B9y AFEe AgsE 2AEY 4% B4

2 =Fd M RESO(REcomputation with Shifted Operands)$t #& A3t 2384 7HS o
o] A LAL #ArE) 4 4 2 ARl Y At v *'0151“ YE
ARSI 12 A9 23k 4G9l 544 A2 HF A AAEY WEES Adsin 2Adth 298 2AEY
HHEL A% AFHF LT U SEAT Ade] Mg ujgol AAE ‘%'}i Gl o) Balel bRl waba
Hrig), Aoty wele Abgstd vjg Gl Rat 8 Adass 28 49 g 7lad #AR A4 E 4
A= AL A S 78 5 Ut

Performance Analysis of Fault-Tolerant Scheduling
in a Uniprocessor Computer

Sungsoo Kim'

ABSTRACT

In this paper, we presen{ analytical and simulation models for evaluating the operation of a uniprocessor computer
which utilizes a time redundant approach (such as recomputation by shifted operands} for fault-tolerant computing. In
the proposed approach, all incoming jobs to the uniprocessor are duplicated, thus two versions of each job must be
processed. Three methods for appropriately scheduling the primary and secondary versions of the jobs are proposed and
analyzed. The proposed scheduling methods take into account the lvad and the fault rate of the uniprocessor to evaluate
two figures of merit for cost and profit with respect to a delay in response time due to faults and fault tolerance. Our
model utilizes a fault-tolerant schedule according to which it is possible to find an optimal delay (given by %) based on
empiric parameters such as cost, the load and the fault rate of the uniprocessor.

. Introduction

nigues have been widely employed in today’s

computers [1). One of the arrangements com-

To meet the increasing demand of system
reliability and availability, fault-tolerant tech-

R ATE 1997d% ARTAAT D ey 2dFALA
4 9% #@ag,

t A8 olrdgy AEdY AV AHFEH TS
=FH 19989 29 199, HAlebm 1998 49 8

monly employed for achieving fault tolerance
congists of providing some form of redundancy
in the system. Redundancy can be applied in
either the hardware {for example by using a
duplex or a higher modul replication) or the

software {as the N version programming redu-

1640 SlsFEXMWE EFEI M M6

ndancy of (2]}, This type of redundancy Is
referred to as space redundancy. As in a
redundant svstem, replication of at least twice
the hardware or software components is reg-
uired. then the cost of manufacturing fault-
tolerant computing systems in VLSI can be
expected to increase substantially (31, Another
interesting method {for attaining fault-tolerant
computing is time redundancy [4); an example
of this type of approach is the recomputation
with shifted operands (RESO) (5.6]. in which
fault tolerance is achieved by limiting the
modular replication of space redundancy, but
at least doubling the time required for the
basic computation step.

In a multiprocessor system. processors pr-
ovide some patural form of space redundancy.
Studies have shown that demand for system
resources varies in a stochastic manner, in most
cases a so-—called spare capacity exists to im~
rlement some form of space redundancy (7.
& 9], In this type of system. the idle proce-

ssors (referred to as functional spares) [7.9]

can be used to process a secondary version of

some of the jobs executing on the active proce-
gsors. Thus, fault telerance can be achieved at
very little additional cost.

Time-redundancy techniques, such as RESO,
have not been very popular partly due of the
perceived time overhead associated with this
type of technigues [10]. In this paper. we
consider time redundancy in a uniprocessor
computer and the main focus is on the effect
of fault tolerance on the response time of the
system. Examples of time-redundant approaches
for application to arithmetic computation can
be found in [11}.

[n the proposed approach, all incoming jobs
to the uniprocessor are duplicated, thus two
versions of each job will be processed: the
primary version and the secondary version. A
discrepancy (disagreement) in the results pro-

duced by the computation of the two versions
of the same job indicates that a fault may
have occurred [12}. This approach can be used
for detecting transient faults {an example of a
transient fault is the faulty behavior of a VLS
chip due to « particles). For detecting perma-
nent faults, the secondary version of a job
must be computed under a well-defined trans
formation (such as the shifted operands of
RESO) [13). The interested reader should
refer to (1,10} for a detailed treatment of
these methods.

