TTER L T S T = i b N R R E
= A R R i E e i

't Z2AA ATAAE el
o] Zleg Az} Al A= 7H]

ol

N ok K DO TR R S - L B

Shrjut ool i Yl e

A A WA e el SRR ol ol S s HE
Aobst} o)9l weleh ARS sh= O(1) A7 Yl Ewol o dorslelizd), ol
tro) AbgEbls Ao s ((x')yow oddbe] g4 e alms) Bowp AvkaaAl wub spack M ey gt
Aol il uks Apgehs A Wi g obare] s ARl o M AQER: WATIE oG o R Washt o

medel e Al O(1yelan b 2ie st pe) B8 Olog n) olth

Efficient Transformations Between an #° Pixel Binary Image

i

and a Boundary Code on an n’ Processor Reconfigurable Mesh

Myung Kim'

ABSTRACT

In this paper, we present cfficient reconfigurable mesh algorithms for transforming between a binary image and 1t
corresponding boundary code. These algorithms use mxX s> # processors when the size of the binary image is nx n.
Recent published results show that these transformations can be done in O(1) time using K n') processors. The
number of processors used by these algorithms is very large compared to the number of pixels in the image. Here, we
present fast transformation algorithms which use n' processors only. The transformation from a boundary code o a

binary image takes (1) time, and the converse transformation takes O(log n) time.

1. introduction nt

have been proposed. These include boundary

applications. different image representations

Image representation is an important field of

research in computer vision. image processing.
computer graphics, geegraphic information syst-

ems. and cartography applications. For differe-

#% This research was supported by Ewha Research Grants.
£ 8 o olspolAepsta ATCI
P E A 1098 69 39 Al AbehE 1008 68 209

des, guadlrees. and run iength codes [14]. Si-
nce each representation has advantages and dis-
advantages, it Is of great interest to develop
efficient algorithms for transforming between
any pair of such representations.

Recently, parallel algorithms for such trans—

formations were developed on architectures such

N e S e o NGRS | R B | A CRte SFoh

g~ mesh 37 hypercube (1. 2. 4. 81, and recon-
feurablie mesh (70 95, In this paper. we focus
nn the transformation between a binary Image
and a boundary code. and present efficient alg-
arithms on o veconfigurable mesh of size nxnxn
when the number of pixels in the binary image is
Hen

Let us first define some terms that will be
used throughout the paper [14). Consider =z
binary image of nxn pixels. The pixel in row
i and celumn J is represented either by its row
and column numhers as 4, 7)) or by its
row major number as Plixn-+j). Two pixels
in a binary image are said to be 4-adjacent if
they share a side. Two pixels are said to be
S-adfacent if they share a side or a corper.
Far example, in Fig. 1. P(46) and P(56) are
4-adjacent. P(46) and F(53) are 8-adjacent
but not 4-adjacent. A set of pixels. S, is said
to be 4d-connected (8-connected). if for any
pixel p and ¢ in S, there exists a sequence of
pixels. » = po. D1, P2. ..
such that p;. is 4-adjacent (8-adjacent) to
pr. 0=k,

A {black) region is defined as a maximal set

,pk:qinS,

of 8-connected black pixels. A {white) hole is a
maximal set of 4-connected white pixels which
are surrounded by a black region. A black pixel
In a region is said to be a bound ary pixel of t
he region, if it shares a side with either a wh-
ite pixel or the image frame. The boundary of
& region is the set of such sides of its boundary
pixels. The boundary of a black region forms
one or more simple paths, and we call each such
path as a cyele. For example, in Fig. 1, P(22),
P(31}, P{33), P(42) form a black region. P{32)
forms a hole. The boundary of this black regio
n is described by two cycles.

A {d-directional) boundary code of a binary

image. is a sequence, C1C,...C,. where ¢ is

the number of cyvcles in the image. and C, s
a sequence of characters describing cycle .
Fach C, 1s called a cycle code. A cycle code
begins with ™. It is followed by the row and
column numbers of a pixel whose upper left
corner is the start point of the cycle. A pixel
whose upper left corner is the start point of a
cycle is called the start pixel of the cycle.
These coordinates are followed by a sequence
of unit vectors (links): R, D. L. and U, each
representing the direction: right, down, left,
or up. The first unit vector in a cycle code is
called as the start /ink.

(Fig. 1) & 10x10 bhinary image.

If a cycle is on the oputside boundary of a
region, its cycle code describes the boundary
in a clockwise motion from the start point:
otherwise, it is in a counterclockwise motion.
Thus, in either case, the boundary pixels are
on the right side of the sequence in the
principal direction. A boundary code for the

image in Fig. 1 can be given as follows:

FURK DR GFL LU L L /U T s R
CFRDRDLUVLDLUOLUOT431TLDR
FA6 RRDRDDDLDLLULULDL
DLULURVFRDRURURUTTZDR
UL"6ADRUL*TTLDRRUL

There are 7 cycles in this boundary code.
The cycles begin at P01, 5). P2, 2) and H4.
6) describe the outside boundaries of the black
regions. The remaining 4 cycles describe the
in the For the
evele in the boundary code begins at the upper

holes image. example, first
left corner of P(2. 2). This c¢yele begins with
an R link followed by a D link followed by an
R link. and so on.

