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A Study On The Dynamic Behavior Of Cellular Automata CA-6

Jung-Hee Park'- Hyen-Yeal Lee™

ABSTRACT

The dynamic behavior of nonlinear cellular automata CA-6

with two states (0 and 1) and four different boundary

conditions 15 identified in terms of the fixed point and the recursive formulae generating the state transition graph. The

recursive formulae explored are, in particular, as following:

Clm=Alm 1):Clm- 1 and Dim)-B{m-1+D{m-1).

1. Introduction

Cellular automata are discrete dynamical
systems that generate diverse. complicated
behavior(3,8,10.11.13). First introduced in
1948 by Von Neumann and Ulman(l] as
potential models for biological self-reproduction,
celiular automata have since been used as
mathematical models for many investigations
in natural science. combinatorial mathematics
and computer science: in particular they
represent a natural way of studying the
evolution of large physical systems. They also
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constitute a general paradigm for parallel
computation, such as Turing machines do for
serial computation(15]. Many scientists, in
particular. have been trying to investigate the
dynamic behavior of infinite or finite cellular
automata with various methods. Aloke tried to
characterize cellular automata with matrix
algebra and also studied to characterize
additive cellular automata based on the depth
of state transition graph. Moreover, Voorhees
presented an analysis of nearest-neighbor
cellular automata based on the seperation, for
each automaton rule. of additive and non
additive  parts. Furthermore, attempt to
analyze the dynamic behavior of finite cellular
automata by recursive formulae for state
fransition diagram has been made by Lee.
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However since it is highly difficult to find the
recursive formulae for the state transition
diagram of even elementary cellular automata
clearly, many rules have been still remained
unexplered except rules 1,4,5812,19,29,36,72.
76.108.140 and 200. In this paper. it is aimed
to identify the dynamic behavior of rule ©
{CA-6) in terms of the general formulae for
numbers of fixed points and their patterns, the
general formulae for numbers of adjacent
nodes which are attracted to nonzero fixed
points. maximal cycle length and the recursive
formulae for state transition diagram.

In general, cellular automata can be defined
as a spatial lattice of sites whose values at
each time step t are determined as a tran-
sition function of the values of neighboring
sites at the previous time step t-1 [2]. This
function provides the rule governing the
automata’s behavior. Specially, consider the
class of automata defined on a one dimensional
set of sites x, , each of which assumes any of
the values {0,1}). The general form of a rule
for such an automaton is then given by

f+1 H t ¢
X = AX X e K (1.1)

£40, 137 50,1}

where 7= represents the size of the

neighborhood considered by the rule and each

site x; is assigned an initial value x?

Elemetary cellular automata of r=1 are
defined by rules of the form:

H1 t ! 3
xi = RAXio1, X Xie1)s (1.2

£10,11°—{0, 1}

A rule is therefore equivalently defined by

<

specifying the valuc assigned to each of the 27
possible 3-tuple configurations of site values:

i.e. by gpecifying the a;, 1=0,....7 such that

111 110 101 100 011 010 001 00O
oyl bbbl (1.3)

az dg a; a4 ag dy 4y 4

Since each a;={0,1}, there is a total of

2% =956 possible rules(2].

Wofram has defined a labeling scheme
according to which a rule is assigned a value

rule number =R= g)a,- 2!

where a; is the value assigned to the 3-tuple

corresponding to the number 1 in binary

representation{3].

CA-6 defined by

Axtxh o) =x"t (1.4)

t t i
x; when x;_1=x;.1=0

14 i t
=\ x; when x;-y=0, 254,71
0 eke

can be rewritten in the form of (1.3) as

111 110 101 100 011 010 001 000
| A (1.5)
h 0 ¢ 0 0 1 1 9

A cellular automaton CA—R,_.(m) with

boundary condition a~b (a, b = 0 or 1), celi~
gize m and rule number R is a dynamical

system (X,.,0,-4).
Here X, is the set of states and a state

transition function &%, is defined by

3f~b(x1x2"'xm~1xm)= ' (1.6
Rax) Ao 25%3) A2 — 1 X yb)

8" _(&)=¢ (empty string}



where [ is a

Bim).
boundary conditions as following:

A, 1 X1

make
CA-6.