One of the issues addressed in this paper.
is scheduling. There are several methods for
appropriately scheduling the primary and
secondary versions of these jobs. By choosing
an appropriate scheduling method. the compu-
tation of the secondary version of the jobs
may not significantly affect the response time
of the first version in a uniprocessor system.
For example, the response time will not be
increased by executing the secondary version
of the job only when the uniprocessor is idle:
however, comparison of the resuits is delaved.
thus decreasing the reliable throughput of the
system. An opposite method consists of sched-
uling alternatively the primary version and
the secondary version of every job: this method
will provide the highest reliable throughput.
but the response far the first versions of
other jobs is delayed. In a real-time system.
both reliable results and response time must
be satisfied: this may preclude the use of
some scheduling methods for some applications.

The goal of this paper is to develop analy-
tical and simulation models to determine an
appropriate scheduling method for a unipro-

‘cessor which utilizes time redundancy. The

proposed model takes into account the load of
the system, as well as the cost of a delayed
response time and the cost of undetected
faults. This paper is organized as follows.

section 4 introduces the preliminaries and a
briel review of RESCO. Section 3 presents the
analvsis of the proposed scheduling methods.
The model for the simulation approach is
described in section 4. The parametric anal-
ysis of the models is presented in section 5.
Discussion and conclusions are given in sec
tion 6.

2. Review and Preliminaries

A simple approach to fault toleranee by
time redundancy is to recompute at least
twice and compare the results of the compu-
tations [5). This method is effective in deter-
mining whether the computation resulis are
correct in the presence of faults which have
a short duration (such as transient faults). A
limitation of this method is that it starts to
lose its effectiveness in the presence of faults
which either are permanent, or have long
duration. An example of an approach which
utilizes time redundancy, is RESO (5,6.11].
RESO does not rely on a simple recompu-
tation: a function is recomputed with shifted
operands. then the result is shifted back for
comparison purposes. RESO can detect (and
possibly correct) many permanent faults wh-
ich are not detected by simple recomput-
ation methods. A comprehensive treaiment on
the fault coverage of RESO is given in [10].
The principles of RESO can be also genera-
lized to different versions of software prog-
rams and algorithms.

[n this paper. a uniprocessor computer sy-
stem s analyzed. It is assumed that the
system can be modeled as a classical M/M/]
gueveing system in which the interarrival
and service times of the jobs are mutually
independent, exponentially distributed random
variables with mean 1/4, and 1/¢. respecti-

vely. In general, for this system it is assum-

ed that there iz one job yueue @ of infinite
length, If p>A, then the job queue may
become emptv: when the processor finishes
the current job. then the processor is said to
be idle. Also. if s:%mﬁ, then the total idle

time is greater than the processing time.
Therefore, during the idle time the processor
can be used to recompute a second version of
the just completed job. For [fault-tolerant
computing purposes, by carefully scheduling
the recomputation of the secondary version of
a job, fault detection can be obtained using
time redundancy at no significant increase in
processing time. In this paper. the term “job”
is used in a general context to identify a
computation process which may consist of a
single step as in [11) or a series of steps as
in (5]

(Fig. 1) Computation by time redundancy in the
uniprocessor system

The basic arrangement for fault-tolerant
computing using time redundancy in a unip-
rocessor is depicted in Figure 1. Let PQ and
SQ be the two job queues of infinite length,
PQ and 5@ are the primary and secondary
queue, respectively. Whenever a job arrives.
the job is sent to PQ and SQ simultaneously.
The jobs in PQ are the original versions of
the jobs (hereafter referred to as the primary
versions of the jobs). the jobs in S@ are the
griginal jobs with some additional operation
(such as shifted operands or change of orde-
ring). they are referred to as the secondary
versions of the jobs. Usually the attached

16842 O HDHZ|ET =27 MAH Wow (086

operation accounts for a negligible overhead
compared with the original job, thus the
processing time for the secondary version can
be considered to be the same as for the
primary version. However, the primary wver-
sion of a job J, has a higher priority than
the secondary version of the same job. The
result of the primary version of the :th job
{i.e. J;) is stored into a specific area of a

memory buffer, whenever the result of the.

secondary version of J, is available, the
system compares the two results: if they are
the same, then a confirm signal is generated,
else a discard signal is provided to the
processor for initiating further processing
(such as a further execution of the job).