Recently, researcheys show much attention to
designing parallel algorithms [or transforming
between any pair of the following binary image
representations: binary images, boundary codes.
run length codes. and quadirces [1, 2. 3 4, 7.
8. 9% Yor the transformation between a binary
image and a guadtree. tung. Rosenfeld (31 pre-
sented mesh algorithms, Dehni, Ferreira. Rau-
Chaplin [1] and lbarra. Kim 4] gave SIMD hy-
percube algorithms, and Kim, Janel9! gave recon-
figurable mesh algorithms.

Ior the transformation between a boundary
code and a quadtree, various SIMID hypercube
algorithms were developed. Dehni, Ferreira,
Rau-Chaplin [11 gave an algorithm for building
a quadtree from a boundary code. Doctor and
Sudborough [21 gave a randomized algorithm
fnr the same transformation. Both algerithms

allow holes inside the black regions.
Iharra [8]

transforming between a boundary code and a

do not

Kim. presented algerithms for
quadtree. These run faster than the previous
algorithms [1. 2] and allow holes inside the
In 18], Kim.
algorithms for transforming between any pair

black regions. Ibarra also gave

of binary images, boundary codes. guadtrees.

and run length codes.

(K i‘ Lartie

thms for transforming between a binary image

Wil ortorntly prosenied ENE
and a boundary code on a reconfigurable mesh.
The transformation from a hoeundary code of le
negth b to its corresponding binary image of si-
6 B R uses #emx max (#, b) processors. and
its converse algorithm uses 2 x ux2m proc
essors. Although these algorithms run in cons
tant time. the number of required processors doe
s not seem to be small enough to be used in
practice.

In this paper. we present reconfigurable mesh
algorithms for the same transformation. Our
main objective is to reduce the number of proc-
the

nxnxn

pssors by a factor of O(x) while keeping
execution time reasonably small. We use
processors. as for the transformations hetween
a binary image and a quadtree in [9} Qur alg
orithm for transforming a boundary code to its
corresponding binary image takes O(1) time a
nd itz converze algorithm takes O(log#) time.

The paper is organized as follows. In section
2. we give a brief explanation on the computing
madel used for the transformation algorithms.
Seme constant time operations are also mention-
ed in this section. In section 3. we present an al
gorithm for transforming a binary image to a b
oundary code. Its converse algorithm is given i
n section 4. Section 5 concludes the paper.

2. Preliminaries

The computing model used for our algorithms is
a reconfigurable mesh 0] A 2D w~ #x recon
figurable mesh consists of m»#u processors (P
Fs) which are connected to a grid-shaped re-
configurable broadcast bus. Each PE has four I
/O ports: N,

among the 4 ports in a PE can be configured

S. E. W. The internal connections

during the execution of an algorithm. This all-
ows the broadcast bus to be divided into sub-

Buses providing amaller reconfigurable moeshe
It ie assumed that a value broadeast consists
ot Ologn) bits and takes O(1) time. as is t
be assumption in 5L It 1s not allowed for m
ore than one PEs to broadeast to a subbus sha
red by multiple PEs at any given time, Zach
PE has (1) words and can perform an arithme
vic {or a logie) aperation in O(1) time.
Internal port connections of a PE in a 2-D

b

reconfigurable mesh can be vealized in 1
different ways 6 7. 11). Assume that the
notation. ‘NS EW!. represents the situation
that the N port is connected to the 8 port and
the F port is connected to the W port. The 15
possible port connections can be described as
follows: IN. S, E, W}, INS E, W} (N. S
EW. INE. S. W), N, ES. Wi N, E. SWI,
INW. E. St INE. SWi. INW, ES}. (NS, EW,
INEW. St INES, W}, (N, ESW], INSW, E).
INESWI.

A 3-D reconfigurable mesh is defined similarly.
FKach PE in the mesh of size #x#nx#n is index
-ed as a triple: (/7. ¢}, where 0=/ 7 cln.
Here, / represents the laver on which the corr-
esponding PE is located, r and ¢ are the rew
and column numbers of the PE on layer L Each
PE has two 1/0 ports along each dimension (a
total of 6 1/O ports per PE). The U and D ports
are along dimension 0, the E and W ports are
along dimension 1. and the N and S ports are
along dimension 2. The buses formed along di-
mensions 0, 1. and 2 are called the UD hus
(layer busg), the EW bus {row bus}, and the N3
bus {column bus), respectively.

Let us now describe some reconfigurable mesh
operations that will be used in our algorithms.

Observation 1.
On an xnx#n reconfigurable mesh. # numbers
stored in a row {or a column) can be permut-

ed into any order in O(1) time 9]

Observation 2.

