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IDEAL BOUNDARY OF CAT(0) SPACES

MYUNG-JIN JEON

ABSTRACT. In this paper we prove the Hopf-Rinow theorem for CAT
(0) spaces and show that the ideal boundaries of complete CAT(0)
manifolds of dimension 2 or 3 with some additional conditions are
homeomorphic to the circle or 2-sphere by the characterization of the
local shadows around the branch points.

1. Introduction

CAT(0) space is a simply connected geodesic space of nonpositive
curvature in the sense of A. D. Aleksandrov and M. Gromov ([9], [5],
[1]). For a CAT(0) Riemannian manifold M of dimension n, which is
called the Hadamard manifold, the ideal boundary M (oo) with the cone
topology is always homeomorphic to the standard sphere S™~! ([3]).
But if M is a non-Riemannian CAT(0) space, the ideal boundary M (co)
of M may be complicated topologically even when M is a topological
manifold ([7]).

The simplicity of the ideal boundary of a CAT(0) Riemannian man-
ifold comes from the simplicity of the local structure of Riemannian
manifolds. A basic difference of the local structure of non-Riemannian
spaces of nonpositive curvature compared to Riemannian manifolds is
the branching phenomena of geodesics, that is, the geodesic extension of
a geodesic segment is not always unique even locally.

The purpose of this paper is to answer the naturally arising question:

To what extent can we ensure that the ideal boundary of a CAT(0)
space is homeomorphic. to the standard sphere ?
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M. Davis and T. Januskiewicz [7] gave a partially positive answer
when M is a CAT(0) piecewise constant, piecewise linear n-manifold.
They also gave some examples of CAT(0) manifolds of dimension> 4
with the ideal boundaries not homeomorphic to the standard sphere.
Concerning this question we will prove that for a complete CAT(0) topo-
logical manifold of dimension 2 and 3 with some conditions on the local
structure, the ideal boundary is a homeomorphic sphere. But it is still
open whether the ideal boundary of a CAT(0) 3-manifold is homeomor-
phic to the standard sphere or not. This fact is not trivial since the ideal
boundary is not a quasi-isometric invariant for CAT(0) spaces ([9]).

In section 1, we introduce basic concepts and prove the Hopf-Rinow
theorem for CAT(0) spaces. In Section 2, we define the concept of
shadow which measure the amount of branching near a point and study
some topological properties of a shadow near a manifold point. In section
3, we prove the theorem about the ideal boundary of a CAT(0) manifold
of dimension 2 and 3 with some conditions.

I would like to thank J. W. Yim for helpful discussions.

§1. Hopf-Rinow theorem for CAT(0) spaces

A locally compact metric space (X,d) is said to be a geodesic space
if every pair of points p,q in X can be joined by a distance realizing
continuous curve, which we call a geodesic segment [p, q] between p and
q if it is parameterized by the arclength. A geodesic can be regarded
as an isometric(distance realizing) embedding of a closed interval in the
real line R. So a ray and a line is defined as an isometric embedding of
the infinite intervals [0, 00), (—00,00) in X, respectively.

A geodesic triangle A(p,q,r) in X is a triple of points (vertices)
p,q,7 € X together with three geodesic segments (sides) joining each
pair of vertices. A comparison triangle of a triangle Apgr is a triangle
Apgr in the Euclidean plane E? with d(p, q) = d(p, q), d(g,r) = d(g,7),
d(p,r) = d(p, 7). Given a side on A and a point z on it, there is a unique
comparison point T on the corresponding side of /A with d(z,¢) = d(z, €)
for each of the end points e of the given side.

A geodesic triangle A is said to satisfy the CAT(0) inequality if for
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every z, y € A and their comparison points z,7 € A, we have
d(z,y) < d(z,7).

A geodesic space X is said be a space of nonpositive curvature
(NPC) if for each p € X there is a neighborhood U of p such that
every geodesic triangle contained in U satisfies the CAT(0) inequality.
A geodesic space X is said to be a CAT(0) space if every triangle in
X satisfies the CAT(0) inequality. The Cartan-Hadamard Theorem ({9],
[1]) says that a simply connected geodesic space of nonpositive curvature
is a CAT(0) space. A CAT(0) space is a straight space, so is contractible.
NPC is locally convex and the CAT(0) space is globally convex in the

sense that for any geodesics v, 0 : [0,1] — X parameterize proportionally
to the arclength, we have

d(y(t),0(t)) < (1= ¢t)d(v(0),0(0)) + td(v(1),0(1))
for all t € [0,1].
There are several kinds of angles in geodesic spaces. Given two curves
¢, ¢ :]0,1] » X with ¢(0) = ¢/(0) = p, the upper angle & between ¢
and ¢ is defined by

a(e, ) = mngTgpcos_
)

1 (d(p, z)* + d(p,y)* - d(z, y)2>

2d(p, z)d(p. y)
where z, y — p along ¢, ¢, respectively. The lower angle a between ¢
and ¢’ is defined by

N _1 (d(p,x)* + d(p,y)? - d(z,y)*
afe,c) = lim cos 1( 5d(p.2)d(0.7) >

We say that there is an angle £ between ¢ and ¢’ if @ = a and define
the angle by £ = a.