The response time of the primary version
of J; and the response time of the secondary
version of J; are denoted as 7.(#) and 7.8,
respectively. Because of the processing prio-
rity in the processor, TAD<T{s. For differ-
ent applications, the computation result for
J: can be made available at a later time.
This time is generally referred to as the
delivery time (and denoted as TL#). For
example, in a highly reliable system, the
result of the computation can’t be made
available until the secondary wversion of J;
has completed, the computation results of
both primary and secondary versions of J;
have been compared and the confirm signal
has been issued: in this case, the delivery
time is not earlier than the response time of
the secondary version of the job, i.e.
TLD=T{1). The checking time (denoted as
TL7). is the time at which the result of the
secondary version of J; is available and the
comparison is performed. Depending on the
scheduling policy. the checking time can be
either at the same time, or later than the

delivery time. In this last scenarie, the
delivery time is the response time of the
primary version of J,, i.e. T d= T3 whilc
the checking time is the response time 7. of
the secondary version of J,.. An appropriate
signal is then generated. The discard signal
indicates that the result of the computation
is not reliable (disagreement has occurred),
hence the system should adopt some addi-
tional actions to verify the correctness of the
primary result (obviously at an extra cost).
The longer the elapsed time between T, and

7., the more expensive is the penalty. An

earlier delivery of results may provide some
benefits for the system depending on the
application.

As an example, consider a real-time system.
in which the sensors send data (for example.
a temperature variation) to a controller which
is configured as slave of a processor. The
controller notifies the processor that a tem-
perature variation has occurred. A job is
created in the processor and a notification of
the temperature wvariation is issued. The
results of the computation are sent from the
processor to the controller. The earlier the
controller gets the notification, the sooner it
can act as required (for example, it can
change the fuel injection to correct the tem-
perature). The cost of the operation is ther-
efore decreased: however, if the processor ge-
nerates an erroneous response to the notifi-
cation, the controller may perform the wrong
action (such as increasing the temperature
assuming no notification is provided from the
processor, such that the controller keeps the
fuel at the previous level), In this case,
further processing must be performed if a
longer time elapses prior £o generating the
confirm signal.

There are two extreme cases: (Case 1) the

raceasor s aiways faultIrece, then the result

of the computation should be made available
to the controller as early as possible! (Case
21 the processor can be affected by faults,
then the result that is confirmed by comput-
ing twice the same job, is made available to
the controller. Common operation of the system
is between these two extremes. i.e. the proce-
ssor is basically reliable. but it may occasion-
ally be affected by faults (such as transients).

There are three scheduling methods which
are studied in this paper, they correspond to
the above cases as follows: (1} The processor
does not execute the secondary version of the
jobs until PQ is empty. If the secondary
version of jobs can be preemptive, the resp-
onse time for the primary version of jobs
(which is also the deliver time) is the same
as usual. e, as in a gqueucing mode! with
one job. However. the response time for the
secondary version of the job (i.e. the time to
generate either the confirm or discard signal),
is the longest among the three proposed
scheduling metheds. Therefore, this schedu-
ling methad is suitable for a processor with a
low fault rate. (2) The processor executes the
primary and the secondary versions of a job
alternatively and then it delivers the results
of the computation after the response time of
the secondary job (provided the time for the
comparison operation is negligible): in this
case, the response time for S& is the
shortest. however the delivery time is the
longest. (3) The processor dees not execute
the secondary version of the jJob J, until it is
either % jobs behind the primary version of
Ji. or P& is empty, and the system delivers
the computation result of the primary version
of i to the outside world. In this case. the
delivery and the response times of the primary
and the secondary versions of a job have a

CHUE! ZIRL0 ZBIBIE L HB

=]
S =54 =gl

i)
{iv
9z

i)

0
&1
IS
I

vaiue between those for metheds 1 and 2 desc

ribed above

3. Analysis of the Scheduling Methods

In this section. the response time of the
primary and secondary versions of the jobs
is studied for the three different scheduling
methods [14) described in the previous sect-

ion.