In Fig.1.1.

triplet locai transition function
wilth rule number R, Its configuration is shown

Now. let us define celiular automata A{mi,

Cim) and Dim)

for

four

Alm)=CA— Ry_y(m)=(X,,, 8, ),
B(m)=CA— Ry \(m)=(X,, 85,
Clm)= CA— Ry _o(m)=(X,,, 67-0),
Dim)=CA—R,_{(m)=(X,,,0)

(Fig. 1.1) A configuration of CA—R,_{m)

Section 2 will

transition function of CA-0.

analyse

fixed points

simple recursive formulae for

different

of
In section 3, the
the transition

diagram will be explored, Finally section 4 will
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2. An analysis of fixed points of CA-6 with
boundary conditions

2.1 The characteristics of fixed points i Am)

cycles do not exist. Fixed points and number

has more than two fixed points but
of nodes in the transition graph that are
adjacent to the corresponding fixed point is
summarized in Table 2.1. The values in each
cell indicate fixed points and the values under
slash are numbers of adjacent nodes which

converge to those lixed points. Table 2.1 tells

us that 0™ and & 27 ™" are fixed points

and the general formular of numbers of fixed
points is n+1 whenever cellsize m is both even
(2n) and odd (2n 1)
Moreover, it can be seen from the table that
1. 2.4 6,9 14, 21, -} of

numbers of adjacent nodes which converge to

as shown in Table 2.2.
the sequences {1.
(see

nonzero fixed points are all the same

conclusions on the characteristics of column 3 to 6). The general formular of this
sequence is
3ol §
s, = k- 3k -g 14k+ 12 h=n—3. n=4.
{Table 2.1) Fixed points and Numbers of adjacent nodes which converge to nonzero fixed points in Alm)
std poInis o - » o . i . . P _
. Gm 2#: 21’-‘ -+ Zm h Zm ”+W2m n¢2m il 2m 1+2m 1+2m a+2nz
m
1 0 1 28 1
2 0* 9 2! 1
. e s ) ‘ pd e
3 0 3 2 2 2%+ 2 1
4 3 K |
4 0 //4 2 4 2042 1
5 0° ol 2 g 2t p| 24+ 2742
6 oo 9 95 9 2% ¢ gi 4 25 ¢ 9%y o) |
7 07 13 25 14 26+ 24 6 2li+ 24+ 22 2 26+ 2'l+ 22+ 20 1
8 08 19 2{ (21 24+25> 9 2A+25+ 2(1 4 2A+ 234 2l€+ 21 1
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{Table 2.2> The number of fixed points in A(M)

m v 1

6
4

4
3

| Oy
S|

8
5

-
|
i

- 2 3
numbers of fixed p_o'mts 2 2 3

22 The characteristics of fixed points in B(m)

n
B{m) has a single fixed point 2122[“1 when

cellsize m is  even. When cellsize m is odd,
B{m! has no fixed points but cycles do exist.

The maximal cycle length is 4 for m=3.

23 The characteristics of fixed points in Clmy
The behavior of C(m) is quite similar to
that of A(m)} C(m) has no cycle but fixed

points exist. By Table 2.3, fixed points are 0"

m o
R »
and ‘?"1 2”72 The number of fixed points is
o

shown in Table 2.4. Furthermore, the sequence
of numbers of adjacent nodes which converge
to each of nonzero fixed points is the same as
that in A{m) given in Table 2.1.

24 The characteristics of fixed points in D(m)
Like B(m), D(m) has a single fixed peint

2122#‘ {m»1) when cellsize m is odd. When

cellsize m is even, D(m) has no fixed points
but cycles exist. The maximal cycle length is
also 4 for m=4.