It is well known that between two geodesics v and o starting at a point
in a nonpositively curved geodesic space, there is an angle £(v,0) and
the angle between two geodesics starting at p is a continuous function of
the end points of the geodesics in a convex neighborhood of p.

We denote by [z,y] a geodesic segment from x to y parameterize by
the arclength, or the image set of the geodesic segment. Generally a
geodesic between two points is not unique. But in a convex subset of a
space, it is unique by definition.

We introduce some concepts about geodesics.

z,Y—=p
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DEFINITION 1.1. Let X be a geodesic space and z, y,pE X.

(1) A geodesic segment [z, ] is called a geodesic extension of [z, p] if
p € [z,y], and we say that [z,p] is extended through p by [z, Y]

(2) A point p € X is called an interior point of X if there is an
extension, which passes through p, of the geodesic segment [z,p] for
each = near p. (This means that geodesics in every direction can be
extended through p locally.)

(3) A point p € X is called a boundary point of X if it is not an interior
point, that is, there is a geodesic [z, p| which cannot be extended through
p.

(4) The set of all boundary points in X is called the geodesic boundary
0X of X.

For a topological manifold with curvature bounded above, the geo-
desic boundary coincides with the topological concept of the boundary
of manifolds. If the curvature is not bounded above then some manifold
point may be a geodesic boundary point. For example, let X be a Eu-
clidean cone over a circle of radius < 1 then the cone point is a geodesic
boundary point. The following lemma will characterize the geodesic ex-
tensions.(cf. [5])

LEMMA 1.2. Let X be a space of curvature (locally) bounded above,
then a geodesic segment [z,y] in X is a geodesic extension of [z, p if and

only if £([p,z], [p,y]) = 7.

A space is called geodesically complete if every geodesic is a part of
a geodesic line. We prove the Hopf-Rinow theorem for CAT(0) spaces.
(For a different version of this theorem see [1].)

PROPOSITION 1.3. A complete CAT(0) space without geodesic bound-
ary is geodesically complete.

PROOF. Let X be a complete CAT(0)-space without geodesic bound-
ary and let [z, p] be a geodesic segment in X, then there is an e; > 0 such
that [p_.,,p] is extended to a segment [p_.,, py] for some p; where Doe, €
[z,p] and d(p_.,,p) = €1. By the angle comparison of the comparison
triangle in a CAT(0)-space, we can see that the curve [z, p] U [p, po] is a
(minimal) geodesic [z, po].
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By the same argument, we can extend the segment [z, p3] to a segment
[z, p3] through p for some p; € X. Continuing this process we get a
sequence of points {p,} such that [z, p,1] is an extension of [z, p,].

We claim that the limit of the sequence of segments {[x,p,]} can be
a ray. Suppose the limit can not be a ray, then the sequence {lz,p.]}
must be bounded. So

oo
Z pn;pn—H <c<oo

Hence {p.} is a Cauchy sequence. By the completeness of X, {pn}
converges to some point ¢ € X. This contradicts with the extendability
of geodesic at q. O

A direction [y] at a point p in a CAT(0) space X is an equivalence
class of curves starting at p which has zero upper angle with v. The
following is easy to prove from the above proposition.

COROLLARY 1.4. In a complete CAT(0) space without geodesic bound-
ary, for each point there is a ray in each direction. In particular, every
geodesic segment can be extended to a ray.

§2. Shadows near a point in metric spheres

In this section X will denote a CAT(0) space if not otherwise stated. A
basic difference between Riemannian and non-Riemannian CAT(0) space
is that geodesic extension of a geodesic segment may not be unique. So
we define the following concept.

DEFINITION 2.1. A point p € v is called a branch point of a geodesic
7 if there are z,y € v and 2z ¢ 5 near p such that [z,y] N [z,2] = [z,p).
[p,y], [p, 2] are called branches of the geodesic [z, .

A branch point p is called isolated if there are no branch points near
p in Xand isolated along a geodesic + if there are no branch points near
pon 7.