Scheduling Method 1° In this case. the
secondary version of a job is processed only if
the processor is idle due to lack of jobs in
PQ. The following strategies can be used: the
secondary version of a job is executed accor-
ding to either a preemptive or non-preemptive
strategy. As mentioned above, this scheduling
model can be applied to a uniprocessor with a
low fault rate: thus. the preemptive strategy
is more suitable because it will interfere the
least with the execution of the primary ver-
sions of the jobs.

The state-transition-rate diagram for the
preemptive strategy is shown in Figure 2.
Vertex (7,7, (i#/) located in row ¢ and column
7 of the state diagram. represents the state of
the system S in which ¢ primary versions of
the jobs are either being processed, or walting
in PQ for service and j secondary versions of
the jobs are waiting in SQ. Vertex (0.5 (i.e.
in the first row and column j of the diagram).
represents the state of S in which no primary
version of a job is currently being processed or
waiting in PQ and ; secondary versions of the

jobs are either being processed or waiting in

SQ. It is easy to observe that by using a
preemptive strategy for the RESO computation.
the primary versions of the jobs are served
exactly as they would be in the original M/M/1

queueing system, because the secondary versi-

1644 BHE S HRIET =FE] HON HEZ (986!

ons of the jobs can only be processed if PQ is
empty. otherwise the secondary version of a
job will be preempted.

(Fig. 2) Markov chain for Model 1

Let p,; be the probability that P@ has 7 jobs
(including the one which is being executed)
and 5@ has J jobs. At equilibrium, the
difference equations for the diagram of Figure
2 and their solutions can be regarded as a
special case of Algorithm 1 for Scheduling
Method 3. when k=o0 (gee below). Therefore,
the analysis is omitied.

Scheduling Method 2° In this case, the
processor executes the primary and secon-
dary versions of a job alternatively. Let
i
§]
solved directly from the M/M/1 system model,

o =2p=2 this scheduling model can be

The analysis is trivial. however it can be used
for comparing the proposed scheduling models.

Scheduling Method 3@ In this case, the
secondary version of a job J; will be processed
if the primary version of f; is £ jobs ahead of
it, 1.e. the number of jobs in 5@ is less than
or equal to the number of jobs in PQ plus k.
If k=1, this is the same scenaric as
Scheduling Method 2 (note that the delivery
time may be different) and if k=oo0, this
corresponds to Scheduling Method 1.

(Fig. 3) Markov chain for Model 3

If the preemptive strategy is adopted, the
state-transition-rate diagram is given in Fig-
ure 3. In Figure 3, the notation of wvertex
{¢,7) and A{g) are the same as in Figure 2.
Let p., be the probability that PQ has i jobs
and SQ has / jobs. The equilibrium difference
equations for the state diagram of Figure 3
are as follows:

Pic1, A= pi {3+ 1))

D0,01= b, 11t (2)

po (At = (py 4+ po ;-0 for 1<i<k (3
Do, KA+ 0 =1y st (4
PifA+@= pi At P (5

for 1<i(j<i+4—2
Diior—fAt)= Dy jap—adt (6)
Bivrive T Daip Dufor izl
Diiv At) =Dic p At Bisy apst for i1 (7)

Let p:% and 6‘=—(7’l?;3a
From{4),
2= {1+ 0)bos {8)
From (1), (2}, (3) and (5),
bii= 60,0 9
Poa= ebo £10)

po,; =1+ plpg j-1— P11 for 25j<k (1

po=0p 1, 2t Oy, for 1=iKGsi+ k2112

From (6} and (7},

biiww= (Lt 0D 1= PP Livk-2— Pivlara 1
for izl (13)

Divi ive=1+ 00D, v e OBy jamy forizl (14}

Thus, the probability for vertex (47,
where 0<i<j{i+k—1 and i=0, j=# and
i=1, 7=k, can be calculated from (8)-{14).
Hence, all p,;. 0=<i<j<i+k—2 have been calc-
ulated: the remaining probabilities p; ., and
biive. (for i=1), can be derived from (13) and
{14},

