=

PREMOE 71O R 3h= TIPHEIA 24 o) 24 2 il 6 M3 785

a2 AA e}
249 AA

o o QT?:' oj _g;ﬂ,m s} x‘_lh”r

L=J — —

PREMOE 7|0t & 8+
24 2wkl

2 ¢

4 EE AE 949394 = PREMO{PResentation Environment for Multimedia Object)2] ¢1o] u}ql o of A
ANE BEANE AFs7) 948k ojuige EERE HAFT ofH 54 dojo 9 F31A e vlig B
d9 A7t AYFolth. PREMOS) wildg Bdo]A g2 viglyg 29 AA87) $]3t) PREMO oA
ol AM FrEd B4, AA-Z 715 GM] tF o 285 vy mdld] BAd dgojg AME BT
£ eEdMe 22 Qo] MY FFEL N E Sty g P2 uig vd 4AE A@ct

A Binding Model Design and Graphics Object Types
Analysis Based on the PREMO

Young-Chul Lee' - Min-Hong Kim'' - Ha-Jine Kim '

ABSTRACT

The ISO/IEC JTC1/SC24/WGS6 is studying of a binding model because of the problems from language bindings
{1]. That had cancelled the language binding standardization and this model is not depend on any specific language.
To suggest the graphics binding model, we analysis the object functions on the PREMO. We see the data mapping
retate to the binding model and descripted function operation for the object-Z functional specification. In this
paper, We have proposed a graphics binding mode! design based on the graphics language binding functions of
PREMO.

1. Introduction

In spite of the development of computer graphics
technology, existing standards(GKS, PHIGS), how-
ever, have little chance of providing appropriate ans-

wers to rapidly changing today’s computer graphics

133 €:ol5daz gad A FeT o4
114 8 4:737d%2 A4 dtg 24
1t 3 8 d:oFdtz FrFAASG AFATHA 25
EEFH4 1974 104 8¢, AAMEE:1997d 129 1Y

technology. Therefore, ISO/IEC JTCI SC24, responsible
for the development and maintenance of computer
graphics standards recognized the need to develop a
new computer graphics standard radically.

To this end, the new work named PREGQ(PResent-
ation Environment for Graphical Objects)was pro-
posed. But it was renamed PREMO during the process
of the Chiemsee meeting to reflect the applicability to
not only graphical objects but also multimedia objects
as well. A new project was launched at an SC24 meet-

786 BIEAEXO e =2 A A5 K 35(98.2)

l Applicatio nT

Constnuiction
Envitonm ent

v r

Artual
Environm ent

v t

Yiewing
Environm ent

¥ t
Logical
Environm ent

v t

Realization
Environm ent

l Operator T

(Fig. 1) Environments in MRI component

ing in Chiemsee, Germany in October 1992, subsequ-
ent meetings resulted in a draft for a new standard
called PREMOJ3].

The major features of the PREMO can be briefly
summatized as follows[4][5]i6].

-PREMO is a Presentation Environment.

- PREMO aims at a Multimedia Presentation.

- PREMO is Object Oriented.

The computer graphics environment means the MRI
(Modelling Rendering Interaction) environment that
the environment model is called CGRM(Computer
Graphics Reference Model}{7][8][9]. The main purpose
of the CGRM is to define concepts that shall be used
to develop computer graphics standards. Additional
purposes are fo explain relations between SC24
standards and to provide a from whereby areas out-
side computer graphics can identify their relationships
to computer graphics. This model may be applied to:

- verify and refine requirement for computer graphics;

- identify needs for computer graphics standards and

external interfaces;

- develop models based on requirements for com-
puter graphics;

- define the architecture of new computer graphics
standards;

- compare computer graphics standards.

2. Graphies Binding Model Design

The main area of the international standards for
computer graphics contains GKS(Graphical Kernel
System) and PHIGS(Programer’s Hierarchical Inter-
active Graphics System). The main reasons for stand-
ardizing basic computer graphics are:

-{o allow application programs involving graphics

to be easily portable between different installations;

-to aid the understanding and use of graphics
methods by application programmers.

- to serve manufacture of graphics equipment as a
guideline in providing useful combinations of
graphics capabilities in a device.