If p € X is a branch point then the curvature is not bounded below
near p. So a geodesic space of curvature bounded below contains no
branch points.

We introduce a concept that measure the amount of branching.
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DEFINITION 2.2. Let X be a locally convex geodesic space without
boundary and let the metric ball B,(r) be contained in a convex subset
of X for p € X and r > 0. The (local) shadow Tj(z) of x € Sy(r)
in a metric sphere Sy(r) consists of the points at which the geodesic
extension of [z,p] and Sp(r) intersects.

Note that if the closed metric ball B,(r) is contained in a convex
subset, then we have

Yo(@) = {y € Sp(r)|d(z,y) = 2r} = Sp(r) N S(2r).

So the shadows X7(x) are compact for all € S,(r) because Ih(z) =
Sp(r) N Sz(2r) is a closed subset of a compact set S,(r).

DEFINITION 2.3. Given a point p € X and a subset S C X, the
following subset is called the geodesic cone on p over S;

Cp(8) = (] Ip, ]

zeS

For a point in a topological manifold, we can see more about the
shadows.

PROPOSITION 2.4. Let p € M be a manifold point of a complete
geodesic space M. Assume B,(r), r > 0, be a convex closed metric ball
homeomorphic to the standard closed ball B**1 and n > 1. Then the
local shadows have the following properties:

(1) X5(z) does not separate Sy(r) for each z € Sp(r). In particular,

Tn-1(Z5(z)) = 0.

(2) If there are no branch points in B,(r)~{p} and n > 1, then ¥o(x)
is path connected for each x € Sy(r).

PROOF. (1) By the invariance of domain in Euclidean spaces, S,(r)
is homeomorphic to the sphere. Assume %7(x) separates Sp(r) for some
z € Sp(r). Let U, V be two component of Sp,(r) NEo(z) such that z € U
and let y € V.
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Now consider the family of geodesics from p;

G = {lp,2]|z € Tp(z)}

Since the geodesics in a convex domain behaves continuously with respect
to the end points and B,(r) is homeomorphic to the standard ball Bn+1,
the family G corresponds to a continuous family of curves in B"*! from
an interior point to a subset in the boundary 9B™*!. So the image set
of the family G, the geodesic cone over o (x),

Co(Zp(@) = | Ip2]

zeX7(z)

separates B,(r) into at least two parts, one of which contains x and
another y.

Since By(r) is convex, the segment [z, y] must pass through Cp(Z5(x))
at some point in By(r). This leads to a contradiction with the uniqueness
of geodesics in B,(r). Hence Y7 (x) cannot separate Sy(r).

(2) Assume X7(x) is not path connected and let S C S,(r) be a
connected component of X7(z). Then S and ¥7(ix) \ S are compact.
So there is a connected open neighborhood U of S in S,(r) such that
UNZXi(x) = S and the boundary U C S,(r) does not meet the shadow
2;(1’). Note that the set OU separates Sy(r) into at least two parts, say,
Uand V = 5,(r) \U.

Now consider the geodesic cone C.(8U). Since the geodesics from z to
OU moves continuously with respect to the end points (this follows from
the convexity of geodesics), the cone C,(8U) separates the closed metric
ball By(r) into at least two parts. Since C(S) C C.(U), p € C.(U).
For a point ¢ € E7(z) N S (= EJ(z) \ U) the geodesic segment [p, g]
must meet the cone C(0U) at some point g;; i.e., g; € C,(8U) N |[p, q]|.
This means that there are two geodesics from z to g, one in C,(8U)
and another through p, which is a contradiction. Hence ¥7(z) cannot
be disconnected. 0

The simplicities of the topology of S! and S? imply the following
Corollary.

COROLLARY 2.5. If dim M = 2 or 3 in the above proposition, then
¥5(x) is contractible.
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§3. The ideal boundary of CAT(0) spaces

There are two kind of ideal boundaries of Hadamard manifold, one is
the set Bd(X) of horofunctions up to additive constants and the other
is the set X (oco) of the asymptotic classes of rays. These concepts may
be applied to complete CAT(0) spaces.

Let (X,d) be a complete geodesic space and C(X) be the space of
continuous functions on X with the topology of uniform convergence on
compact sets. The map x — d (= d(z,-)) defines an embedding of X into
C(X). We consider the space C.(X) := C(X)/(constant functions)
and for f € C(X), f denotes the class in C,(X) containing f. Then the
embedding X — C(X) induces an embedding : : X — C,(X), & — d.
The ideal boundary Bd(X) is defined as CI(X) — +(X), where CI(X)
is the closure of 2(X) in C,(X). A point in Bd(X) is an equivalence
class of functions called horofunctions, which are well-defined up to an
additive constant.

