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Effects of Total Sleep Deprivation on the First
Positive Lyapunov Exponent of the Waking EEG
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Abstract Sleep deprivation may affect the brain functions such as cognition and,
consequently. dynamics of the EEG. We examined the effects of sleep deprivation on
chaoticity of the EEG. Five volunteers were sleep-deprived over a period of 24 hours.
They were checked by EEG during two days. the first day of baseline period and the
second day of total sleep deprivation period. EEGs were recorded from 16 channels for
nonlinear analysis. We employed a method of minimum embedding dimension to calculate
the first positive Lyapunov exponent. For limited noisy data, this algorithm was strikingly
faster and more accurate than previous ones. Our results show that the sleep deprived
volunteers had lower values of the first positive Lyapunov exponent at ten channels (Fpl,
F4, F8, T4, T5, C3, C4, P3. P4, Q1) compared with the values of baseline periods. These
results suggested that sleep deprivation leads to decrease of chaotic activity in brain and
impairment of the information processing in the brain. We suggested that nonlinear
analysis of the EEG before and after sleep deprivation may offer fruitful perspectives for
understanding the role of sleep and the effects of sleep deprivation on the brain function.
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working at night could lead to failure to

1. Introduction

The adverse cognitive
performance of sleep deprivation have been well
documented in recent reviews (Hart et al,
1987: Pilcher and Huffcutt, 1996: McCarthy ME
and Waters WF, 1997). Increase in lapse
frequency. slowing of response times, or other
cognitive dysfunctions occurring in individuals
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perceive and. respond to critical visual and
auditory information correctly (Corsi-Cabrera et
al., 1996).

Total sleep deprivation is known 1o cause
various of monotonic decrease in
performance of a very broad range of variables
including vigilance., reaction time, arithmetic
computations, short-term and  long-term
psychomotor tasks, and logical
reasoning tasks. The longer the time period of
previous greater the
decrease in the performances is (Horne 1978:
Corsi-Cabrera et al.. 1996).

After a normal period of wakefulness (16

degrees

memory,

wakefulness is, the
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hours), EEG power is significantly increased
and interhemispheric correlation is decreased.
After a normal sleep of night, the values are
recovered in the morning. Extended hours of
wakefulness exacerbate the EEG changes. The
changes in the waking EEG are dependent on
the amount of previous sleep or wakefulness.
These findings indicate that accumulating hours
of wakefulness is reflected not only in the
sleeping EEG. but also in the waking EEG
(Lorenzo et al 1995: Corsi-Cabrera et al 1992).
The absolute powers of the whole spectrum
with open eyes and of theta and beta bands
with closed eye increases after total sleep
deprivation  (Corsi-Cabrera et al  1996).
According to Torsmall and Akerstedt (1987).
delta and theta bands in the absolute power
increase, as sleepiness is deeper for the train
drivers. These studies, however. did not report
apparently which region of electrical activity in
contributes to cognitive dysfunction
predominantly. There are many limitations on
applying linear analysis to the investigation of
the cognitive dysfunction after sleep deprivation
because of the absence of an identified metric
that quantifies complex behavior of the brain.
Recent progress in the theory of nonlinear
dynamics has provided new methods for the
study of time-series data from human brain
activities. In the dynamical aspect, the brain is
assumed to be a dissipative dynamical system.

brain

The distinct states of brain activity had
different chaotic dynamics quantified by
nonlinear invariant measures such as

correlation dimensions and Lyapunov exponents
(Babloyantz and Destexhe 1987: Babloyantz
1988: Roschke and Aldenhoff 1991: Fell et al
1993). Therefore, we can investigate the brain
function by understanding the dynamical
properties of the brain using nonlinear analysis
of EEG.