An nxXn>xn 3 1) reconfigurable mesh can he
seen as an wxwn 2-D reconfigurable mesh.
This is because there is a dilation-1 embedding
from an nxXn" 2-D mesh inte an nXnxn
3-D mesh. Thus. it is possible to run #ux n
{or ®*xn) 2-D reconfigurable mesh algorithms
on an #xuxn 3D reconfigurable mesh

without increasing their time complexities (91

Definition 1.
Given n numbers ag,a,as, ..., a&,—, the pre

-fix sums operation is to compute n quantities,

2}&;‘, for all 0<k{#n.

Obsgervation 3.

On a Vaxn reconfigurable mesh, the prefix
sums of an » element binary sequence can be
computed in O(1) time [0, 13].

QObservation 4.
The prefix sums of a sequence of # integers
in the range of 0 to #° can be computed in

O(1) time on an #°xXn reconfigurable mesh
(131

Observation 5.
The prefix sums of a seguence of 7 integers
in the range of 0 to #° can be computed in

O{¢) time on an nX#n reconfigurable mesh
[13i.

Observation 6.

For 0<p<#n®, p numbers distributed over nxn
PEs on layer 0 of a reconfigurable mesh of size
nxnxn can be collected. in O(1) time, into
the first p PEs of layer 0 retaining the original

order among the numbers B

Observation 7.
On an »Xx reconfigurable mesh. ® numbers can
be sorted in OC1) time {8, 10].

Observation 8.
On an n¥nxn reeonfisurable mesh, #° numbers

can be sorted in O(1) time (5]

2. From binary image to boundary code

The reconfigurable mesh used for our algorithm
consists of mXmxn PHEs. Each PE in the
mesh s indexed by a triple {/, 7 ¢} as defined
in section 2. The input binary image of size
n>n is initially stored on the bottom layer,
which is laver 0. Pixel (4, 7) is stored in
PE(O. i /). 0=1, j<n. For simplicity, it is assumed
that the pixels in row #—1 or column »n—1
are white. From this input configuration, we
generate a boundary code. and put it in linear
order with the first link at PE{0. 0. U}. That
is. we store the k-th link, 0<A<{2n°. of the
boundarv code to PE(] 4 /. where
I=k div #* i=(k—(Ixn®)) div n. j=k—
({xn”+ (<n). The first symbol of a cycle, ™.
and the following vow. column numbers are
stored in the PEs with the corresponding cycle
start link.

The algorithm can be briefly described as
follows:

Algorithm BinlmageToeBcode
Phase 1. Each PE(0. 7, j). 0<4, j<n, gene-
rates the links that are either on
the top side or on the left side o
f pixel P4,7). An 1D number is
then assigned to each link.
Phase 2. Each PE determines the ID of the

RECU R A sl wf o

H
e
r

{

I

8

ab ed AT She

Predeceszor tink lor sach o
nks,

Phase 3. Each PE determines. for each of
its hinks. the 1D of the cycle start
link and the distance from the s
tart link to its link.

Phase 4. Compute the length of each cvcle.
Phase 5. Determine the destination PE ad-
dress for each start link.

Phase 6. Determine the destination PE ad-

dresses for the remaining links.
Move all the links to their desti-

nation PEs.

Let us explain the algorithm in detail. Phase 1
generates all the links that belong to the cutput
boundary code. The links that are either on the
top side or on the left side of P(7, j) are gene-
rated by PEW. i jt. 0<7,7¢(%. In order to ge-
nerate the links. each PE needs to know the
colors of its N. W neighbor pixels. Each PE{0.
iy, 1=1,7<{n. thus fetches the colors of the
pixels in PE(C. /~1. j) and PE(0. i, j~1). The
PEs in row 0 (or column 0) assume that their
W neighbor (or N neighbor) is white. An R link
is gencrated by PE(O. i J) if its pixel is black
and its N neighbor is white. It is because a
cyele code deseribes the boundary of a black re-
glon in a clockwise motion from the start point.
Similarly, a U link is generated if its pixel is
black and its W neighbor is white. An L link is
generated il its pixel is white and its N neigh-
bor Iz black. A Y link is generated if its pixel
is white and its W neighbor is black. Fig. 2 shows
the & possible cases of link generation in PE(0.
I J}. In the figure, the pixel at the lower right
corner is (4, 7). Note that the number of links
generated by each PE is at most 2.

We next assign an ID number to each link.
The 1D of a link is a tuple (Pid. LinkType).

(@) (b) (©

(d) (e) Y

(Fig. 2) Link generation in PE(Q, §,).

where #Fid 1s the linear number of the PE
where the link has been gencrated. and
LinkType is O i #t is an R or an L. 1
otherwise. A link can be identified by its [I).
Woalink is of LinkTwype x. x=90,1. we call it
type x link. For example. the 1D of an R link
generated in PE(0. 2. 3) is (0xn°+2%xn+3
0,

At this moment, although we know which
links belong to the output boundary code. we
do not know how many cycles there are in the
boundary code, which cvele each link belongs
to. and in what order the links should be
arranged in the output boundary code. As the
first step to solve these, we determine. in
phase 2, the ID of the predecessor link of each
generated link,

Let us define some more terms. Suppose that
€C1Cy. .. Cp | 1s a cycle code, where ¢; is
the i-th link in the cycle. The length of a cycle
is defined to be the number of links in the
cycle. In this example, the cycle length is k.