- to reduce program development costs and time;
many of the functions currently performed by the
application program will now be performed by
standards.

2.1 Analysis of the Object types

The PREMO objects consist of the structures which
are callbacks and controller and event handler objects
and event handlers time and synchronization object
and enhanced property services and factories(Fig. 2).

The PREMO uses an object model to support de-
sign portability and reuse of object definitions. The use
of an object-oriented design leads to natural descrip-
tion and provides, in particular, a way for explain-
ing PREMO’s extensibility and configuration aspects
[5119].

For the configuration of this object model follow-
ing definitions and the description of object types are
used.

The objects support only certain operations. The
object type defines these operations, and thus charac-

PREMOE 7{HIO 2 &is JPHEA 24K BHe 2 R dI2ie 22 oA 787

/~ PREMOObject
nitilize

initializeOnCopy

destruct

mqmrc;ype
imquireTypeGrph
inquireimonediat eSupertypes

CallbackByhbame

CLOCK Synchronizationatle A
TickUnip
accua nit
inquireTick
s e
|
e
e[t] s | (e
TimeCurrmtState
SimplePREMOObj et play. dop gause, 7 .
Rug, stop, pause, styncFEimt pnquireNativeProperty
Resume KValuc
Reset
' ActionFiement
osrainiOp s I x
keyWalue Event Handler - -
BvaiMare | 7] TimeSynchranizable |
Contralier EventHandler e Pos: on GeneriFadory e————
o [| | SRR | [T S e
e ossibleSiate i .
e | [T prsstichae inpatentvent mg’}ﬁ
ertData 4F handleEv
evertSource lag timeTo TuTlmc
SynchronizationPeint m:s cEle.mmt
Add Syncevent h e
dedeesmoeyent ENHANCED FROPERTY SERVICES
AND FACTORES
STRUCTURE AND CALLBACKS -—mé————- ﬁ-;,; = T
chronizati onPoint inquireAlignment | ———
o sfe?su;ndivmﬂ-imdiu

CONTROLLER AND EVENT HANDLER OBJECTS EVENT HANDLERS, TIME AND SYNC OBJECTS

(Fig. 2) PREMO foundation object types

terizes the behaviour of object. Objects are the PREMO
Object Model, objects shall not change their type.
Types are arranged into a type hierarchy that forms a
directed, acyclic graph. Types can be related to one an-
other through supertype/subtype relationship, and an
abstract type in PREMO can be providing. PREMO
objects inherit from type PREMOObject(Fig. 2).

2.1.1 Fundamental Object Behaviour

The PREMO obiects consist of many objects. They
are covered by the specification of a so-called PREMO-
Object object type, which is the commen supertype
for all PREMO object types. By virtue of subtyping,
all operations defined on this object type are available
for all other PREMO Objects[3114](5}3].

- Bnhanced Data Objects: The semantics associated
with a data object define the construction and modifi-
cation interface of a particular data object. Examples
ar¢ geometric 2D or 3D points, colour matrices, with
related operations and other attributes, video frames,
frequency specira, etc.

- Event Handler Objects: This object type offers the
necessary operations for the implementation of event
management within PREMO. Event management
plays a fundamental role within interactive systems in
general, and the “Event Model” of PREMO aims at pro-
viding this basic mechanism. The essential feature of
the event model is the separation between the source
of the events, and the recipient of these events. Sour-

ces broadcast the events without having any knowl-

788 SImEEMLSES| =TI MsT A35098.3)

edge of which objects would receive them ; this is done
by forwarding the event instance to special PREMO
EventHandler objects. Prospective recipients of events
register with these EventHandler object, placing a re-
quest based on the eveni type and optionally other
more complex constraint specifications. The recipients
are then notified by the EventHandler on the arrival
of an eveni, together with information on the source
of the event. This simple mechanistt constitutes one
of the main building blocks for the creation of more
complex interaction patterns in the PREMO.

- Controller Objects: The role of a Controller is to
coordinate cooperation among objects. A controller
object is an autonomous and programmable finite
state machine(FSM). correspond to messages sent to
other objects. The actions of a Controller object may
cause messages to be sent to other Controller objects,
thus a hierarchy of Controllers can be defined.