Nonlinear analysis of the EEG to estimate
first
positive Lyapunov exponent is very useful in

the correlation dimension and/or the

comparisons of different
states (Rapp 1993). Many
with  these methods Thave
possible medical applications for
nonlinear analysis and have given rise to the
possibility that the underlying mechanisms of
the brain function may be explained by
nonlinear dynamics (Babloyantz and Destexhe
1986: Babloyantz and Destexhe 1987: Frank et
al 1990: Pritchard et al 1991: Pritchard et al
1993: Pritchard et al 1994: Stam et al 1994:
Besthorn et al 1995: Stam et al 1995; Stam et
al 1996). conditions such as
epileptic seizures, coma, and dementia showed
decreased chaotic activities of EEG. whereas
normal attentional states tended to increased
chaotic by the estimation of the
correlation dimension (Frank et al 1990;
Prichard et al 1994: Stam et al 1995 Rapp et
al 1989).

In this paper, we investigate the cognitive
dysfunction sleep deprivation using
nonlinear analysis of EEG. We estimate the
first Lyapunov exponents of the EEG and
compare the values in the whole brain region
before and after sleep deprivation. The changes
of dynamical properties of EEG at different
channels may give the fruitful key to
understand the role of sleep and the effect of
sleep deprivation on the brain function.

In Section 2. we explain the procedure for
reconstructing brain dynamics from an EEG
and for analyzing the EEG by nonlinear
methods and algorithm for determining the
proper embedding dimension and for
compensating for both noise contamination and
edege effects. The first Lyapunov exponent is
also defined and discussed. Section 3 briefly
presents the procedure for recording data.
Section 4 shows the differences in the values of
the first Lyapunov exponent before and after
sleep deprivation. In section 5, we discuss our
results in the dynamical
view. Qur conclusions are given in Section 6.
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2. Theory and Algorithm

In nonlinear analysis, the brain may be
considered as a dissipative dynamical system.
A dynamical nth-order system is defined by a
set of n first-order differential equations. The
states of the system can be represented by
points in an n-dimensional space, where the
coordinates are simply the values of the state
variables x1, x2, x3, -+, xn. The phase space
is the set of all possible states that can be
reached by the system. In dissipative systems.
as time increases, the trajectories converge to
a low-dimensional indecomposable subset called
an attractor (Eckmann and Ruelle 1985).

In experiments, one cannot always measure
all the components of the vector giving the

state of the system. Therefore, we have to
reconstruct brain dynamics from a
one-dimensional EEG by using delay
" coordinates and the Takens’ embedding

showed that an attractor,
which is topologically equivalent to the original
data set, can be reconstructed from a
dynamical system of n variables x1, x2, x3, -,
xn by using the so-called delay coordinates
¥ O=1x;(0), x;(t+ D), -, x(t+(d—1D]

single time

theorem. Takens

from a
series xj and by performing an

embedding procedure, where d is the
embedding  dimension. The  purpose  of
time-delay embedding is to wunfold the

projection back to a multivariate state space
that is a representation of the original system
(Takens 1981 Eckmann and Ruelle 1985).

Lyapunov exponents mean
exi)onential divergence or convergence of nearby
trajectories of the Lyapunov
exponents are usually ordered in a descending
fashion from L1 (the highest value) to Ln (the
lowest value). A system possessing at least one
is chaotic. This
fact reflects the sensitive dependence on the
initial conditions (Fell et al 1993),

We applied a reconstruction procedure to

estimate the

attractor,

positive Lyapunov exponent

each EEG segment. For the time delay T, we
used the first local minimum of the average
mutual  information
measurement o(fH
Swwiney, 1986).
We estimate the first positive Lyapunov
exponent with minimum embedding dimension
method. In classical algorithms, we calculate a
nonlinear invariant measure by increasing the
embedding dimension until the value of the
invariant measure is saturated. It requires a
very large number of computations. In our new

between the set of
and o(t+ 7 (Fraser and

algorithm, we calculate the first positive
Lyapunov exponent Ll in the minimum
embedding dimension.