The predecessor link of ¢; is defined to be
Cli-1+# medt. That is, the predecessor of ¢;.
1<i{k. is ¢;_; and the predecessor of Cy s

Ct-1. The x preceding finks of ¢; are all the
links (with repetiticn} we meet when we walk
X steps on the region boundary in a counterclo-
ckwise motion (in reverse order). starting at

€(i—1+» mods. Here, x is allowed to be larger

than k. For example, consider the cyele in Fig,

3. The cycle is represented as a ring. Its cycle
code i cpeieye9¢4¢5. The 4 preceding links of
Cy are ¢y, €1. ¢y, ¢5. The 8 preceding links
of ¢3 are ¢3. €. €.¢5, ¢4, c3. ¢, ¢. For
two links ¢; and ¢;. 0<4,j(k. the distance
from ¢; to ¢;. is defined to be the number of li

nks we meet when we walk on the region boun

dary in a clockwise motion, starting at C(i+1) mod b
and ending at c¢;. That is, the distance from
¢ to ¢; s j—1 if €7, j— i+ k otherwise.
In Fig. 3, the distance from ¢5 to ¢4 is 4 and

the distance from ¢y to ¢y is 2.

(Fig. 3) The 4 preceding links of Cy.

In order to determine the predecessor link
of a link. we need to know the colors of itg
neighbor pixels. Thus. each PE(Q, i /).
0<i,j<{n. first fetches the colors of the eight
neighbor pixels of P(Z,7), and uses the
following rules to locate the predecessor link of
each of its links. Suppose that PE(0. 7, j) has

an i link. [t teils us that itg pigel s plack
and its N neighbor 1s white. The predecessor
Jink is a b link in PEWO. 1. j} if the NW
neighbor is alse black. as In Fig 4(a). I the
NW neighbor is white. PE(0, /) checks the
color of its W neighbor. [f it is black. the
predecessor link is an R link in PEW, 1, j-1),
as in Rig. 4(b). If both NW and W neighbors
are white. then the predecessor link is a U
link in PE(0. /. J). as in Fig. 4{c}. From the
calculated information, the ID of the
vredecessor link can be easily obtained. The
1D of the predecessor links of L. It U links
can be determined similariy.

In phase 3. each PE determines, for each of
its links LK. the ID of the cycle start fink. and
computes the distance from the cycle start link
to LK. The evele start link can be any link in
the cycle. So. in our algorithms, we assume th
at the start link is the link with smaller 1D th
an any links in the cycle. Note that D=

(Pid\, LinkType,} is satd to be smaller than
ID,= (Pid,, LinkType,) if either

(Pid\< Pid,) ov (Pid, = Pedy and LinkTyvpe (<
LinkTypes).

(a) (b) ()

{Fig. 4) The predecessor link of an R link.

Phase 3 uses a technique called “pointer
jumping”. The pointer jumping process is
divided inte 2loge+2 steps. In step d.
0<d<2logun-+1. each PE(]. I j} chooses. for

each of its links LK. a candidate cycle start

link srem the 727 preceding Duks of AL PR
iy alse computes the distance from the
chosen link to LA, The candidate link is the
link with smaller D than any links among
those 29 links. After 2logn+2 such steps.
most recently chosen candidate cycle start
links become the correct start links of the
corresponding cveles, since a cyele is not

longer than ot

WA

Here are the details of step o 0=d
2logn+1. Each PE{D. 7, /) keeps 3 data items
for each of its links LK @ Start{LK), Dist{LK),
and Pred(LK). Let us first explain what has
heen calculated in step d-17 (11 Start(LK) is t
he 11 of the candidate cvele start link chosen {ro
m the 29 ' preceding links of LK. (2} Dist(L
) is the distance from Start{LK) to LK (3) P
red(LK} is the D of the link which we meet a
{ the 27 '-th step when we walk on the regi-
on boundaty in 2 counterclockwise motion, st~
arting at the predecessor link of LA In step
d. each PE{O. 7/ j} updates the 3 data items

as follows:

(MStart(LEY —miniStart(LK) Start{ Pred (LK)
(2) Dist(LE) = Dist(LK). if Start({LK) has not
been updated

=Dist{ Pred(LI + 2“7 otherwise.
(31 Pred(LKV = Pred(Pred{LK)}

As we can see here, in order to carry out the
above caleufations. cach PRIG. L7 needs to ob-
tain Start{Pred(LK)). Dist(Pred(LK)), Pred(Fred
(LKY) from the PE which has generated Pred

(LK), Let us now focus on such data commun-

a

ications. Clurvently, there are as many as #°
PEs which need to get data from other PEs.
Some of them may have two links to process.

