.1 that

Aju

€0n151;o Ao = —f'(v(&-))
& Tim 27 = _ g/ (u(go—)).

n—oo A, u

Then we have

< 0,

(sm Anv>2 )
n—oo Anu f'(v(&—))
which is a contradiction. It follows that there exists a & which is a point
of discontinuity of (u (€),v(£)) such that & < & and u(&+) = u(&o—).

Since u/(¢§) > 0 whenever u(§) € (a,), Lemma 4.3 and Rankine-
Hugoniot condition shows that

(4.21) —&1(8 —w(&it)) = (f(9) = f(v(&+)) > 0

for any (,9) € C¢, with @ € (o, 8). We assume that (4.21) holds as a
strictly inequality. If not, then from (4.20)

du
—(0] _
T JN
Since 4(¢) has no local extremum in (a, B), it follows that
d%4
—(4)[ -
iz

Thus, by differentiating (4.11a) with respect to ¢, we have

%@)k 0
Combining
du dv
(4.22) -<c>} T -
e S
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and (4.11), we obtain

4 —u(1+) = f(0)(g(a) — g(u(61+)))

where # lies in between ¥ and v(§;+). This is impossible since g'(u) < 0
for u € (o, 3). Thus Lemma 4.2 leads to

dV(u)
du

_ L@ —v(&t)) +9(@) — g(u(61+))
wen  S1(T—ul&r+)) + f(0) — fv(&+))’

or equivalently,

Av av Av

/ - e = / e

(423) (roz+a) G s +ass,
where Au = 4 — u(§1+), Av = ¥ — v(£1+), 6 lies in between © and

v(§1+), and 7 € (@,u(&1+)). Note that V(u) is convex for u € (a, B),
we infer that, as @ — u(&+)—,

dV (u)

du

. dV (u)

& du

Av _, dV(u)
T Au du

u= u=u(f1+)— u=u(f1+)—

Therefore, (4.23) implies that

2
P67 (2 e ) = o Caler) <0,

which is a contradiction. Thus u(§p—) ¢ (a, 8) for any & € R. Similarly
we can show that u(€+) ¢ (a,) for any £ € R. The last part of our
assertion follows easily from the Rankine-Hugoniot condition. a

5. The Structure of the Solution

Since the base curve (U(s), V(s)) is oriented in the direction in which
s increase, we can talk about the right and left sides of (U(sp), V' (s0))
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for the portions of the curve with s < sy and s > sp respectively. We

define

(5.1a)

(1 if both U(s) and V(s) are strictly increasing
or strictly decreasing at s,

S(U(s),V(s))={ =1 ifboth U(s) and — V(s) are strictly increasing

or strictly decreasing at s,

0 otherwise

S(WUlso),V(so)i +) = lim_S(U(s), V()
B W0 Viso)io) = tim SW(6), v()

THEOREM 5.1. Let & be a point of discontinuity of (u(€),v(£)). Then
(5.2)
S(u(€o=),v(60=); )V = F(v(é0—))g(u(éo-))

> &

S(u(éo+), v(€o+); =) v/~ f'(v(€0+))g(u(éot)).

THEOREM 5.2. (a) If u(¢) or v(€) is strictly monotone from the left
at & € R, then

(5.3a) g0 = S(u(€o—), v(&0=); —) v~ f'(v(&0—))g(u(&-)).

(b) If u(§) or v(€) is strictly monotone from the right at &y € R, then

(5.3b) o= S(u(bo+),v(bo+); +)v—f'(v(€o+))g(u(€o+)).

LEMMA 5.3. In the region u < a (or u > 3 ) of the (u,v)-plane, the
number of extrema for U(s) and V (s) is at most one.
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PROOF. We only consider the case when U(s) has at least one local
minimum in the region © < a. The proof for other cases is similar. In
this case, V(s) has no local extremum since otherwise Lemma would be
violated. Suppose that U(v) has two local extrema at v = vy, vy with
v1 < vo. Then

(5.4) U(v) = U(v1) for v € [v1,v2]

because otherwise u., (£) would have at least two local extrema for n
large. We assert that the curve U(v),v € (v1,v2) must have some com-
mon parts with C¢, for some £y € R. Indeed, otherwise, there would be
a point of continuity & = &; of (u(¢),v(£)) such that

(5.5) v(&) € (v1,v2), ul(&1) = Ulv).

Thus u(¢) = U(v1) in some neighborhood W of & while v(£) is not
constant there. This is impossible by (1.5). Now we can choose

(@,0) € Ceu, N{(U(v1),v1) | v € (v1,v2)}.