To illustrate this process an example for
k=3 will be analvzed in detail. The state-
transition-rate diagram for %4=3 is shown in
Figure 4. First, all p;; (0<=<7<{+1) are calcula-

ted by using (8)-(12). The index located beside
each vertex of Figure 4. shows the number in
the computation sequence. For example,

step 2 ! from {9) p,=08p,

step 3 from (10) py1=0pp0

step 4 from (9) pyo=8b11= 6 by

step 5 from (12) pr2= 091+ (1— Oy

step 6 from (11) ppo=Q+ 0oy, — 11y

step 7 from (9) py3=6ps2

step 8 from (12) poz=6p1,+ (1~ 33

step 9 1 from (11) pos=QQ+ g2~ Do

step 10 : from (8} py3=(1+0)py 3

step 11 @ from {9) py = 6pys

step 12 © from (12) pa4= 6po3+(1— Dpy,y

step 13 from (13)
Pra=(1+p}p 3= ODo2~ b3

step 14 © from pp=(1+ p)br4— 0 pos

Therefore, all the probabilities can be com-
puted (as for the required precision) along
the sequence labeled in Figure 4. The algor-

ithm for the solution of the Markov chain of
Figure 3 1s ag follows:

Algorithm 1: The Solution of the Markov
chain of Figure 3

Step 1. Determine the computation sequence
and store it into a queue Q@ (* a
sequence is illustrated in Figure 4 *)

Step 2. Compute the probabilities according
to the order of step !

p[0.01 := L:

FOR order := 1 TO order_number DO
Take out the row and column
numbers (i, /) from Q.

{(* calculate the probabilities by the
formula () - (), according to the
relations between 4,7 and & %)
pls, 71 7= calculate_prob (4, /!
(*¢ is wvery small number that
depends on preeision *}
IF p (7, 71 ¢ e THEN BREAK:

Step 3. Calculate the sum of the probabilities,

sum_of p inclusive of p [0,0].
Step 4.
FCR all 7 and 7 DO
pli = pli il / sum_of p:

{Fig. 4) An example of Markov chain for Model 3 (k=3)

1646 S=RTHEM2ES] =F A WS MBS Y86

4, Simulation Model and Approach

In the last section, we have studied the pa-
rameters of the proposed policies by analytical
methods. However, an analytical method suffe-
rs from the drawback that although in practice
the two versiens of a job should have the same
processing time by assumption in the Markov
chain. they are assumed to have the same dis-
tribution function. To estimate the difference,
a discrete event simulation model that is capa-
ble of handling priority-based queues. iz prop-
osed for verifying the analytical results. In a
typical simulation model. the incoming jobs are
proce-ssed on a First-Come-First-Served basis:
in the proposed simulation model, the simulat-
ion system is capable of selecting the appropri-
ate versions of the jobs based on the chosen
scheduling method (as presented in the previo-
us section).

Wawh point
Job dnphcanon mebﬁ Priority based Main
queue Process
Wand: point Watch point
£y ﬁ,{ = fm .
primary jobs Job completion
arivalpate s)

processing rate at job duplication process = infinity
processing rate at main process = J

(Fig. 5) Simulation model for job scheduling

Figure 5 depicts the basic structure of the
simulation model. Besides the priority-based
job selection model, the other additional fea-
tures which set apart this model from conven-
tional models. are the watchpoint functions
and the two versions of the simulation entity,
referred to as subprocesses: these correspond
to the primary and secondary versions of each

job. The subprocesses are used to initiate two
jobs at the same time. The watchpoint func
tions are used for collecting information from
the system (such as initiation or completion
time, and response time distribution).

The system is modeled using an open system
model {with one source and one sink). The
mean arrival rate is given by 1 and the first
process (with zero processing time) is used for
generating the two versions of the subproc-
egses for each arriving job (the first is the
primary version and the second is secondary
version). The secondary version of a job has a
priority order in the queue {not based on the
order of arrival) that complies with one of the
scheduling policies of the previous section.

In the simulation process. the source gene-
rates new jobs at a mean rate of A: the first
process duplicates each job by creating two
version of subprocesses (one with high priority
and one with low priority). Each subprocess
has two identification parameters: its priority
and its cumulative serial number. When the
two subprocesses are created, they enter the
second queue from which the second process
executes them (according to its scheduling pol-
icy). The jobs are not rearranged, because
changes in the order of the jobs in the queue
are not allowed (unless for the removal of the
job to be processed next), hence the selection
of the next job to be executed is simplified.