And, some PEs may receive more than one data

reguests from other PEs. since we plan to use
the constant Ume sorting eperation lobservation
Ni,owe arganize the data requests so that at
any given time PEs send (or receivel at most
o data request. This process is divided into
1 substeps. In substep §. [=<ss4. only the
Pls PR 70, that satisfy condition § send
out their requests. where the cenditions are given

beiow. Assume that LK is a link in PE(O. i, j).

condition 10 LK iz of tyvpe 0 and Pred(LK) is
of type 0.

condition 20 LK is of type O and Pred(LK) is
of type 1.

condition 3. LA is of tvpe 1 and Pred(LK) is
of type 0.

condition 4 LK {s of type 1 and Pred(LK) is
of type 1,

Next, we show how substep 1 ean be done
in O(1) time. Each PE(0. /. /) sends out a
data reguest for s Uink LK if it is of type 0
and Pred(LK} is also of type 0. PE(0. i J)
first prepares a vecord R = {DestPid, Info},
where DestPid is the address of the PE which
generated Pred(L.K}. The PEs which do not
satisfy condition 1 set their DestPid to n°.
Note that if PE(O, i, /) has a link of type O,

the value of its DestPid is less than #°. Info
contains the remaining information for the
data request. Note that our objective is to
move K to PE(Q, DestPid div n, DestPid mod
ny. After the records are prepared. they are
sorted in increasing order of their DestPid
using #XnXn PEs (observation 8).

The sorted R’s are stored on the bottom
layer, one K per PE. The records are next
moved straight up to the r-th layer of the
mesh, where r = DestPid div n. Since the
number of records on each iayer is not more

than n, they do not take more than two
adiacent rows inside the laver, The R's on
layer r are then moved to PE(r. r, ¢}, wheve ¢
= DestPid mod n These are next moved
straight down to PE(Q. r. ¢ using the layer
bus of the mesh. This completes the data
request of substep 1. Substeps 2-4 are done
similarly. After the data request for link LK is
sent to the PE with Pred(LK). we use similar
operations to bring the requested data back to
the PE with LK

In phase 4, each PE with a start link
computes the length of its cycle. This value is
later used to allocate the PEs for storing the
corresponding cycle code. Note that the lensth
of a cycle is the distance from the start link
to the last link of the cvcle. which in fact is
the predecessor of the start link. Since the
predecessor of a link is stored in one of its 8
neighbor PEs., each PE with a start link can
easily obtain the cycle length in constant time.

Phase 5 is to determine the destination PE
address for each start link. Let C,; be a

cycle whose start link is in PE(0, 7 /). Our
boundary code will be placed in such a way
that C,; appears before Cy, if iXn+j is
smaller than AX#xn+m. Note that because of
the way our cycle start link is defined, there
is at most one start link in each PE. They are
either an R link or an L link. In order to
determine the PE address for each start link,
we use the prefix sum operation. PE(0, i))

uses variable L, to store its cycle length. If
PE(0, i, j} does not have a start link, L,; is 0.
Phase 5 iz divided into 5 steps. In step 1,
we compute the prefix sums of L,y L,
L;,.1. for each row i, 0=i{n. For
computing the prefix sums of the # numbers

in row i, we use nxXn PE{l i j)'s, for all

0£/<n and 0=<j{(n . The computed 5:0121_,'
for

is stored in PSUM,;, in PELO, j, k), for cach
iand k. 0<7 AC(n. By observation 5. it takes
constant time to compute the prefix sums of n
integers in the range of 0 to 9n® using nxn
PEs.

in step 2, PSUM ., .. for all 0=n | is
copied to the first column inside the corresponding
row. That is, PSUM,, | is copied to variable
ROWSUM,; in PELWO. [0. for all 0=i{n .
Note that the value of ROWSUM;. for all

0<i{n. is also in the range of 0 to 2u°.
And there are # such numbers. Now. the
prefix sums of the n ROWSUM. for all
0<i<{n, are computed and stored in SUM, in
PE(, 7, 0}, for all 0<iln.

In step 3, each PE(0, 7.) on the bottem la-
ver sends the value of SUM; to all the PEs
inside the row through its row bus. Finally,
each PE with a start link computes SUM,-
ROWSUM, + PSUM ,, L., which is the desti-
nation PE address of the start link.

Phase 6 is divided into 3 steps. The first step
begins with moving the links to their destinati-
on laver. If there are more than n’ links in
the output boundary code, the links except the
first n* links of the boundary code are placed
on layer 1. So. we first locate the link whose
destination PE is PE(C,2—1,%— 1. This can
he done by the PEs with a start tink. since they
know their link’s destination PE address and
the eycle length.

Suppose the link we located is the k-th link
of cycle C; ;. Then PE(0. [, j} prepares a record
R = (StartPid, Distance}. StartPid s set to
% n+f. which is the index of the PE with

the raele starl Dk fsfance ds =6t 1o b Now

we set up a bus so that all the PEs on layer O

are connected In a snake-like tashion. Pk 1.

i1 then broadcasts the prepared record F

through the established bus. After receiving K.
all the PEs compare StartPid with its
Start(LK) and DPistance with its Dist{LK}, for
cach of its tink LA Link A should be moved
to layer 1 if either StartPid { Start{LKl or
(StartPid = Start(LK) and Distance (DistlULK)].
Now. using the layer bus. all the links whose
destination is on laver 1 are moved straight
up to laver 1.