-Clock Objects: These objects provide a unified
interface to the system’s view of real-time clock. The
clock object type assumes the existence of two non-
object types: Time, to measure elapsed ticks(realized,
for example, as a 64 bits integer), and TimeUnit, which

PREMOOhject
T

Grap kicsObjact

Graphics furctions

(as an enumerated type) defines the unit represented
by each clock tick, for example an hour or a micro-
second. Specifically, the clock object type supports an
operation, inquireTick, that returns the pumber of
ticks that have occurred since the start of era defined
for PREMO. However, the accuracy in various units
with which particular PREMO implementation can
describe the elapsed duration since the start of era
will vary, performance of the local object.

- Synchronization Objects: The synchronization fa-
cilities included in PREMO are based on an event-
based synchronization model(10]. In this model, each
synchronizable object is considered to progress auto-
nomously along an internal, one dimensional coordi-
nate space, which may be integer, real, or time-based
(e.g., an integer coordinate may be used to describe
frames in a video sequence) may have a set of refer-
ence pointsle.g., video frames). Points on this space
are referred to as reference points; for each reference
point, an object and an operation can be registered,
together with an event instance(the synchronization
event). This operation is invoked by the synchroniz-
able object when a reference point is crossed, using

.
| E Stream Object | [OiherOtject
— |

[1rPort s Mecka Streem Protocaiotyect |
€]

Fom aObject VirtualDavice Object BasicEventHnd Object Med astream Object | £
L] " Aurto, Video fiie Exteral
Addio Evertsomee Evertsource
Moo Evertclent EventClieri
e | | VirtualComneclionObject vertc
QosObject ricost mati o5t SypartsOtectobjen | L_|Conream dbjec |
Type HW, 3, Diredt Net } =ER
I-| Reliabilit Flestrgam Object
Buihey | | [omumoise
DOII)“ mﬁwce
litler f

(Fig. 3) Craphics object model

PREMOS

the event stored at the reference point as an argu-
ment. A reference point may also contain a boolean
flag, which may instruct the synchronizable object to
suspend itself and wait for an external message re-
quest to continue its progress. Typicaily, a reference
point would refer to an event handler object or a con-
troller object. The event based synchronization model
can be used for synchronization patterns where trad-
itional, purely time-based synchronization is not soph-
isticated enough. A purely time based synchronization
can also be built on top of this model, and this is
done by combining(through multiple inheritance) the
purely event based synchronization objects with the

clock object.

2.1.2 Graphics language bindings

The binding functions for providing graphics bind-
ing model based on standard language binding(GKS,
GKS-3D, PHIGS, PHIGS PLUS)}, that used foliow-
ing standards in {Table 1) [11}{12][13]{14]:

{Table 1} Graphics binding documents

Language Binding Documents 180 Document No

GKS Fortran language bindings IS 8651-1
GKS Pascal language bindings 1S 8651-2
GKS Ada language bindings IS 8651-3
GKS C language bindings 15-8651-4
GKS-3D C language bindings 1S-8806-4
GKS-94 Fortran90 language bindings WD 8651-5
PHIGS Fortran language bindings 1S 9593-1
PHiGS Ada language bindings IS 9593-2
PHIGS C language bindings IS 9593-3

All list of standard function names depend on the
documents(GKS, PHIGS) that function name for
graphics bindings are:

- Control functions

- Qutput primitive functions

- Attribute specification funceions

- Transformation and clipping functions

WOE of IPHES 2N EIE 2 K HIOE 29 M 789

© Structure contemt functions
Structure maniputation functions

- Structure display functions

- Structure archive functions

- Input functions

- Metgfile functions

2.2 Formal specification for bindings

The importance of formahizing the specification of
standards has been recognized for years. In this paper,
we advocate the use of the formal specification langu-
age Object-Z 1. the definition of standards. Object-Z
{2] is an extension W *he Z language specification to
facilitate in an object oriented style.