We determine the minimum embedding

dimension by using the calculation method,
presented by Kennel et al. (1992), which is
based on the idea that in the passage from
dimension d to dimension d+1, one can
differentiate between points on the orbit that
are "true” neighbors and those on the orbit
which are "false” neighbors. A false neighbof
is a point in the data set that is a neighbor
solely because we are viewing the orbit (the
attractor) in too small an embedding space
(d4dun). When we have achieved a large
enough (d2dm ), all
neighbors of every orbit point in the
multivariate phase space will be true
neighbors. We demonstrated that for limited
noisy data, our algorithm was strikingly faster

embedding space

and more accurate than previous ones (Jeong
et al. 1997. Jeong et al., 1997).

We calculate the first positive Lyapunov
exponent L1 by applying a modified version of
the Wolf algorithm (Wolf et al., 1985) and by
following a proposal by Frank et al. (1990).
Essentially, the Wolf algorithm computes the
initial vector distance di of two nearby points
and evolves its length at a certain propagation
time. If the vector length df between the two
points becomes too large, a new reference point

is chosen with properties minimizing the
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length and the orientation
change. Now, the two points are evolved again
and so on. After m propagation steps. the first
positive Lyapunov exponent results from the
sum over the logarithm of the ratios of the
vector distances divided by the total evolving
time:

replacement

df;
In -z, .
L= 4 EVOLV - & mg  (bits/sec) (D)
where dt, di, and df are the sampling
interval, and the initial and the final

separations between the points in the fiducial
trajectory and in the nearest-neighbor
trajectory separated in time by ith EVOLV
step, respectively (Wolf et al., 1985).

By using the weight function proposed by
Frank et al. (1990). we improve the Ll
estimate by widening the search to allow
replacements to be well-aligned points lying
further apart but still within the region of
linear dynamics:

W(z, 6)=(a+/3(g:;)7>-c050 (2

where b and a are distances over which the
dynamics is assumed to be linear and to be
noise-dominated, respectively, r is the radial
separation between the candidate and the
evolved benchmarks, and ¢ is the angular
separation between the evolved displacement
and the candidate replacement vectors. The
numeric parameters ¢, A, and 7y control the
relative importance of the proximity to the
alignment priority.

As suggested by Principe and Lo (1991). we
use the in the power
spectrum of the signal segment for the proper
evolving time EVOLV. We select the 1/e
spectral frequency - the frequency that divides

the power spectrum in the ratio of 1/e - as the

information contained

frequency to be used to obtain the number of
points for the EVOLV step. Realistic values for
additive noise
extracted from the curves of the correlation

the average levels can be
integral function which are used to calculate
Intermediate knees

integral are related with

the correlation dimension.
in the correlation
noise contamination. The value of r for which
the knee starts to appear can be used as an
estimate of the noise scale.
establish the maximum scale are derived from
the upper boundary of the scaling region in the
correlation function (Principe and Lo, 1991).

The criteria to

3. Methods

Five female volunteers, who are between 27
and 30 years old. participated in the
experiment. Subjects were right-handed with
neither central nervous system disorder nor use
of medication known to affect sleep or EEG.
They were free of sleep complaints and had
normal  sleep habits, as assessed by
questionnaire. EEG was recorded during resting
wakefulness with closed eyes under two
conditions: 1) in the morning after deep sleep
for baseline 2) in the morning (between 8:00
and 10:00 A.M.) after total sleep deprivation
for one night.

The EEGs were recorded from the 16 scalp
loci of the international 10-20 system. With the
subjects in a relaxed state with closed eyes for
32.768 of data were recorded and
digitized by a 12-bit analog-digital converter in -
an IBM PC. Recordings were made under the
eves—closed condition in order to obtain as
much stationary EEG data as possible. The
sampling frequency was 500 Hz. Potentials
from 16 channels (F7, T3, T5, Fpl, F3, C3, P3,
Ol, F8 T4, T6, Fp2 F4, C4, P4, and 02)
against “linked earlobes” were amplified on a
Nihon Kohden EEG-4421K wusing a time
constant of 0.1 sec. All data were digitally
filtered at 1-35 Hz in order to remove the

seconds
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residual EMG activity. Each EEG record was
checked by inspection to be
electrooculographic and movement artifacts and
to contain minimal electromyographic activity.
Whenever a decrease in vigilance was detected
on the ongoing EEG, the technician instructed
the subject to open her eyes, and a short
to minimize

free from

pause was allowed, if needed,
drowsiness.