The another way of defining a boundary at infinity, which can be
applied only for CAT(0)-spaces, is the following.(ref. [2]) Let X be
a complete CAT(0) space. Two rays v, o : [0,00) — X are called
asymptotic if there is a constant a € R such that d(y(t),o(t)) < a for
all t > 0. The equivalence classes of this relation are called points at
infinity and denote by X (oco) the set of all points at infinity. For a ray
7 1 [0,00) — X, 7¥(c0) € X(o0) denote the corresponding equivalence
class of rays asymptotic to v. For z € X = X U X(c0) and p € X we
also denote by o), the uniquely defined geodesic(or ray) from p to z(if
z € X(o0) then g, , € 2).

Forpe X, €€ X(o0) and R> 0, € >0, let

U(p,& Rye) = {z € X|z ¢ By(R), d(0p,:(R),0p,¢(R)) < €}

This cone is the union of the rays starting at p that pass through the e-
neighborhood of o, ¢(R) minus the closed ball B,(R). The cone topology
on X is the topology generated by the open sets in X and these cones.
The induced topology on X (c0) is also called the sphere topology. In case
X is a n-dimensional Hardmard manifold, the idea! boundary X (co) with
this topology is homeomorphic to the sphere S”~!. But if X is not a
Riemannian manifold then this not so. For example, let Y be a tree then
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the ideal boundary of Y x R is not homeomorphic to a sphere if there is
a branch point in Y.

It is known that two kinds of ideal boundaries are homeomorphic by
the correspondence(cf. [2]);

v (a ray) — the Busemann function of ~

h (a horofunction) — the gradient of h

On the other hand, If we fix a point p € X, there is some kind of
foliation in a CAT(0) space X by metric spheres and there are canonical
projections between the leaves of this foliation:

sy 2 Sp(s) — Sp(r), r <s,
given by the unique geodesic from a point = € S,(s) to p, that is,
Ko (x) = the unique point in Sp(r) N [z, p).

This foliation has two singularities, one is at the origin and the other is
at infinity. The singularity at the origin is called the infinitesimal sphere
and the singularity at infinity is the visual sphere. In fact, the followings
are the direct and inverse systems, respectively;

I={S,(r):r <ro}
V ={Sp(r) : r > ro}

and the limits
Sp(0) := Dir lin%) Sp(r)
T

Sp(00) := Inv lim S,(r)

r-—>00

are the infinitesimal sphere and the visual sphere, respectively.

If X is a complete CAT(0)-space, the convergence in S,(co0) is the
pointwise convergence of rays. So the ideal boundary X(oo) and the
visual sphere S,,(00) are homeomorphic for any p ¢ X.

Now we focus on the complete CAT(0) manifold. For a complete
CAT(0) Riemannian manifold, which is also called a Hadamard manifold,
the ideal boundary is homeomorphic to the standard sphere. ([3]) This is
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also true for piecewise constant CAT(0) PL-manifold. But it may happen
that the ideal boundary of some CAT(0) manifold of dimension> 4 is
not homeomorphic to the standard sphere. ([7]) We are interested in the
remaining case of dimension 2 and 3.

To know the topology of the ideal boundary of a CAT(0) manifold,
a topological manifold which is also a CAT(0) space, we will use the
homotopy characterization of cell-like maps. A compact metric space C
is called cell — like if the space C have the following property of a cell;
there is an embedding of C into the Hilbert cube I*° such that for any
neighborhood U of C in I*°, C is null-homotopic in U. A map is called
proper if the preimage of each compact subset is compact. A proper
surjection is called a cell-like map if each point-inverse is cell-like.

We state a property of cell-like maps between absolute neighborhood
retracts(ANR).

LEMMA 3.1. [8] (Homotopy characterization of cell-like maps) Sup-
pose f : X — Y is a proper surjection of ANR’s. Then f is cell-like if
and only if for each open subset U of Y, the restriction f : f~Y(U) - U
is a homotopy equivalence.

To use the above lemma in the proof of the theorem 3.3, we need the
following.

LEMMA 3.2. In a complete proper CAT(0)-manifold M in which ev-
ery branch point p is isolated, each metric sphere is an ANR.