The Z specification defines a number of state and
operation schemas. Inferring which operations may
affect a particular state schema requires examining
the signatures of cvery operation. In contrast, Object-Z
associates individual operations with one state schema.
The collective definition of a stale schema with its
associated operations constitutes the definition of a
class. The class is template for objects:each object of
the class has a state which conforms to the class’ state
schema and is subject to state transitions which con-
form to the class’ operations. A class is also used as a
type:instances of thal type are identities which refer-
ence objects of that class. This enables objects to refer
to other objects. An Object-Z specification of a system
comprises a number of class definitions possibly re-
lated by inheritance, a mechanism for class adaptation
by modification or extension. For the more detailed
description of the Z semantlics can be referred to[2].

2.3 Containment functionality of object-Z

To the specify the binding functions, we should ap-
ply the containment functionality of Object-Z specific-
ation method. Roger Duke et al[2] have given the fol-
lowing example to explain containment.

Considering the situation where a campus contains
a set of buildings, cach building contains a set of

rooms and each room contains a set of terminals. A

790 stEmmAo|elsl =P X Msd H35(98.3)

o

specification in Object-Z would be (Table 2 Graphics binding functions

—— GRAPHICS BINDING FUNCTIONS

Terminal Raom s [

_— —= BINDING FUNCTIONS

§ ts © P Terminal

E CONTROL FUNCTIONS

[details omatted] 1
‘ |

[Omratlons omitted] Open, Close, Lpdate, Redraw ser display, Messoge, Activate, Create, Excape eic.

QUFPUT PRIMITIVE FUNCTIONS

T Building T o Camps T s e
J— I, s Polyline, Polymarker Texr, Annotation text relotive, Fifl area, Cell erray. Generalized
‘as. P Room bs | P Building drerwing primitive elc.
P ¥ rlr2 - oase ¥ bl bZ: bs -
; rir a CQUTPUT ATTRIBUTE SPECIFICATION FUNCTIONS
rl w2 » bl=b2 =
rlaam Pag = & blas n b2 r2 =@ Polyline. Polymarker, Linetype, Marker. Text, Characier, Fill grea. Pattern, Aspect. Annptation

F Lo Vrl : blas, 2 @ bZas + Intarior, Edge, Highlighting , Hihsr et

) . \ rlas n r2as = @
[operations omitted] TRANSFORMATION AND CLIPPING FUNCTIONS

{operations omitted) Window, Viewpert Local, Global, Modelling, Scale. Roteie, Tronsform. Evaluste efc.

SEGMENT FUNCTIONS

Create, Close, Delete, Rename, Associate, Copy, Fnsert, Visibility, Detectability etc.

The class invariant of class Building specifies that STRUCTURE CONTENT FUNCTIONS

no terminal can be in two distinct rooms in a beuild- Open, Close, Execue, Label, Apalicaton. B, Element Empty et

ing. Similarly, the class invariant of class Campus
INPUT FUNCTIONS

specifies that no reom can be in two distinct buildings
of the campus. Furthermore, despite the fact that the Iitalie, Eocator, Choive, Localor, Request Sample, Get e

predicate of class Building states that no ferminal can STRUCTURE MANIPULATION FUNCTIONS

be in two distinct reoms in distinct buildings. Delete, Change, ee.

3. Functions for the binding model STRUCTURE DiSrLAY Foncrions

Post Structure, Unpost Sirucisre elc.

The PREMO binding model is emerging standard STRUCTURE ARCHIVE FUNCTIONS

developing arca. Therefore, we do not compare with Open,, Close, Archive, Reirieve, Delete etc.

other graphics binding model. Existing graphics stand-

METAFILE FUNCTIONS

ards are descripted according to the specify imlement-

Write item, Get item, Read item, Interpret item efc

ation languages(Fortran, C etc,.). In this paper, we

are descripted the graphics functions based on the INOVIRY FUNCTIONS

language binding. For the methodoiogy of the bind- Operation state valve, GKS state list, Workstation state list, Workstotion description
table. Segmane srate dist, Pixel, Error state fist

ing functions not descripted detail. In the binding

ERROR CONTROL FUNCTIONS

model descripted only language mapping functions of
Emergency close, Error handling, Ervor Logging, Error handling Mode etc.