The data were analyzed by using SPSS (6.0
release version). Results of group data are
expressed as mean T standard deviation (SD).
Group differences between before and after
sleep deprivation states evaludted by
using Wilcoxon matched-pairs signed-ranks
test. A two-tailed probability of less than 0.05

was considered to be statistically significant.

were

4. Results

The first
construct

step in our analysis was to
phase space using the delay
coordinates. We used the time delays calculated
by the method of mutual information to
reconstruct the attractor. Time delays of 26-46
ms and embedding dimensions of 11-23 were
used for the subjects.

The L1 were calculated for all subjects in all
channels. The proper evolving time (EVOLV)
was selected by using 1/e spectral frequency
and was about 220 ms. The calculation of the
L1 naturally depends on the time over which a
trajectory is evaluated. After about 200
propagation steps. the values converge at an
interval of £1.0% around the final value of the
Li.

The average values of the L1 and the
standard deviations for the subjects under two
conditions: 1) in the morning after deep sleep
2) in the morning after sleep deprivation for
one night are Table 1.
-Sleep-deprived states had lower average values
of the L1 at ten channels, ie., Fpl. F4. F8,
T4, Th, C3, C4, P3, P4 and Ol compared with

summarized in

baseline values.

5. Discussion

We investigate the effects of sleep
deprivation on brain function by estimating the
change of dynamical properties of EEG between
before and after sleep deprivation. Until now
there are several studies on the EEG in sleep
deprivation with linear methods. Corsi-Cabrera
et al. (1992) reported that sleep led to higher
interhemispheric correlation, lower
intrahemispheric correlation and lower absolute
power for all frequency bands as compared to
values for presleep, while sleep deprivation led
to opposite results, that is, lower
interhemispheric correlation and higher
intrahemisphreic correlation for all frequency
bands and higher absolute power of the faster
spectral bands. These suggest that
sleep increases the temporal coupling between
both hemispheres and enhances local functional
differentiation within each hemisphere. whereas
sleep deprivation tends to produce a loss of
interhemispheric  coupling and a
homogeneous organization within each
hemisphere. Cajochen et al. (1995) assessed
EEG power density and self-rated fatigue with

results

more

sleep-deprived subjects. They reported that
power density in the frequency range of
6.25-9.0 Hz increased monotonically in the

course of sustained wakefulness. This finding
corroborates earlier reports of increased EEG
power density in the theta/ alpha frequency
range across prolonged periods of wakefulness,
Barbato et al. (1995) reported that spontaneous
blink rate increased and relative power of
alpha EEG decreased following total sleep
deprivation for one night. For their study., a
possible working hypothesis is that increased
blink rate after sleep deprivation could reflect
an increased central dopamine activity. Lorenzo
et al. (1995) have demonstrated that waking
EEG activity is modified depending on the
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amount of previous sleep or wakefulness. It is
veported that sleep deprivation may lead to a
deterioration in performance of the vigilance
task and a linear increase of the power that
was more prominent on the theta band (on
central than temporal derivations and on the
left than the right side with open eyes). Their
study showed that sleep loss led to a generally
linear decrease in alpha and an increase in
theta wave and that performance errors were
usually accompanied by a slowing of the EEG
during sleep loss. However, they did not show
clearly which region of electrical changes in the
brain mainly contribute to
dysfunction.