The objective of step 2 is to move all the
links on layer § to their destination PEs. Here
we only explain how to move the links on
layer 0. The links on layer 1 are handled
similarly, Each PE(0. j. J) first prepares a
record £ = (Start{LK). Dest(LK), Dist(LK), LK)
for each of its links LK Start(ZLK)} is the ID of
the start link of the cyele to which L&
helongs. Dest(LK) is the destination PE address
of LK if LK is the start link, undefined
otherwise, Dist(LK) is the distance from the
cycle start link to LK

At this moment. some PEs may have more
than one links (i.e.. more than one records).
Using the fact in observation 6. we first move
the records for type 0 links to low numbered
PEs instde the layer. one record per PE. Next,
the records for type 1 links are moved to high
numbered PEs inside the layer. Since there

9 . .
are at most x° records. there is no PE which

has more than one records,

In step 3, we sort all the records on layer O
in increasing order of their Start{LK). The
records in odd numbered rows are then
reversed. Now we set up the bus so that all
the PEs on laver 0 are connected in a
snake-like fashion. Note thuat all the records
for the links that belong to the same cvcle

make a0 run. What owe (ry to do next iz o
hroadeast the destination PE address of the
evele stary link, Dest{StartitLAT to all the
PEs that have records for the same cycle. In
order to do so. each P first checks its
right/eft neighbor PREs and disconnects the
hus 1t they belong Lo different eycles. Now. the
Pls with a start link send out the destination
Pl address of its link through the bus. Hach
Pl then ezlculates the destination PR address
of its link., Dest(LK). by adding the received
address to its Dist(LA). All the records are
sorted one move time in increasing order of
their Dest(LK). The records in the sorted
sequence can easily be placed to their destination
PE.

As the final step of the algorithm. the row.
column numbers of each start link should be
gencrated. Each PE which currently has the
starl link of a eycle computes these numbers
from Pid of its LK If the start link is an R
link. the computed row. column numbers are
correct. if it is an L link. the column number
should be increased by 1 since the start peoint
of a eycle is the upper left corner of the pixel
from which the cycle begins.

Consider the time taken by each phase of
the algorithm. It is obvious that phases 1-2
and 4-6 take (1) time. Phase 3 consists of
(logn) steps of pointer jumping. Since each
step of phase 3 takes O(D) time. the total time
taken by the algorithm is .O(logn). Thus, we
can conclude the following:

Theorem 1. The above algorithm transforms
an WX wn binary image to a boundary code [t
runs in O(log#) time using a reconfigurable

mesh of size nxnxn.

4. From houndary code to binary image

Here. we present an algorithm for transtor
ming a boundary code to its corresponding hin-
ary image. The reconfigurable mesh used {for
the algorithm consists of mxnxn PEs. The in
put boundary code is stored the same way as
the output boundary code of the converse algor-
ithm in section 3. From this, we build a binavy
image and store pixel P(Z,7) to PE(O, [J).
0<i,7{n.

The algorithm can be briefly described as
follows:

Algorithm BeodeToBinlmage

Phase 1. Each PE with a link determines
the numbers of U, D, R. L links
In between its link and the start
link of its cycle.

Phase 2. Each PE with a U link or 2 D It
nk generates the black boundary
pizel that is adjacent to its link,

Phase 3. Move the boundary pixels to their
destination PEs.

Phase 4, Generate the remaining black
pixels.

The objective of each phase of the algorithm is
similar to that in [7]. However, we implement the
algorithm using less number of PEs. Note that
the algorithm.in 7] uses 2r' PEs in the worst
case. The details of our algorithm can be
described as follows.

In phase 1, each PR{/, [J), O0=i=1, 0<L4,/<n.
determines the numbers of U, D, R, L links in
between its link and the start link of its cycle.
Let us first explain how to count the number of
U links. The prefix sum operation ean be use
d for the counting. Each PE(] i /. 0</<1.
0<7,7{m. sets a flag, F;;; to 1 if it has a U

link. O otherwise. The flags on the bottom two

favers form a binaly sedueiive vl jength 2u0
We first compute the prefix sums of the flags
on the bottom layer. and store the computed

prefix sum. Zﬂ zﬂF,;,m,s, to varable USUM, .
) o=

in PECO. 4, Jji,

sum computation of a binary sequence of length

0<7j<{n. Note that the preiix

n° can be done in O(1) time on a reconfigura
ble mesh of size nx#u° (ebservation 3).

We next compute the prefix sums of the
flags on laver 1 and stere the prefix sums,

> ZUFI to variable USUM, ., in PE(I.