graphics functions, because of independ on the specific

language. SPECIAL INTERFACE FUNCIIONS
As the explain above, we propose oaly a graphics Escape.
binding modet for PREMO, that is not depend on APPLICATION FUNCTIONS

any specific language. {Table 2} Application function in GKS, Specific functions in binding etc

PREMOE 7IHIS R ol TIoNEA 2408 £t 2o 2 Biole 29 M7 791

Functiona! Mapping

Error Handling

Data Mapping

Abbreviation used in procedure names
Data type definitions

Error Codex

L_ GRAPHICS BINDING FUNCTIONS

3.1 Function operations in the binding model
1)CONTROL FUNCTIONS :procedure OPEN_
XXX{(Graphics system or workstation name)
(ERROR_FILE:in FILE ID:=system name STR-
ING(DEFAULT ERROR FILE);
AMOUNT _OF_MEMORY :in system NATUR-
AL:=DEFAULT_MEMORY _UNITS);

procedure CLOSE, REDRAW SET DISPLAY,
MESSAGE, ACTIVATE, CREATE, ESCAPE etc,.

2OUTPUT PRIMITIVE FUNCTIONS : POLYLINE
procedure (POINTS :in MCPOINT _LIST);

procedure POLYLINE, POLYMARKER, TEXT,
ANNOTATION TEXT RELATIVE, FILLA-
REA, CELL ARRAY, GENERALIZED DRAW-
ING PRIMITIVE etc,.

3)OUTPUT ATTRIBUTE SPECIFICATION
FUNCTIONS:SET POLYLINE _INDEX
procedure (POLYLINE_IND:in POLYLINE_
INDEX);

procedure SET_POLYMARKER_INDEX, LI-
NETYPE, MARKER, TEXT, CHARACTER,
FILL AREA, PATTERN, ASPECT, ANNO-
TATION, INTERIOR, EDGE, HIGHLIGHT-
ING, HLHSR etc,.

4) TRANSFORMATION AND CLIPPING FUN-
CTIONS :SET LOCAL TRANSFORMATION
procedure SET_LOCAL_TRANSFORMATION
(MATRIX:in TRANSFORMATION MATRIX _Z;

HOW_APPLIED :in COMPOSITION _TYPE);

procedure WINDOW, VIEWPORT, GLOBAL,
MODELLING, SCALE, ROTATE, TRANS-
FORM, EVALUATE etc,.

5)SEGMENT FUNCTIONS :SET SEGMENT
procedure SET_SEGMENT

procedure CREATE, CLOSE, EXECUTE, LABEL,
APPLICATION, EDIT, ELEMENT, EMPTY eic,.

6)STRUCTURE CONTENT FUNCTIONS: OPEN
STRUCTURE

procedure OPEN STRUCTURE
(STRUCTURE_IDENTIFIER::in STRUCTURE_
ID);

procedure CLOSE, EXECUTE, LABEL, AP-
PLICATION, EDIT, ELEMENT, EMPTY, elc,.

TINPUT FUNCTIONS:SET PICK IDENTIFIER
procedure SET_PICK _IDENTIFIER
(pick _identifier:in PICK _ID);

precedure SET_INITIALIZE, CHOICE, LO-
CATOR, REQUEST, SAMPLE, GET, etc,.

procedure INITIALIZE _LOCATOR

(WS 1in WS_id;
DEVICE :in LOCATOR _DEVICE.
NUMBER;

INITIAL_VIEW_IND :in VIEW INDEX;
INITIAL _POSITION in WC.POINT _2;

ECHO_AREA :in DC, RECTANGULAR
REGION.2;

DATA_RECORD yin - LOCATOR _DATA_
RECORD);

8)STRUCTURE MANIPULATION FUNCTIONS
:DELETE STRUCTURE
procedure DELETE STRUCTURE
(STRUCTURE_IDENTIFIER :in STRUCTURE_
ID);

AT TNl B s A 34983

procedure CHANGF, ele,.

9ISTRUCTURE DISPIAY FUNCTIONS:POST
STRUCTURE
procedure POST STRUCTURE
(WS Jm WS_ID:
STRUCTURE IDENTIFIER in STRUCTURE.ID;
PRIORITY in WS_ID)

procedure POST STRUCTURE, UNPOST
STRUCTURE ctec..