Qur results indicated that the chaoticity of
EEG decreased at several regions of the brain.
that is. central. parietal, left prefrontal, left
posterior temporal, left occipital, right frontal

cognitive

and right anterior frontal area. This means
that the sleep-deprived brain processes
informations  deficiently and the neural
networks are less flexible in these areas. These
regions of the brain include the reticular
activating system, thalamus, striatum,
temporoparietal cortex and frontal cortex
(Mesulam, 1981). These regions coincide with
the key structure of attention and arousal. We
suggested that these areas should be the key
to the etiology of cognitive decline by sleep
deprivation. Additionally, we also tested the
cognitive  funetion by evaluating a
systematized neuropsychological test before and
after sleep deprivation in this experiment.
Therefore our suggestion will be substantiated
by our future works. We will investigate the
relation between the and the
chaotic properties of EEG in all channels in
the next paper.
analysis will give us a deeper understanding of
role of sleep in ways which are not possible by
conventional power spectral analysis.

performance

We expect that nonlinear

6. Conclusion

In this study, our result demonstrated that -
total sleep deprivation for one night affects the
dynamical properties of the brain. Our result
shows that the sleep-deprived female volunteers
had lower values of the first positive Lyapunov
exponent at 10 channels compared with
baseline values.

Our result is a preliminary finding, because
the number of subjects is so small. Although
our present study is in a fundamental stage of
development, its clear result encourages further
investigation of the chaoticity and complexity of
the brain in sleep-deprived states. Especially.
nonlinear measures of the electrophysiological
activity in the brain may offer unique and
fruitful perspectives for understanding
important features of the role of sleep and the
effects of sleep deprivation on the brain
function,
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after deep sleep after sleep
(N=5) deprivation
Locaticn (N=5) z P
Mean 3D Mean SD
F3 3.9180 0.901 2.4300 0.313 -0.753 NS
F4 4,1580 0.535 3.5980 0.357 -2.023 0.0433
F7 4.4940 0.565 3.7720  0.377 -1.826 NS
F8 4.5380 0.122 3.5760 0.332 -2.023 0.0433
Fpl 4.2360 0.406 2.2700  0.589 -2.230 0.0431
Fp2 4.0380 0.662 3.2880 0.244 -1.480 NS
T3 4.1240 0..323 3.4580 0.330 ~1.826 NS
T4 4.6420 0.689 3.4920 0.268 -2.023 0.0431
T5 4.3000 0.293 3.2900 0.224 -2.023 0.0431
T6 4.3040 0.382 3.2960 0.381 -1.753 NS
C3 4.0540 0.365 2.1760  0.162 -2.023 0.0431
C4 4.5209 0.448 3.3180 0.120 -2.023 0.0431
P3 4.2940 0.392 2.4040 0.346 -2.023 0.0431
P4 4.5640 0.369 35640 0.182 -2.023 0.0431
01 3.8580 0.289 2.4860 0.454 -2.023 0.0431
02 3.9260 0.730 3.8160 0.055 —0.404 NS

NS : Not significant (Wilcoxon matched-pairs signed-ranks test)

Table. 1 The average values of the L1 and the standard deviations for the subjects under two
conditions: 1) in the morning after deep sleep 2) in the morning after sleep deprivation for one
night.
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Abstract Sleep deprivation may affect the brain functions such as cognition and,
consequently, dynamics of the EEG. We examined the effects of sleep deprivation on
chaoticity of the EEG. Five volunteers were sleep-deprived over a period of 24 hours.
They were checked by EEG during two days. the first day of baseline period and the
second day of total sleep deprivation period. EEGs were recorded from 16 channels for
nonlinear analysis. We employed a method of minimum embedding dimension to calculate
the first positive Lyapunov exponent. For limited noisy data. this algorithm was strikingly
faster and more accurate than previous ones. Qur results show that the sleep deprived
volunteers had lower values of the first positive Lyapunov exponent at ten channels (Fpl.
F4, F8. T4, T5, C3, C4, P3, P4. O1) compared with the values of baseline periods, These
results sugpested that sleep deprivation leads to decrease of chaotic activity in brain and
impairment of the information processing in the brain. We suggested that nonlinear
analysis of the EEG before and after sleep deprivation may offer fruitful perspectives for
understanding the role of sleep and the effects of sleep deprivation on the brain function.

Keywords: Sleep deprivation, chaos, EEG, The first positive Lyapunov exponent

...78_