=0 o=
L 0i<n. USUM, , 1, . which is stored
in PE(0, 1, n-1), is then broadcasted to all
the PEs on fayer 1. added to
each USUM, ;. 0=:75{n. to getl the actual

This value is
prefix sum values. The numbers of D. L. and
R links link
link of the cycle are computed similarly. The

in between the start and cach

computed prefix are then stored in

variables. DSUM,,,. LSUM,... RSUM,.;.

in PE(]. i, /), 0<{<1. 0=1{,7<n. respectively.
Phase 2 i1s divided inte 3 steps. Step | 1s to

sUMmMs

rearrange the links so that two adjacent links
in the
adjacent PEs when the PEs are connected in a

boundary code are stored in two

snake-like fashion. For simplicity. assume that
that LK. i 7
represents the link which was initially in PE(/,

1 is even. Assume also

i, J}. We rearrange the links of odd numbered

rows in reverse order. That is. LK(] 7, 7).
0<i<l. 0=, 7{n. is moved i PE

nJ-1}. Next, the rows on layer 1 are reversed.
That is. for all 0<i{m. LK(1,i,7) is moved
to PE(L, mF1,).

In step 2, we set up a subbus that goes
through all the PEs with a link that belongs
to the same cycle. [t can be easily done since
two adjacent links in the boundary code are

A 01,

Srrearty mtoreet o s laere PRS0 Nter
hus connections are set up. the row and
column numbers of the start link of each eycie
through the Each
PEU 4,), 0<i<1, 0<1,7{n, uses the received
numbers along with the values in USUM ., ;.
DSUM ;. LSUM, ;. RSUM,;; to determine

the row. column numbers of the boundary pixel

are hroadcasted subbus.

which is adjacent to its link.

In step 3, we eliminate the black boundary
pixels that were generated from an 1. or an R
link. These pixels are not used for generating
the remaining pixels. Before moving the
boundary pixels to their destination PEs., we
assign a type to the vremaining boundary
pixels: the type is U if it is generated from a
U link: the type 1s D if it is generated {rom a
[link.

The typed boundary pixels are moved to
their destination PEs in phase 3. Phase 3 is
divided into 4 steps. In step 1. each PRU, [

0=i,j<n. with a typed pixel
record B = {PixelNum,

PixelNum is set to the linear number of ithe

prepares a Typel.

generated pixel. and Type is set to the

assigned type. In step 2 uxXuxXx PEs are

used to move all the records on the bottom

layer to the low numbered PEs inside the

layer. one record per PE (observation 6).

In step 3. all the records on laver 1 are
moved to the high numbered PEs inside the
per PE. These

Lo e v A e . 1ty
then moved down to the bottom laver. Since

layer, one record records are

the number of U links and D links cannot be
we know that there is at
PE on the boitom

layer. The PEs on the bottom layer which do

2
greater than »° .
most one record in each
not have a record creates a dummy record
. . 2
whose pixel number 15 »".

In step 4. the records on the bottom layer

W
4

are o serted ino incerveasing order of their pixel
PixetNum, At this moment. for some
in PE()

may have the same pixel

nunrber.
io0=in® 1. the
Ploti+ 1)

with a diffevent type. This happens when the

record and the

record in

5 oand W neighbhors of a black pixel arve both

white, In such case. we delete the vecord in
Plcife iy and change the Tvpe in PE() to U,
P(i,7) is

moved to the ith layer of the mesh. It is then

Each ivped boundary pixel next
moved io the ~th row ipside the laver. and
then to the Jj-th column inside the layer. and
then straight down to the bottom layer.

pixels of the

Currently. all the boundary

binary image are built and stored on the

bottom layer. The remaining black pixels are
generated in phase 4. This phase is the same
as that in {71, For the sake of completeness.
we state the idea used in this phase. Suppose
that there are & boundary pixels in row . We
feft to right,

remember the types of the boundary pixels we

now sweep trow r from and

meet, in order. Suppose that 4. #. &,
t,. m<k i3 the sequence of the remembered

types, excluding UD types. Then, even numbered
this U’s and the

remaining types are D's. In other words. U is

types in sequence are

always followed by a D and the pixels in
between these two must be all black. They are
the pixels inside the black regions. See Fig. 5.
It shows the boundary pixels generated for

rows 5-8 of the image in Fig. 1. In order to
generate such black pixels, each PE on the
bottom layer connects its EW port. except the
PE with a pixel of type D. Now the PE with a
pixel of type U sends out a signal through its

The PEs that

black pixel. In

received the signal
P(5.6).
P(5,7) and P(6,7) are the black pixels generated

in phase 4,

row bus,

generate a Fig. 5.

it is obvious that the time taken by ecach
phase of the algorithm is ©(1). Thus. we can
conclude the following theorem.

The
generation algorithm converts a boundary code

Theorem 2. above binary image

of length b to its corresponding binary image
of size nXwn. The algorithm runs in constant

time using nxnxn PKs.