10)STRUCTURE ARCHIVE FUNCTIONS: OPEN
ARCHIVE FILE
procedure_OPEN_ARCHIVE _FILE
(ARCHIVE_IDENTIFIER :in ARCHIVE_ID;
ARCHIVE_FILE rin FILE_ID);

procedure CLOSE ARCHIVE, RETRIEVE
DELETE eic,.

I1)METAFILE FUNCTIONS : WRITE ITEM TO
METAFILE
procedure GET _CHOICE
(status:out CHOICE_STATUS;
(CHOICE : out Choice. NUMBER);

procedure GET ITEM, READ ITEM, INTER-
PRET ITEM elc,.

12)INQUIRY FUNCTIONS:OPERATION STATE
VALUE
procedure INQ SYSTEM STATE VALUE, %
STATE LIST, WORKSTATION STATE LIST,
WORKSTATION DESCRIPTION TABLE,
SEGMENT STATE LIST, PIXEL, ERROR
STATE LIST etc,.

13)ERROR CONTROL FUNCTIONS:EMERG-
ENCY CLOSE XXX{(SYSTEM NAME)
procedure EMERGENCY _CLOSE_XXX({SYS-
TEM NAME)

procedure ERROR _HANDLING
(ERROR_INDICATOR :in ERROR NUMBER:

SUBPROGRAM ‘in SUBPROGRAM
NAME;

ERROR_FILE !in FILE_ID:=
STRING(DEFAULT _

ERROR_FILE));
procedure ERROR LOGGING, ERROR HAND-
LING MODE etc,.

14) SPECIAL INTERFACE FUNCTIONS : ESCAPE.

15) APPLICATION FUNCTIONS: APPLICATION
FUNCTION IN xxx(system name),
SPECIFIC FUNCTIONS IN BINDING etc,.

3.2 implications of the binding model

1) The Functions Mapping of graphics systems are
all mapped to implementation language procedures.
The mapping utilizes a one-to-one correspondence be-
tween the graphics system and Ada procedures.

2)ERROR _HANDLING procedure may be repl-
aced by one defined by the user.

3)Data mapping

The general correspondence between the data types
and implementation binding datatype is summarized
below :

- Graphics types are integer, real, string, point, vec-
tor, enumeration types, filter, pick path item, element
reference types etc,. These types are mapped to im-
plementation language integer, floating-point, string,
record, enumeration types.

4) Abbreviations used in procedure names

ASF : aspect source flag

CHAR : character

ESC © escape

GDP : generalized drawing primitive
GSE : generalized structure element

HLHSR : hidden line/hidden surface removal
INQ . inquire

PREMOE J1v10O & &t JIoHE A~ M b1 84 2 Hi01e 2H M3 793

AROP . archive open

ASF . aspect source flag

ASAP : as soon as possible

ASTU . at some time

BNIG : before next interaction globally
BNIL 1 before next interaction globally
CBS : can be simutated

CHAR : character

DC . divice coordinate

GDP : generalized drawing primitive
GSE . generalized structure element

HLHSR : hidden line/hidden surface removal
1D : identifier

MM : immediate

IND : index

IRG . implicit regeneration
MAX ! maximum

MC : modelling coordinates

MI ¢ metafile input

MIN ! minimum

MISC . miscellaneous

MO . metaflile output

NIVE . no immediate visual effect
NPC . normalized projection coordinates
PT ! point

REF : reference

SF . scale factor

STCL . structure closed

STOP : sturcture open

UQUM : use quick update method
UWOR : update without regeneration

vC . viewing coordinates
WC : workstation closed
WS : workstation

WSCL : workstation closed
WSHOP workstation open

5)Data type definitions
Generally, graphics data types are summarized be-

fow:

ARCL : archive closed

4. Conclusion

In the process of developing PREMO, there stiil re-
main many open issues. In this paper, focusing on the
graphics object functions and using the “object-Z”
method for the functional specification of graphics
objects. We have addressed two major issues on bind-
ing model. Firstly, we have analysed all object types
for the PREMO which are related the object oriented
concept. Next we have proposed a design of graphics
binding model. The other object bindings will be fol-

lowing future research.