{Table 2.4 numbers of fixed points in C(m)

m

1 23458678
numbers of fixed points{ 1 2 2 3 3 4 4 &

3. The formalism of transition diagrams

The formalization for the transition diagram
of cellular automata in an algebraic method is
highly difficult because the evolution of cellular
automata is unpredictable. In this section,
hewever, one will try to represent the state
transition diagrams of CA-6 by simple recursive
formulae. To do this, let us introduce two
operators ¢ and ¢ in definition 1 and

definition 2 respectively.

Consider X,,—;as the set of states of
cellular automata with cellsize m-1, i.e.
X 1= (21 %9 X - lx,£{0,1}} and Xy X s X,

(Table 2.3> fixed points and numbers of adjacnet nodes which converge to each of nonzero fixed points

" ded points 0" A P A greqgrritgmel | gmed g gmedrgmbign-s
1 0 9
2 0? 3| 2° 1
3 0 5| 2 1
4 04 gl % o| 27+ ]
5 0° ol 2 g 242 )
6 0f sl 2 ol 2+ 2 gl 21+ 2842 1
7 0 2° gl 2°+2° 4| P22 1
8 0e 28 1] 262 AR A 5 | 2f+2t+ 2ty 2 1




as those with cellsize m, satisfied with
Xn=X0UX, and X2 NXL= (3.1}

where

X0 =025 X |y X E X 1)
anld
Ko = {1 2y Xy |21 X9 0 1 € X 1)

Definition 1

A transition function ¢, is defined as
¢‘m:X(7)nw)Xm- wm(X?n) - 605’” b(Xm)

ro— 1
such that @, (0% %, 1) =87 5 (X x0x0 1)
for all 0xyxs % 1S X and X%y %y | EX

where the transition function 8:1”__3,1 is that

defined in (1.6).
Definition 2

A transition functien ¢, 1s defined as
i XX P X)COr (X, such that
G100 2502y ) = 087 (X1 XX 1) for all

1
laxy X1 EX and XX X S X .

In the following theorem, we want to show
that C(m) in the rule number 6 is partitioned
by the diagraphs derived by A(m-1) and

C{m-1}. Thus for convience, we consider ¢,
and ¢, as

-1
%(lexz”'xmwl) = 036’1—0 (x1x2”'xm—~1)

. w1
and ¢m(1x1x2"‘xm—1)m0ﬁ?—o (X1 X9 Xm—1)
Theorem 1

In the rule number &, dyvnamic systems

(X%, 0, and (X,,.¢.) are a partition of

(X,., 87— ¢) which is a dynamic system C(m).

We will dencte it as
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Clmy =Alm 1)1 G 1),

Proof.

By eq.(3.1),

szX{]mUX;lm and

xXNxl=0.

Hence it will suffice to prove the following
relations:

For each (0xixyx,, )=Xb |

8T (0% Xo Xy 1) = @, (01 297X - 1) (3.2)

1
and for each (lxyxy %, )X

8?” [](lxlxz-“xnr l) = ¢’m(1x1x2”'x”’Z*i) (3.3)

Let us prove this by mathematieal induction.

{1) When m is 1. X, is {0, 1} where X?,, is
{0} and X%, is {1}, Thus

814 (0)=0 (3.4)

since 8] o(0)=A100)=0

and

8l p (1}=0 (3.5)
since &1 _o(1)=A110)=0.

On the other hand. X,,-; is empty strine.
By definition 1,

21(0) = p,(0€) = 08) (&) =0e=0 (3.6)
By definition 2,

(D=1 =08_o(e)=0e=0 (3.7

By eq.(3.4) and eq.{3.6),
81-0(0) = 2, (0)

and

by eq.(3.5) and eq.(3.7).
1—a(D) = ¢y (1).

Hence it holds when the cellsize m is 1.

(it} Assume that it is true when the cellsize
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13 m. then we need to show that it holds when

the vellsize is m+ 1.

5??71‘;1(01'; Xyre “X)
:ﬂu)x‘) ' ﬂox}xz}nﬂxm*lxmﬂ)
=0« Alxyx5) » foxaxa) A X 12,0)

=0 - 8(’],1*0(:’5]-%2“']5»1) :@mfl((}x!xg--xm)

by eq.(1.5). eq.{1.6) and eq.(3.2).