For the second queue, an utility function is
used to find the serial number of the primary
version (PV/) and the secendary version of a
job (SVD. By comparing the serial numbers.
the process can decide which job should be
executed next. The Ccomparison consists of
subtracting SV from PVJ/ and comparing the
result with the value of the delay number &
The results of the analytical and simulation
models are illustrated in Figure 6 for the
normalized response time: the difference is

iess Lhan 2%, thus suggesting that the analy
tical model fits an experimental evaluation in
a satisfactery manner. The normalized respon-
se time is defined as the response time for

=1,

7
£
3 s ~*— 50, Simulation
§ 4 —— 50, Analysis

3 e PG, Simulation
g 2 —— PO, Analysis
E 1
E-r) -

12 3 & 8§ & 7 8 § %
Delay number (k)

(Fig 6) Comparison between simulation and analysis
(p=10.30)

5. Parametric Analysis

In this section, we will study the effect of
the scheduling methods (as measured by the
delay number #), the fault rate of the pro-
cessor and the work load on the cost of the
system. In many applications (such as for
real-time control), both 7, and 7. will affect
the operation of the system {(and consequently
its cost) in the presence of faults. If £ is
larger. the delivery time T, will be easier and
the checking time will be later (if T,= T, and
T.=T.), and vice versa. Therefore, an optim-
al scheduling method may exist for a parti-
cular system,

Using Algorithm 1, we have calculated the
response time of the primary and the secon-
dary versions of the jobs under different 4

and %, where pm“—i- and £ is the delay nu-

mber of the jobs in the secondary queue. If
k=1, then this corresponds to Case 2. i.e. the

jobs in the primary and secondary queues will
be processed alternatively {and they may have
different delivery time depending on the char-
acteristics of the system). If % is a very large
number. this corresponds to Case 1, ie. the
jobs in the secondary queue will not be proce-
ssed until the primary queue is empty. Some
results on the average queue length for the
primary and secondary versions of the jobs are
shown in Table 1 (where the subscript of PQ
and SQ denotes the value of k). It is assum-
ed that =1 ie p=21 for simplicity.

Table 1> Average queue length for the primary and
secondary versions of the jobs

o | PR SQi1 PQe| SGt PRy | 8@ | PG5 865 | PQuv| SQu
0.0510.060.11)0.05]0.11{0.0510.11{005(0.11(0.05|0.11

——
0.10,0.1410.2410.12)0.26(0.11 | 0.26 | 0.11 | 0.26 | 0.11 | 0.26

0.15/0.25 0,40 0.2010.44 | 0.19] 0.461 0.18) 0.47 | 0.18 | 0.47

0.20/0.40(0.60|0.3210.68|0.28]/0.72|0.26(0.74|0.25 | 0.75

0.25/0.63 | 6.8810.50|1.00/0.43)1.07|0.37|1.13/0.34{ 1.16

0.30/0.9811.2870.80} 1.46|0.68] 1.57{ Q.

oIt
Q1
—
—a
[}

0.45(1.80

0,35/ 1.5811.9311.33] 2171 1.15{2.35{ 0.91{ 2.58 | .65 2 85

0.40| 2.80 | 3.20{2.48|3.52]2.22(3.79| 1.80|4.20] 1.20 | 4.80

0.45/6.53|6.98]6.12| 7.38]5.75| 7.7515.09| 8.41 | 3.82| 9.68

As expected, for large values of % then is
little difference between the time of PQ and
the time of SQ if p is small (p<0.2), but there
are significant differences provided o is large
(#20.3). k=1 is used as a benchmark for
comparison purpose’ thus., when £ increases.
the PQ time decreases, while the S time
increases. i.e. the job delivery time is anti
cipated, and the verification time in the time-
redundant approach is postponed for larger
values of %. Usually, an earlier delivery time
provides only for a limited “profit” (i.e. a
decrease of the cost), as for example, the gain
may be provortional to the earlier delivery