Let (2(¢),5(¢)) be the solution of (4.11) with (@, %) as in (5.5). Clearly,
44 () = 0 for ¢ € (—4,8) for some § > 0. The same argument as (4.22)

d¢
implies
’ —&o(a(¢) —u(éo—)) — (F(9(¢)) — f(v(&—)) =0,
—&o(9(¢) —v(&o—)) — (9(a(¢)) — g(u(éo—)) =0,
for ¢ € (—6,6). Thus

which contradicts (5.4). g

If U(s) or V(s) attains a local extremum at s == so(ors = sg) in the
region u < a (or u > 3), we set

(e Va) = (U(5a), V(5a))
(‘or (ug,vg) = (U(sp),V(sp)).)

(u1,v1) is called a constant state of (u(§),v(§)) if (u(§),v(§)) is constant
in some interval of R.
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COROLLARY 5.4. The solution (u(£),v(€)) has no constant state other
than (u_,v_), (uy,vy) and possibly (uq,vq) and (ug,vg).

Combining Theorems 5.1, 5.2 and Corollary 5.4, we have

COROLLARY 5.5. Let & be a point of discontinuity of (u(§),v(§)). If
(u(€0—),v(€0—)) (or (u(€o+),v(éo+))) is differ from (u—,v_), (uy,v4),
(Ua»Va), (ug,vg), then & is a contact discontinuity from the left (or
right).

COROLLARY 5.6. (a) At least one of (u(0—),v(0—)) and (u(0+),v(0+))
is a constant state of (u(§),v(§)). Furthermore, § == 0 is either a point
of continuity of (u(€),v(€)) or the phase boundary (at which the shock
jumps from one phase to another).

(b) Besides the constant states and the phase boundary, (u(§),v(£))
consists of shocks and simple waves of the first kind for £ < 0 and of the
second kind for £ > 0.

PrOOF. In view of Theorem 4.5, at most one of o and ( is in the
range of u(¢). Thus, only the following two cases can occur: (i) u(0—) =
u(0+) = a or 5.

(ii) w(0—) # u(0+) and hence g'(u(0—)) > 0 or ¢'(u(0+)) > 0.

In case (i), without loss of generality, we can assume that u(0+) = a.
Since u(¢) is nondecreasing when u_ < u(§) < uy and u(§) ¢ (o, 8),
u(€) = u(0+) = a in (0, ) for some & > 0.

For case (ii), we assume for definiteness that ¢'(u(0—)) > 0. The
proof for the other cases is similar. We assert that (u(0—),v(0—)) is a
constant state of (u(£),v(£)). Indeed, otherwise, u(€) would be strictly
monotone from the left of £ = 0. By virtue of Theorem 5.2, we have

0 = S(u(0-),v(0-); =)/ —f'((0~))g" u(0-)),
which implies that
(5.6) $(u(0-),v(0-); =) = 0.

In view of Lemma 5.3, equation (5.6) cannot hold. Thus, (u(0-),v(0—))
is a constant state of (u(€),v(€)). Suppose that £ = 0 is a point of discon-
tinuity of (u(€),v(£)). We may assume that u(0—) < a. If u(0+) < «
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then either u(0+) = a or ¢'(u(0+)) > 0. We assert that u(0+) # a.
Otherwise, the same arguments used in case (i) above would yield that
(u(€),v(€)) = (w(0+),v(0+)) = (e, v(0+)) in (0,0) for some § > 0.
Let 4, to be the maximum of such 4. Then u(6; ~) = u(0+) = o and
u(d1) > . Applying Theorem 5.1, we have

d1 < S(u(d1),v(é1); +)v/— f/ (v(0+))g' (w(0+)) = 0,

which is impossible. On the other hand, the first part of this proof
shows that if ¢'(u(04)) > 0 and ¢’(u(0—)) > 0, then (w(0+),v(0+)) and
(u(0—),v(0—)) are constant states of (u(€),v(§)). Therefore, (u(0-),
v(0-)) = (u_,v_) and (u(0+),v(0+)) = (¥a,ve). Applying the in-
equality (5.2) to the shock £ = 0, we again obtain a contradiction. Thus
u(0+) > a and hence u(0+) > 3.

(b) At a point of continuity of (u(€),v(£)) which is not the phase
boundary, i.e., both u(¢o—) and u(&+) are < a or > B. We assume
that u(§ox) < a. The proof of the other case is similar. We assume the
contrary of our assertion about &, i.e., in the inequality (5.2),

(5.7) S(u(éo—),v(o—); +) = —1,
. S(u(bo+), v(€o+); =) = 1.

We can see from the definition (5.1) that (5.7) implies that while U (s) <
@, either V(s) is increasing and U(s) has a minimum or there are at least
two extrema for U(s) and V(s). This is impossible by the property of

(U(s),V(s)). =
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