5 Conclusion

Here, we presented efficient reconfigurable
mesh algorithms for transforming between a
binary image and its corresponding boundary
code. These algorithms use #XnX#%n processors
when the size of the binary image is nx#n.
Recent published results (9] show that these

transformations can be done in O(1) time using

O(n*) processors. Although the algorithms
run tn constant time, the number of processors

w N O wt»

(a)

(b)

(Fig. 5) (a) Boundary pixels.and their types, (b) pixels generated in phase 4.

SEA A L

gsed by them decs oot seci 1o be reazenabiy
amall enough 1o be used in practice.

0. we focused on reducing the number of
processors while keeping the execution time
As for

transforming between a binary image and a

reasonably small. the algorithms for
quadtrec in [9]. we used mxmnxn PEsg only.
Our transformation from a boundary code to a
binary image takes O{1) time. and the converse
transformation takes logun) time. The time
complexity of the algorithm for transforming a
binary image to a boundary code is hounded by
the time taken by phase 3 of the algorithm.
One way to get a faster algorithm would be to
make phase 3 work faster since it is the only

phase which takes more than constant time.

References

1] F Dechne, A. G. Fatreira and A. Rau-Chaplin. ”
Efficient Parallel

ulation of Quadtrees.” Proc. of International

Construction and Manip-

Conference on Parallel Processing, pp.255-
262, 1991,

[2] D. P. Doctor and H. Sudborough. "Efficient
Parallel Sibling Finding For Quadtree Data
Structure.” Proc. of Fifth IEEE Symposium
on Parallel and Distributed Frocessing.
1993,

[3] Y Hung and A. Rosenfeld. "Paralle] Processing
of Linear Quadtrees on a Mesh-Connected
Computer,” Jowrnal of Parallel and Distributed
Computing. vol 7. pp . 1989,

(4] O, H. Tharra and M. Kim. “Quadtree Building
Algorithms on an SIMD Hypercube.” Journal

P a7

of Paraliel and Distributed Computing. Vol
18, pp. 71-76, 1943.

(5] J. Jang and K. Kim, "A Fast Parallel Sorting
Algorithm on the K-Dimensional Reconfigur-

able Mesh.” Proc. of International Conference

sirfees e Yiohiteriines oo
Processing, pp. H19-532, Dec. 1991,
(611,

Sorting Algorithm on Reconfigurable Mesh.”

Jang and V. K. Prasanna. "An Optimai

Prac. of International Parallel Processing

Syvmposium, pp. 130-137. Mar. 1992,

~—

M. Kim., "Transformation Between a Binary
image and a Boundary Code on a Reconfig-
urable Mesh,” Journal of KISS (4): Computer
Systems and Theory, Vol 25, No.
231-242. March 1998

[8] M. Kim and O. H. Jbarra. "Transformations
Boundary Codes. Run Length Codes.

3. pp.

Between
and Linear Quadtrees’. Proc. of International
‘arallel Processing Symposium, pp. 120-125,
1954,

(9f M. Kim and .J.

Transformation

Jang. “Constant Time

Between Binary lmages
and Quadtrees on a Recenfigurable Mesh’,
Journal of KISS (A): Computer Svstems and
Theorv, Vol 25 No. 5, pp. 454-466. May
19496,

(10} . Lin. S. Olariu. J. L. Scheing. and J. Zhang.
“Sorting in (1) time on an #<xn reconf-
igurable mesh.” Faralle/ Computing. From

Theory to Scund Practice. Proceedings of

EWP¢ 92 Plenary Address, [0S Press.
Amsterdam. 1992, pp. 16-27.

(117 R. Miller. V. K. Prasanna Kumar, D. I.
Reisis and Q. F. Stout. "Meshes with
Reconfigurable Buses,” Proc. of Fifth MIT
Conference On Advanced FHesearch In

VLSE pp. 163-17% 1988
120 R AMiller, VK
Reisis and . I,
Operations and Applications on Reconfigu-

Prasanna Kumar., 0. 1

Stout, “Data Movement

rable VL.S1 arrays.” Proc. International
Conference on Parallel Processing 1. pp.20
5-208, 1988,

[13] 8. Olariu, J. L.
“Fast Computer Vision Algorithms for Rec-

schwing, and J. Zhaneg.

onfiguradle Meshes ™ Proe, of International
Farallel Processing Symposium, pp. 258-2b
1, 1882,

(LU H. Samet. Applications of Spatial Data Str
uctures, Computer Graphics, {mage Proc
exsing, and IS, Addison Wesley, 1990.

[153] Q. F. Stout. "Meshes with Multiple Busas.”
Proe. of [EFE Svmposium on Foundations

of Computer Science. pp. 264-272. 1986.

2 o

19814 olgtdatdierw 37}
(A}

1983 AEtigtn oietel At
A (AP

199013 University of Minne-
sota. Minneapolis (%]
AR, HRALEE)

19933 University of Catifornia, Santa Barbara
(dEAR)

199313~ 199441 University of California. Santa
Barbara (Postdoc, 44D

9953 ~ & ojstoizi skl HFE T 2wy

P Eek /R, ¢uds

—

o