PROOF. For eachp € M and R > 0, since S,(R) is compact and every
branch point is isolated, there is an annular neighborhood U of S,(R)
such that U \ S,(R) contains no branch points. Then the projection
p: U — S,(R) along the geodesics from p through S,(R) is a retraction.
Since B,(R + 1) can be embedded in some Euclidean space R* of large
dimension, the retraction p in M can be extended to a retraction of a
neighborhood of S,(R) to Sy(R) in R*. Hence S,(R) is an ANR. (In
fact, Sp(R) is a Euclidean neighborhood retract.) a

It is not clear whether there is a metric sphere for each point in a
CAT(0) manifold which is homeomorphic to the standard sphere. So we
have to assume some conditions on the spaces.
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THEOREM 3.3. Let M be a complete proper CAT(0) manifold such
that every point p € M has a radius r > 0 for which the closed metric
ball By(r) is homeomorphic to the standard closed ball of the same
dimension. If M satisfies one of the followings;

(1) dim M =2,

(2) dim M = 3 and every branch point is isolated,
then the ideal boundary M (oo) is homeomorphic to the standard sphere.

PROOF. Fix p € M and we will show that the visual sphere S,(c0)
at p is homeomorphic to the standard sphere.

If the closed metric ball B,(r) is homeomorphic to the standard closed
ball then by the invariance of domain the (open) metric ball By(r) is
homeomorphic to the standard open ball and the boundary S,(r) is also
homeomorphic to the standard sphere.

Since M satisfies one of (1) or (2), if By(r) is homeomorphic to the
standard ball then B,(d) is homeomorphic to the standard ball for all
d<r.

We will show that Sp(R) is homeomorphic to S,(r) for each R > 7.
Consider the annular region A, g = By(R)\ By(r) Since M is proper,
that is, every closed bounded subset is compact, 4, r is compact. Let
{Bq4(rq)lg € A, r} be the open covering of A, g consists of open balls
homeomorphic to standard balls, then there is a Lebesgue number § > 0
of this covering such that each B,(§) is homeomorphic to standard balls.

We claim that;

(*) If Sp(s) is homeomorphic to the standard sphere and r < s <
s+ A < R, then S,(s + X) is homeomorphic to Sp(s) for each A < 6.

If (*) holds, then by induction we can show that S,(R) is also home-
omorphic to Sp(r) for each R > r. Since every metric sphere is home-
omorphic to the standard sphere, so is the inverse limit S,(co) of the
metric spheres.

Now it remains to prove (*). For each g € Sp(s), By(A) is homeo-
morphic to the standard ball and S,;(A) = standard sphere. Define a
projection ¢ : Sp(s + A) — Sp(s) as follows;

for each y € Sp(s + A), let ¢(y) be the unique point in S,(s) N [p, q].
Then ¢ is a continuous surjetion due to the convexity of M, and ¢~1(g) =
25(p) for each q € Sy(s).
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Using the above map ¢ we will show that S,(s + A) is homeomorphic
to Sp(s) for each A < 4 in each of the following cases.

(1) In case dim M = 2;

By the Proposition 2.4 and Corollary 2.5, ¢~ !(q)is a 1-cell or a 0-
cell. Considering the correspondence between ¢ € Sp,(s) and ¢~1(q),
Sp(s + A) can be constructed by attaching a 1l-cell or a O-cell at each
point g € Sp(s). So Sp(s+ A) is homeomorphic to Sy(s).

(2) In case dim M = 3 and the set of branch points is discrete;

By the Proposition 2.4 and Corollary 2.5, the projection ¢ : Sp(s +
A) — Sp(s) is a cell-like map between ANR’s. By the Lemma 3.1, ¢ is
a homotopy equivalence and so Sp(s + A) and Sp(s) are homeomorphic
since dim Sp(s) # 3 and Sy(s) is a topological sphere. d

A CAT(0) piecewise constant PL-manifold M satisfies the conditions
of the above theorem if dim M < 3. So the above theorem is a general-
ization of the result in [7].

We end this paper with an example of a CAT(0) space which is not
a topological manifold with the ideal boundary homeomorphic to the
standard sphere.

EXAMPLE 3.4. Let
A:B:{rewEC:rZLOSGS%r}
D={recC:r <1}

(here we consider A and B as cut along the z-axis). Each boundary of
A and B consists of three parts.

Ap=By={re cC:r=1}
A1:B1:{7‘6iGECIT‘21, 6:0}
Ay=By={re® cC:r>1, 6=2r}
Glue the boundaries of A, B, D along the pairs:
(a) Ao, BOa 6D7

(b) Al: BQ’
(C) AQ, Bl.
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The resulting space X is a CAT(0) space but not a manifold. Since every
metric sphere S,(r) centered at the origin o of radius> 1 is homeomor-
phic to the standard sphere and there are no branch points in X — B,(2),
we can easily see that the ideal boundary X (oo) is homeomorphic to the

circle.
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