Reference

(1] Recommendations of JTCi/SC24/WG6/(N1580)
PREMO RG Meeting-Kyoto, Japan, June 1996.

[2] Roger Duke, Gordon Rose and Graeme Smith,
Object-Z: a Specification Language Advocated for
the Description of Standards, Software verificat-
ion Research center Department of computer sci-
ence The universitly of Queensland4072, Techn-
ical Report No, 94-95, Australia, December 1994,

[3] Min Hong, Kim, “An Adaption of CGRM to
PREMO” Ph.D. Thesis, Ajou University, Feb,
1596,

[4] ivan Herman, Graham J.Reynolds, PREMO: An
Emerging Standard for Multimedia Presentation,
Part [:Overview and Framework, IEEE, pp.
83-89, Fall. 1996.

i5] ivan Herman, Graham, Reynolds, Reports of the
Center for Mathematics and Computer Sciences,
CS-R9554, “PREMO: An Emerging Standard for
Multimedia Presentation”, (Multimedia : Premo-
IEEE/Report.doc.html# REF46720).

[6] Information processing system-Computer graphics
and image processing-Presentation Environment
for Multimedia Objects (PREMO).(ISO/IEC CD
14478-1) Part 1 : Fundamentals of PREMO, 1997.

{7] Information processing systems-Computer graph-

794 S AR OIS T T AL ML M32(98.5

ics and image processing-Presentation Environ-
ment for Multimedia Objects (PREMO).(ISO/
IEC CD 14478-4) Part 4:Modelling, Rendering,
and Interaction Component, 1997.

[8] ISO/IEC, “Information technology-Computer gr-
aphics-Computer Graphics Reference Model
(CGRM)(ISO/IEC 11072)", 1992,

(9] Information processing systems-Computer graph-
ics and image processing-Presentation Environ-
ment for Multimedia Objects (PREMO).(ISO/IEC
CD 14478-3) Part 3:Multimedia Systems Services
Component, 1997.

[10] Information processing systems-Computer graph-
ics and image processing-Presentation Environ-
ment for Multimedia Objects (PREMO). ISO/
[EC CD 14478-2) Part 2: Foundation Component,
1997,

[11} ISO/IEC 9593-2:1990, Information technology-
Computer graphics-Programmer’s Hierarchical
Interactive Graphics System(PHIGS) language
bindings-Part 2: Ada.

[12] ISO/IEC 9593-3:1990, Information technology-
Computer graphics-Programmer’s Hierarchical
Interactive Graphics System(PHIGS) language
bindings-Part 3:C.

{13] ISO/IEC 8651-1:1988, Information technology-
Computer graphics-Graphical Kernel System
(GKS) language bindings-Part 1 : Fortran.

[14] ISO/IEC 8651-2: 1988, Information fechnology-
Computer graphics-Graphical Kernel System
(GKS) language bindings-Part 2: Pascal.

o o 3
19900 fFdEENRGE A
A A A ehah 2(3HA
1993 AMd g Ao
AZA A (F Y
D
19979 ol g wErd HF
Ej 283 v TR
19753 ~dA FFEN FFFTARAD AR F
FAEok: FAFEH Y 2, o] 554, HE v o

e =
19633 g FAg
A2 F 3h(8AH)
1977d ARAF 71EA)
1978 Y gm gAY
Fray AFAEAD
19933 ©u]= Colorado ¥} 4
SRTA
199611 o3 i ohg e eha(aA
1981 d~"A A7 isR o]l ARMA e 2
DA Bob: g NA), AR BFS T

o &

19624 A& EF3R
48240 8HAh)

19784 Grenoble 1 o 82 of &
4§ 24483 D. E A
(o] 84 A}

1980%d Saint-Etienne o] 83 o}
Y S &Gl
ukAD)

19841 ~19851 T FA INRIA 2 S

198933 ~1992'd ¥ F R 83 B

19931 3~1995d olFuigtw FHd Y &3

19743 ~8A oFeoittz Y AFE T 2

#A R HFH2YY L, XY F.