Also
ST M Ly oxy,
:f(lli’ﬁ) v f(1X1X2) A f(xmmlme)
=0 - f(ixlx:z) * ﬂx;xzxfs) vt f(xm—lxmo)

:05771}(%;7(2"’?{;%} :¢nz+1(xlx2"'xm)

by eq.(1.5), eq.(1.6) and eq.(3.3),
These prove our theorem. L]

Let us consider ¢,, and ¢,, as

gom(ﬁxlxi"’xm"l) = an:il(xleﬂxm~ 1)
and

Gl 112055, ) = 087 oty 2y, )

Then we have theorem 2. The proof is word
for word the same as proof of theorem 1, so

will not be reproduced.
Theorem 2

In the rule number 6, dynamic systems
(X% 0,0 and (X',¢,) are a partition of

(X, 81-1) which is a dynamic system D{m).
In other word, D(m) in the rule 6 is
partitioned by the diagraphs derived by
B(m-1) and D(m-1).

We will denote it as

Dnm)=B(m—-1)+ D(m—1).

For example. let us show that C(3)=A(2)
+C(2). Transition diagrams of A(2) and (2}
are graphs with two connected components as
shown in Fig.3.1, Fig.3.2 and Fig.3.3.

Graph G which is created by prefixing 0 to

each site string of A(2) as shown in Fig.3.1
becomes a subgraph of C(3) as shown In

Fig.3.3. Strings lxxs created by prefixing 1
to each site string xyxy of C(2) are transitted
to the strings created by prefixing 0 to
81-¢{xyx9) such that  ¢(lxixs) =08 _o(x,x)
where &;_4 is the transition function of C(2)
as shown in Fig.3.2. Let us denote this graph
as Go. Then Gy is alse a subgraph of C(3). It
can be noticed that the sets of { Gy, Gy} are a

partition of C(3).

(D>

@
(Fig. 3.1) A(2)

@_o
:
A

(Fig.3.2y C(2)
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(Fig. 33) C(3)
4, Conclusion

In this paper. the dynamic behavior of
nonlinear cellular automata CA-6 with two
states U and | and four dilferent boundary
conditions has been identified in terms of
fixed points, maximal cycle length and the
recursive  formulae for  state  transition
diagrams. It is to say that the dynamic
behavior of A(m) is similar to C{m) and also
the dynamic behavior of B{m} is similar to
that of D{m). Af{m)} and Clm) have fixed
points but cycles do not exist. On the other
hand, B(m}! and D{(m) have cycles with no

fixed points or have just single fixed point
! m+l

9 m—(27=1)

with no cycles. 0™ and are

=]
fixed points ol Aun) and the general formula
of numbers of fixed points is n+1 whenever
cellsize m is both even (2n) and odd (2n-1).
Moreover the general expression of sequences
of numbers of adjacent nodes which converge

to nonzero fixed points is

P —3F 4 14kt 12
Sp= 6

Jk=n—3, nzd.

AEM SENLE CABC B QR0 IS 243 1789

Fixed points o Cun)  are (%  and

:;|;§

12’“ “. The sequence of numbers of

i
adjacent nodes which converge to each of

nonzero fixed poinls is the same as that in

Alm). B(m) has single fixed point 212”"'2

only when cellsize m is even. When cellsize m
is odd, B{m) has no fixed points but cycles

whose maximal cycle length is 4 (#=3 } do

exist. Like B{m), D{m) has a single fixed

point 2122571 (m>1) when cellsize m is odd.

When cellsize m is even, D{(m) has no fixed
poinis but cycles exist. The maximal eycle
length is 4 for m=4. The recursive formulae
for state transition diagrams are C{m)=A(m
-1 +Cim-1} and D(m)=B(m-1}+D{m-1). This
recursive formulae can make to generate the
state stransition diagram automatically. However
many rules of one dimensional cellular automata
have been still remained unexplored. Thus we
will try to find the recursive formula of those
rules continuously. Studies on the formali-
zation of finite cellular automata which have
more than 3-neighbor, more than two states
and more than two dimension remain as further
works.
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