1648 BB HelSel =FE X 52 Moz 988

time. However as Iindicated by T.W.Williams
in 115],

If it costs 0.30 dollars o detect a fault at the chip
level then it would cost 3 doilars to detect that same
fault when it was embedded at the board level: 30
dolfars when it is embedded at the system level. and 300
dollars when it is embedded at the svstem level but has
to be found in the field,

then if the processor has a fault, the
postponement of the verification of the two
versions of a job will cause a rapid increase in
penalty, i.e. a loss of “profit” (a corresponding
increase in cost). This increase in cost is
proportional to a polynomial factor (denoted by
p)} of the delay incurred in the verification
process. Thus, we can use the following fo-
rmula (12,15] to caleulate the Net profit of a
system with RESO under different values of &,

Net_ profit= gain— loss {15)
where,

gain= advanced _delivery _time> factor__of

_gamx (1 — faull _rate) (16)

loss= (delayed _verification time)’ =

(factor _of _ loss) < fault _rate (17

where
advanced _deltvery _ttme = max (Spg) — PQ i i
=PQﬁmR k»«l'PQn‘mg koo
(18)

delayed_ verification_time = SQ e p=;— min{Ssy)

= 86 time k=i SQ time £=1
{(19)

Spg (Ssg)z{PQn‘me_k:lsPth,k=2<"'}
({5Q 4o =1, SQtime t=2,}) for k=1,2+ and
PQume (SQum.) stands for the normalized res-
ponse time for the primary (and secondary)
versions of the jobs {for a given value of k),
respectively and

normalized _profit=

Net_ profit
max [Net__profity. |, Net_profity—y .1 (20}

The value of p. factor_of gain and factor of_
loss are dependent on the application. If p=2.
Jactor _of _gain=1 and factor_of_ loss=500. from
Table 1 Figures 7, 8 and 9 are obtained for
£=0.30,0.35 and 90.40 respectively. As an exa-
mple in Figure 8, if the fault rate is very low,
f=0.02% per unitary time, then the verifica-

tion process (the computation of the secandary

Normalized profit

—n Tallure-rate=0.02%
— o failure-rate=0.04%
—t— failure~rate=0.08%
— o failure-rate=0.03%

1 2 3 4 5 6 7
Delay number (k)

(Fig. 7) Relation between delay number and profit for different fallure rates {o=0.30)

%; 08 I 1 -
L e / Bi)\ N e fallure-rate=0.02%
E T /:(“\\ —-o— failure-rate=0.04%
! g 0.4 J!)" - e failure-rate=0.08%
i 2 02 ! —— failure-rate=0.03%
4 N
i 0% + ¥ + -
; 1 2 3 4 5 6 8 9 10
] Delay number (k)

[Fig. 8) Relation between delay number and profit for different failure rates (o=0.35)

r o o |
|
= = failure-rate=0.02%
‘] a 8 failure-rate=0.04%
R T failure-rate=0,08%
f = ™ failure-rate=0.03%
N
| =
i
i Delay number (k)

{Fig. 9) Relation between delay number and profit far different failwre rates (e =10.40}

vergion of a job in RESO) is not very impor-
tant. Se it is possible to postpone. the secon-
dary version until the primary queue is empty
to maximize the profit: if the fault rate is
high., for example f=0.3%. the verification
process iz also very imporfant and the seco-
ndary version should be execute immediately
after completing the execution of the primary
version, For intermediate values of f (i.e.
0.04% = /=0.08%1,
provided the value of k is between 5 and 3. A

the largest profit is obtained

similar analysis of the results is applicable to
Figures 7 and 9. because for a different value
of p. the delay number £ varies for maximi-
zing the profit.

6. Discussion and Conclusions

This paper has presented a time redundant
approach in a uniprocessor in which only a
very small amount of hardware is required.
The proposed method utilizes two different
queues in whieh a primary and a secondary
versions of each incoming job are stored. Three
methods for scheduling the redundant comput
ation {as required to meet response time requ-
irements in different applications for fault-
tolerant computing) have been presented and
analyzed. In the first scheduling method, the
primary computation is not affacted hy the

provided arrangement. l.e. there is no time

delay. However. this approach is not suitable
for a processor affected by frequent transient
faults as comparison beiween the two versions
of the same job may be performed after a long
delay. The second method operates on a totally
opposite schedule: the secondary computation
is performed immediately after the primary
version and the fault can be detected at an
earlier stage. The third method utilizes a
fault-tolerant schedule according to which it is
possible to find an optimal delay {given by &)
based on empiric parameters such as cost, the
load and the fault rate of the uniprocessor. In
this model, the processor does not execute the
secondary version of a job until this job is
either % jobs behind its primary version or
the primary queue is empty. The proposed mo-
del takes into account the load of the system,
the fault rate, the cost of a delaved response
time and the cost of undetected faults.

