ON THE STRONG LAW OF LARGE NUMBERS FOR LINEARLY POSITIVE QUADRANT DEPENDENT RANDOM VARIABLES

  • Published : 1998.01.01

Abstract

In this note we derive inequalities of linearly positive quadrant dependent random variables and obtain a strong law of large numbers for linealy positive quardant dependent random variables. Our results imply an extension of Birkel's strong law of large numbers for associated random variables to the linear positive quadrant dependence case.

References

  1. Statist. Probab. Lett. v.7 A note on the strong law of large numbers for positively dependent random varibles Birkel, T.
  2. Ann. Math. Sratist. v.38 Associarion of random variables with applicartions Esary, J.
  3. Ann. Math. Sratist. v.37 Some concepts of dependence Lehmann, E. L.
  4. Asymptotic independence and limit theorems for positively and negatively dependent random variables Newman, C. M.;Y. L. Tong(ed.)
  5. Z. Wahrsch. Verw. Geb. v.59 Associated random variables and martinglae inequalities Newman, C. M.;Wright, A. L.