References

[1] D.K. Pradhan, Fault-Tolerant Computer Sys-
tem Design., Englewood Cliffs, NJ: Prentice
Hall, 1996

[2] A Avizienis and L. Chen. "On the Implemen-
tation of N-Version Programming for Software
Fault-Tolerance during Execution,” in Proc.
rompac 77, pp.149-155, Nov. 1877,

[3] D.P. Siewiorek. "Niche Successes to Ubiqui-
tous Invisibility: Fault-Tolerant Computing,
Past, Present. and Future.” in Proc. IEEE
FTCS-25(Special Issue). pp.26-34, June 1995,

[4! J-C. Laprie, "Dependable Computing: Concep-
ts. Limits, Challenges.” in Proc. IEEE FTCS
-25(Special Issuel, pp.42-57, June 1995.

(51 J.H. Patel and L.Y. Fung., "Concurrent
Error Detection in ALU’s by Recomputing
with Shifted Operands,” IEEE Transactions
on Computers, Vol.C-31, No.7, pp.589-595,
1982,

[6] J.H. Patel and L.Y. Fung. “Concurrent
Error Detection in Multiplier and Divide
Arrays,” IEEE Transactions on Computers.
Vol.C-32, No.4, pp.417-422, 1983.

[77 A'T. Dahbura, K.K. Sabnani and W.J.
Henry. “Spare Capacity as Means of Fault
Detection and Diagnosis in Multiprocessor
Systems,” IEEE Transactions on Computers,
Vol.38, No.6, pp.881-891, June 1989.

(8] M.M. Bae and B. Bose. "Spare Processor
Allocation for Fault Tolerance in Torus-Based
Multicomputers.” in Proc. IEEE FTCS-26,
pp.282-291, June 1596.

[9] K. Hashimoto, T. Tsuchiya and T. Kikuno.
"A New Approach to Realizing Fault-Tolerant
Multiprocessor Scheduling by Exploiting
Implicit Redundaney,” in Proc. IEEE FTCS-
27, pp.174-183, June 1997,

{10] G.8. Schi, M. Franklin and K.K. Saluja.
“A Study of Time-Redundancy Fault Tolerance
Techniques for High-Performance Pipelined
Computers,” in Proc IEEE FTCS-19, pp.
436-443, 1989.

{11] Y.M. Hsu and E. Swartzlander, "Time Red-
undant Error Correcting Adders and Muiti-
pliers,” in Proc. IEEE Workshop on VLSI
Systems, pp.247-256, 1992,

12} S. Kim, "Cost Analysis of Fault Tolerance
in a Uniprocessor Computer,” in Prec. of
the 8th KIPS Fall Conference, Vol.4, No.2,
pp.119-123, QOct. 1897,

(13] J.A. Abraham, “Challenges in Fault Detection,”
in Proc. IEEE FTCS-25(Special Issue), pp.
96-114, June 1995,

[14] 8. Kim, et al., "Scheduling Policies for Fault
Tolerance in a VLSI Processor,” in Proc.
IEEE DFT'94, pp.1-9, Oct. 1994.

(151 T.W. Williams and K.P. Parker, "Design
for Testability - A Survey,” Proceedings of
the IEEE, Vol.71, No.l, pp.98-112, 1983.

ARSI

182 MFE g e
eah)

19841 M7iste dakg spak(E
Rk

1995%1 Texas A&M University.
AheaH(Fauray

198393 ~1986 AT FHATL ARG
H(FAAT4)

198611 ~1996'd HAHEFE7 €Y a7

19911 ~1992¥1 Texas Transportation Institute

AT
19934 ~ 1995 Texas A&M University, dxr&at,
T.A.
1996 ~ A} o} TS FARFAGT YR DHFE
R i

& S/W Testing, Mobile Computing 5

